
©Jesper Larsson Träff WS11/12

Introduction to Parallel Computing

Jesper Larsson Träff

Technical University of Vienna

Parallel Computing

©Jesper Larsson Träff WS11/12

Parallel computing:
„how to accomplish something as a coordinated team (CS: of
computers carrying out an algorithm)“

•It„s interesting, highly non-trivial
•Key discipline of computer science (von Neumann, golden theory
decade: 1980-90)
•It„s ubiquituous (gates, architecture: pipelines, ILP, TLP,
systems: operating systems, software), not always opaque
•It„s useful: large, extremely computationally intensive problems,
Scientific Computing, HPC
•It„s inevitable: multi-core revolution, GPGPU paradigm, …
•…

Why study parallel computing?

©Jesper Larsson Träff WS11/12

Parallel computing:
The discipline of efficiently utilizing dedicated parallel
resources (processors, memories, …) to solve a single, given
computation problem.

Specifically:
Parallel resources with significant inter-communication
capabilities, for problems with non-trivial communication and
computational demands

Buzz words: tightly coupled, dedicated parallel system; multi-core
processor, GPGPU, High-Performance Computing (HPC), …

©Jesper Larsson Träff WS11/12

Distributed computing:
The discipline of making independent, non-dedicated resources
coorperate toward solving a specified problem complex.

Buzz words: internet, grid, cloud, agents, autonomous computing,
…

Typical concerns: correctness, availability, progress, security,
integrity, privacy, robustness, fault tolerance, …

©Jesper Larsson Träff WS11/12

Concurrent computing:
The discipline of managing and reasoning about interacting
processes that may (or may) not take place simultaneously

Buzz words: operating systems concepts, autonomous computing,
process calculi, CSP, CCS

Typical concerns: correctness (often formal), e.g. deadlock-
freedom, starvation-freedom, mutual exclusion, fairness

©Jesper Larsson Träff WS11/12

Parallel computing as a theoretical CS discipline

•How fast can a given problem be solved? How many resources
can be productively exploited?
•What is a reasonable conception („model“) for parallel
computing?
•Are there problems that cannot be solved in parallel? Fast? At
all?
•…

(Traditional) concern/objective: how to solve a given
computational problem faster

©Jesper Larsson Träff WS11/12

Architecture model:
Abstraction of the important modules of a computational system
(processor) , their interconnection and interaction.

 Used as basis for the specification of a computational model:
(formal) framework for the specification of algorithms for the
computational system, including cost model.

M

P

Example: RAM (Random-Access Machine)

Processor (ALU, PC, registers) capable of
executing instructions stored in memory on
data in memory

Execution of instruction, access to memory:
unit cost

©Jesper Larsson Träff WS11/12

Architecture model:
Abstraction of the important modules of a computational system
(processor) , their interconnection and interaction.

 Used as basis for the specification of a computational model:
(formal) framework for the specification of algorithms for the
computational system, including cost model.

M

P

Example: RAM (Random-Access Machine)

Aka von Neumann architecture,
stored program computer (contrast:
finite state automaton)

[John von Neumann (1903-57), Report on
EDVAC, 1945], also Eckert&Mauchly, ENIAC

©Jesper Larsson Träff WS11/12

Architecture model:
Abstraction of the important modules of a computational system
(processor) , their interconnection and interaction.

 Used as basis for the specification of a computational model:
(formal) framework for the specification of algorithms for the
computational system, including cost model.

M

P

Example: RAM (Random-Access Machine)

„von Neumann bottleneck“: program
and data separate from CPU,
processing rate limited by memory
rate.

[John Backus, Turing Award Lecture, 1977]

©Jesper Larsson Träff WS11/12

Architecture model:
Abstraction of the important modules of a computational system
(processor) , their interconnection and interaction.

 Used as basis for the specification of a computational model:
(formal) framework for the specification of algorithms for the
computational system, including cost model.

M

P

M M M

Increased memory rate,
vector computer, ALU
operates on vectors
instead of scalars

©Jesper Larsson Träff WS11/12

Architecture model:
Abstraction of the important modules of a computational system
(processor) , their interconnection and interaction.

 Used as basis for the specification of a computational model:
(formal) framework for the specification of algorithms for the
computational system, including cost model.

M

P P P P

Shared-memory model
(bus based?)

©Jesper Larsson Träff WS11/12

Architecture model:
Abstraction of the important modules of a computational system
(processor) , their interconnection and interaction.

 Used as basis for the specification of a computational model:
(formal) framework for the specification of algorithms for the
computational system, including cost model.

M

P P P P

Shared-memory
model

©Jesper Larsson Träff WS11/12

Architecture model:
Abstraction of the important modules of a computational system
(processor) , their interconnection and interaction.

 Used as basis for the specification of a computational model:
(formal) framework for the specification of algorithms for the
computational system, including cost model.

M

P P P P

Shared-memory
model

Processors operate in lock-step, uniform memory access time =
instruction time: Parallel RAM (PRAM)

©Jesper Larsson Träff WS11/12

Architecture model:
Abstraction of the important modules of a computational system
(processor) , their interconnection and interaction.

 Used as basis for the specification of a computational model:
(formal) framework for the specification of algorithms for the
computational system, including cost model.

M

P P P P

Shared-memory
model

PRAM main theoretical model, introduced mid-70ties, throughout
80ties, lost interest ca. 1993

©Jesper Larsson Träff WS11/12

Architecture model:
Abstraction of the important modules of a computational system
(processor) , their interconnection and interaction.

 Used as basis for the specification of a computational model:
(formal) framework for the specification of algorithms for the
computational system, including cost model.

M

P P P P

Shared-memory
model

M M M …

©Jesper Larsson Träff WS11/12

UMA (Uniform Memory Access): access time to memory
location is independent of location and accessing processor,
e.g. O(1), O(log M), …

NUMA (Non-Uniform Memory Access): access time dependent
on processor and location. Locality: some locations can be
accessed faster by a processor than others („are closer“)

M

P P P P

M

P P P P

M M M

©Jesper Larsson Träff WS11/12

Architectural model defines „parallel resources“, specifies
•Power/composition of processor (ALU, FPU, registers, w-bit
words vs. unlimited, Vector Unit (MMX, SSE))
•Types of instructions
•Memory system, caches
•…

Execution model/cost model specifies
•How instructions are executed
•(relative) Cost of instructions, memory accesses
•…

Level of detail/formality dependent on purpose: what is to be
studied (complexity theory, algorithms design, …)

©Jesper Larsson Träff WS11/12

Architecture model:
Abstraction of the important modules of a computational system
(processor) , their interconnection and interaction.

 Used as basis for the specification of a computational model:
(formal) framework for the specification of algorithms for the
computational system, including cost model.

M

P P P P

Distributed
memory model

M M M

Communication network

©Jesper Larsson Träff WS11/12

Parallel architectural model specifies
•Synchronization between processors
•Synchronization operations
•Atomic operations, shared resources (memory, registers)
•Communication mechanisms: network topology, properties
•…

Cost model specifies
•Cost of synchronination, atomic operations
•Cost of communication (latency, bandwidth, …)

©Jesper Larsson Träff WS11/12

Architectural model: cellular automaton, systolic array, … - simple
processors without memory (finite state automata, FSA), operate
in lock step on (potentially infinite) grid, local communication only

[John on Neumann, Arthur W. Burks: Theory of self-reproducing
automata, 1966]
[H. T. Kung: Why systolic architectures? IEEE Computer 15(1): 37-46,
1982]. Goes back to early 70ties

©Jesper Larsson Träff WS11/12

Flynn„s taxonomy: orthognal classification of (parallel)
architectures.

SISD
Single Instruction Single Data

MISD
Multiple Instruction Single
Data

SIMD
Single Instruction Multiple Data

MIMD
Multiple Instruction Multiple
Data

[M. J. Flynn: Some computer organizations and their effectiveness.
IEEE Trans. Comp. C-21(9):948-960, 1972]

Intruction stream

D
at

a
st

re
am

©Jesper Larsson Träff WS11/12

SISD: single processor, single stream of instructions,
operates on single stream of data. Sequential architecture
(e.g. RAM)

SIMD: Single processor, single stream of operations, operates
on multiple data per instruction. Example: traditional vector
computer

MISD: Multiple instructions operate on single data stream.
Example: pipelined architectures, streaming architectures(?),
systolic arrays (70ties architetural idea).

MIMD: multiple instruction streams, multiple data streams

Some say:MISD class
empty

©Jesper Larsson Träff WS11/12

Programming model:
Abstraction close to programming language level defining
parallel resources, management of parallel resources,
parallelization paradigms, memory layout, synchronization and
communication features, and their semantics

Parallel programming language, or library („interface“) is the
concrete implementation of one (or more: multi-modal, hybrid)
parallel programming models

Cost of operations: rather at level of architecture/computational
model

Execution model: when and how parallelism in programming
model is effected

©Jesper Larsson Träff WS11/12

•Parallel resources, entities, units: processes, threads, tasks, …
•Expression of parallelism: explicit or implicit
•Level and granularity of parallelism

•Memory model: shared, distributed, hybrid
•Memory semantics
•Data structures, data distribution

•Methods of synchronization (implicit/explicit)
•Methods and modes of communication

Parallel programming model specifies, e.g.

©Jesper Larsson Träff WS11/12

[F.Darema at al.: A single-program-multiple-data computational
model for EPEX/FORTRAN, 1988]

SPMD: Single Program, Multiple Data

Examples:

•Threads, shared memory, block distributed arrays, fork-join
parallelism
•Distributed memory, explicit message passing, collective
communication, one-sided communication („RDMA“)
•Data parallel SIMD, SPMD
•…

Concrete libraries/languages: pthreads, OpenMP, MPI, UPC, TBB,
…

©Jesper Larsson Träff WS11/12

Programming language/library/interface/paradigm

Programming model

Architecture model

„Real“ Hardware

Different architectures models can
realize given programming model

Closer fit: more efficient use of
architecture

Challenge: programming model that is
useful and close to „realistic“ architecture
models

OpenMP MPI

Challenge: language that conveniently
realizes programming model

Algorithms
support

©Jesper Larsson Träff WS11/12

Examples:

OpenMP programming interface/language for shared-memory
model, intended for shared memory systems.

Can be implemented with DSM (Distributed Shared Memory) on
distributed memory architectures – but performance has usually
not been good. Requires DSM implementation/algorithms

MPI interface/library for distributed memory model, can be
used on shared-memory architectures, too. Often done, and
makes sense…

©Jesper Larsson Träff WS11/12

p dedicated, tightly coupled processors collaborate to solve
given problem of input size n:

Tseq(n): time for 1 processor to solve problem of size n

Tpar(p,n): time for p processors to solve problem of size n

Speedup(p,n) = Tseq(n)/Tpar(p,n)

Speedup measures the gain in moving from sequential to parallel
computation

Speeding up computations by parallel processing

©Jesper Larsson Träff WS11/12

p dedicated, tightly coupled processors collaborate to solve
given problem of input size n:

Tseq(n): time for 1 processor to solve problem of size n

Tpar(p,n): time for p processors to solve problem of size n

Speedup(p) = Tseq(n)/Tpar(p,n)

Speedup measures the gain in moving from sequential to parallel
computation

Speeding up computations by parallel processing

If n is fixed , or
„disappears“

Sometimes
S, SU, …

©Jesper Larsson Träff WS11/12

Tseq(n), Tpar(p,n) ambiguous

-Time for some algorithm for solving problem?
-Time for best known algorithm for problem?
-Time for best possible algorithm for problem?
-Time for specific input of size n, average case, …?
-Ignoring constants, e.g. O(f(p,n)) or 25n/p+3ln (4 (p/n))… ?

Typically: fix some (good) some algorithm, assume constants in
Tseq(n) and Tpar(p,n) comparable, emphasis on orders of
magnitude

Ideally: Tseq(n) time for best possible algorithm

©Jesper Larsson Träff WS11/12

As always in computer science, distinguish

•Problem G to be solved (mathematically specified)
•Algorithm A to solve G
•Best possible (lower bound) algorithm A* for G, best known
algorithm A+ for G

•Implementation of A on some architecture M

©Jesper Larsson Träff WS11/12

time
Tseq

Sequential time is (sequential) work

Parallelize: divide work into p independent
pieces, assign to p processors…

General: work is total number of instructions executed

©Jesper Larsson Träff WS11/12

time

Tpar

P0 P1 Pi P(p-1)

p processors

Tpar(p,n) = Tseq(n)/p

Speedup(p,n) = Tseq(n)/Tpar(p,n) = p

Idealized, best case

“embarrassingly parallel”
“pleasingly parallel”
“perfect speedup”

Here:
parallel work same as
sequential work

©Jesper Larsson Träff WS11/12

time

Tpar

P0 P1 Pi P(p-1)

p processors

p processors assumed to start at the same time, Tpar is the
time for the slowest/last processor to finish

©Jesper Larsson Träff WS11/12

“Theorem:”
Perfect Speedup(p,n) = p is best possible and cannot be
exceeded

“Proof”:
Tseq(n)/Tpar(p,n) > p implies Tseq(n) > p*Tpar(p,n), so a better
sequential algorithm could be constructed by simulating the
parallel algorithm on a single processor. The instructions of the
p processors are carried out in some, correct order, one after
another on the sequential processor.

Reminder:
Speedup is calculated (measured) relative to “best” sequential
implementation/algorithm

©Jesper Larsson Träff WS11/12

P0 P1 Pi P(p-1)

Tseq

0

1

i

p-1

time

 Simulation,

Tpar

Tseq(n)/Tpar(p,n)>p

Simulated Tseq*(n) = ∑ < Tseq(n)

Contradicts that Tseq(n) was best possible

Tseq*

©Jesper Larsson Träff WS11/12

Lesson: Parallelism offers only „modest potential“, speed-up
cannot be more than p on p processors

[Lawrence Snyder: Type architecture, shared memory and the corollary
of modest potential. Annual Review of Computer Science, 1986]

Construction shows that the total parallel work must be at
least as large as sequential work Tseq, otherwise, better
sequential algorithm can be constructed.

Crucial assumptions: sequential simulation possible (enough
memory to hold problem and state of parallel processors),
sequential memory behaves as parallel memory, … NOT TRUE for
real systems

©Jesper Larsson Träff WS11/12

Example, Dumb sort, Tseq(n) = O(n^2)

that can be perfectly parallelized, Tpar(p,n) = O(n^2/p)

Well-known Tseq*(n) = O(n log n)

Speedup(p,n) = n log n/n^2/p = (p/n) log n

Tpar(p,n) < Tseq(n)  n^2/p < n log n  n/p < log n  p > n/log n

Linear (but low) speedup for fixed n

Break-even, when is parallel algorithm faster than sequential?

More processors than elements to be sorted!? Very MISD??

©Jesper Larsson Träff WS11/12

Best known/best possible parallel algorithm often difficult to
parallelize
- no redundant work (that could have been done in parallel)
- tight dependencies (that forces things to be done one after
another)

Lesson: Usually does not make sense to parallelize an inferior
algorithm – although sometimes (much) easier

Lesson from PRAM theory: parallel solution of a given problem
often requires a new algorithmic idea!!

But: given algorithms often have a lot of potential for easy
parallelization (loops, independent functions, …), so why not?

©Jesper Larsson Träff WS11/12

for (i=0; i<n; i++) {
 a[i] = f(i);
}

Example: Data parallel loop of independent operations

for (i=n[j]; i<n[j+1]; i++) {
 a[i] = f(i);
}

n[j] = j*(n/p)

assuming p divides n

Data Parallelism (SIMD programming model):
“p processors do same work on different data”

Processor j, 0≤j<p

Parallelize: break into p
independent iteration blocks

Parallelism
explicit:

f(i) depends only on i, no side effects, no
global variables

©Jesper Larsson Träff WS11/12

for (i=0; i<n; i++) {
 a[i] = f(i);
}

Example: Data parallel loop of independent operations

parallel for (i=0; i<n; i++) {
 a[i] = f(i);
}

Parallelize: break into p
independent iteration blocks

Parallelism
implicit/less
explicit:

Found in many models/interfaces: compiler divides iteration space,
run-time schedules blocks of iterations to processors, by language
construct compiler can make necessary independence assumptions

©Jesper Larsson Träff WS11/12

for (i=0; i<n; i++) {
 a[i] = f(i);
}

Example: Data parallel loop of independent operations

for (i=0; i<n; i++) {
 a[i] = f(i);
}

Parallelize: break into p
independent iteration blocks

Parallelism
implicit/transparent

Automatic parallelization: compiler detects that iterations are
independent, automatically divides iteration space, interacts
with run-time

©Jesper Larsson Träff WS11/12

for (i=0; i<n; i++) {
 a[i] = f(i);
}

Example: Data parallel loop of independent operations

for (i=0; i<n; i++) {
 a[i] = f(i);
}

Parallelize: break into p
independent iteration blocks

Parallelism
implicit/transparent

Automatic parallelization: can work in cases where dependency
analysis is sufficient/possible, fails generally

©Jesper Larsson Träff WS11/12

for (i=0; i<n; i++) {
 b[i] = a[i-1]+a[i]+a[i+1];
}
for (i=0, i<n; i++) {
 a[i] = b[i];
}

Example: loop of dependent operations: a[i] <- a[i-1]+a[i]+a[i+1]

for (i=n[j]; i<n[j+1]; i++) {
 b[i] =a[i-1]+a[i]+a[i+1];
}
for (i=0, i<n; i++) {
 a[i] = b[i];
}

Processor j, 0≤j<p

What about a[n[j]-1]?

Communication or
synchronization needed

©Jesper Larsson Träff WS11/12

a:

Array logically divided into p disjoint blocks

Shared memory programming model: all data can be accessed by
all processors

•Memory model: when are data are data „visible“
•Memory cost model: same cost of access of all a[i]? NUMA, UMA?

•Synchronization

a[n[j]-1]

©Jesper Larsson Träff WS11/12

Array logically divided into p disjoint blocks

•Communication

Distibuted memory programming model: data are local to
processors

•Cost of communication

a:

a[n[j]-1]

©Jesper Larsson Träff WS11/12

for (i=0; i<n; i++) {
 switch (i%D) {
 case 0: task1(a[i]); break;
 case 1: task2(a[i]); break;
 …
 case D-1: taskD(a[i]); break;
 default:
 }
}

Task/control parallelism:
„D different operations (tasks) on different data“

for (i=0; i<n; i++) {
 if (i%D==j) taskj(a[i]);
}

Processor j, 0≤j<p

Example:

©Jesper Larsson Träff WS11/12

for (i=0;i<n;i++) {
 stage1(a[i]);
 stage2(a[i-1]);
 stage3(a[i-2]);
 …
 stageS(a[i-S]);
}

Pipeline parallelism:
„S different operations (stages) on same data“

for (i=0; i<n; i++) {
 stagej(a[i]);
}

Processor j, 0≤j<p

Example:

Synchronization needed: stage
j on a[i] cannot start before
stage j-1 on a[i] has completed

©Jesper Larsson Träff WS11/12

time

Tpar

P0 P1 Pi P(p-1)

p processors for (i=n[j]; i<n[j+1]; i++) {
 b[i] =a[i-1]+a[i]+a[i+1];
} sync;
for (i=0, i<n; i++) {
 a[i] = b[i];
}

Processor j, 0≤j<p

: communication or
synchronization
overhead

©Jesper Larsson Träff WS11/12

time

Tpar

P0 P1 Pi P(p-1)

p processors : communication or
synchronization
overhead Speedup(p,n) ≤ p

Linear speedup may still be possible, until overhead starts to
dominate

©Jesper Larsson Träff WS11/12

time

Tpar

P0 P1 Pi P(p-1)

p processors

Tpar(p,n):
useful computational work + parallelization overhead + idle time

Tpar: time for last/all processors to finish

©Jesper Larsson Träff WS11/12

time

Tpar

P0

P1 Pi P(p-1)

p processors

Algorithms/programs typically have a sequential part
that cannot be parallelized: initialization of data
structures, distribution of data, …

©Jesper Larsson Träff WS11/12

time

Tpar

P0

P1 Pi P(p-1)

p processors
Tpar(p,n):
sequential work + useful computational work + parallelization
overhead + idle time

Tpar: time for last/all processors to finish

©Jesper Larsson Träff WS11/12

Amdahls Law (parallel version):
Let a program A contain a fraction r that can be “perfectly”
parallelized, and a fraction s=(1-r) that is “purely sequential”,
i.e. cannot be parallelized at all. For any fixed n, the maximum
achievable speedup is 1/s

Proof:

Tseq(n) = (s+r)*Tseq(n)

Tpar(p,n) = s*Tseq(n) + r*Tseq(n)/p

Speedup(p,n) = Tseq(n)/(s*Tseq(n)+r*Tseq(n)/p) =
 1/(s+r/p) -> 1/s for p -> ∞

[G. Amdahl: Validity of the single processor
approach to achieving large scale computing
capabilities. AFIPS 1967]

©Jesper Larsson Träff WS11/12

// Sequential initialization
x = (int*)calloc(n*sizeof(int));
…
// Parallelizable part
do {
 for (i=0; i<n; i++) {
 x[i] = f(i);
 }
 // check for convergence
 done = …;
} while (!done)

Example: K iterations before
convergence, (parallel)
convergence check cheap,
f(i) fast…

Speedup(p,n) -> 1+K

Tseq(n) = n+K+Kn

Tpar(p,n) = n+K+Kn/p

Sequential fraction ≈ 1/(1+K)

©Jesper Larsson Träff WS11/12

// Sequential initialization
x = (int*)malloc(n*sizeof(int));
…
// Parallelizable part
do {
 for (i=0; i<n; i++) {
 x[i] = f(i);
 }
 // check for convergence
 done = …;
} while (!done)

Example: K iterations before
convergence, (parallel)
convergence check cheap,
f(i) fast…

Speedup(p,n) -> 1+n

Tseq(n) = 1+K+Kn

Tpar(p,n) = 1+K+Kn/p

Sequential fraction ≈ 1/(1+n)

Note:

If sequential part is
constant (not fraction),
Amdahl„s law does not
limit SU

©Jesper Larsson Träff WS11/12

// Sequential initialization
x = (int*)malloc(n*sizeof(int));
…
// Parallelizable part
do {
 for (i=0; i<n; i++) {
 x[i] = f(i);
 }
 // check for convergence
 done = …;
} while (!done)

Example: K iterations before
convergence, (parallel)
convergence check cheap,
f(i) fast…

Tseq(n) = 1+K+Kn

Tpar(p,n) = 1+K+Kn/p

Lesson: be careful with
system functions (calloc,
malloc) Speedup(p,n) -> 1+n

Sequential fraction ≈ 1/(1+n)

©Jesper Larsson Träff WS11/12

Definition: parallel efficiency

E(p,n) = Speedup(p,n)/p = Tseq(n)/(p*Tpar(p,n))

•E(p,n) ≤ 1
•E(p,n) = c: linear speedup

Ratio of Speedup to best possible

©Jesper Larsson Träff WS11/12

Scalability definitions:

A parallel algorithm/implementation is strongly scaling if
Speedup(p,n) = Θ(p) (linear,independent of n)

A parallel algorithm/implementation is weakly scaling if there
is a slow-growing o(1) function f(p), such that for n = Ω(f(p))
E(p,n) is constant

„Efficiency maintained by increasing problem size as
f(p) or more“

[J. Gustafson: Reevaluating Amdahls Law. CACM 1988]

©Jesper Larsson Träff WS11/12

// Sequential initialization
x = (int*)malloc(n*sizeof(int));
…
// Parallelizable part
do {
 for (i=0; i<n; i++) {
 x[i] = f(i);
 }
 // check for convergence
 done = …;
} while (!done)

Assume convergence check
takes O(log p) time

Tpar(p,n) = Kn/p+K log p

E(p,n) ≈ Kn/(Kn+pK log p)

For n≥plog p, E(p,n) ≥ 1/2

Example:

Weakly scalable, n has to increase as O(p log p) to maintain
constant efficiency – and as O(log p) per processor

©Jesper Larsson Träff WS11/12

time

Tpar

P0

P1 Pi P(p-1)

p processors

Parallel work: sum of necessary, useful work of all processors

Tpar: time for last/all processors to finish

∑ + + Wpar(p,n) =

©Jesper Larsson Träff WS11/12

Tfast(n) = Tpar(∞,n) = min Tpar(p,n), p=1,2,…

Define

Fastest time that can be achieved assuming enough processors

Definition:
An algorithm/implementation is work-optimal if

Wpar(p,n) = O(Tseq(n))

Total parallel work (number of instructions over all processors)
comparable to number of instructions of best sequential algorithm

©Jesper Larsson Träff WS11/12

If Wpar(p,n) can be distributed evenly over the p processors, then

Tpar(p,n) = max(Wpar(p,n)/p,Tfast(n))

and

Speedup(p,n) = Tseq(n)/Wpar(p,n)/p = p/c

as long as Wpar(p,n)/p ≥ Tfast(n), for some constant c

Theorem:
Work-optimal implementations/algorithms can have linear speedup
for p ≤ Wpar(p,n)/Tfast(n)

- provided the work can be distributed evenly

©Jesper Larsson Träff WS11/12

Dividing the work Wpar(p,n) into even sized chunks is called load
balancing. Often not trivial. Can sometimes be done statically,
sometimes dynamically, then often called scheduling. Assigning
the work to processors is called mapping. Also not trivial.

time

Tpar

P0 P1 Pi P(p-1)

©Jesper Larsson Träff WS11/12

WT presentation framework (Work-Time, Work-Depth):

•Determine total work of parallel algorithm, W(n)
•Determine fastest time possible = longest chain of
dependent operations = Tfast(n) = „depth“ d of parallel
algorithm

•Assuming W(n) can be distributed over the p processors,
parallel performance is O(W(n)/p+d)

Introduced by Shiloach, Vishkin ca. 1982, often used, e.g. [JaJa:
Introduction to Parallel Algorithms, 1992], [Cormen, Leiserson, Rivest,
Stein: Introduction to Algorithms, 3rd ed, 2009]

©Jesper Larsson Träff WS11/12

time

Tpar

P0

P1 Pi P(p-1)

p processors

Tpar: time for last/all processors to finish

Cost: p*Tpar(p,n)

Dedicated parallel resources: p processors reserved for Tpar(p,n)
time

©Jesper Larsson Träff WS11/12

Definition:
An algorithm/implementation is cost-optimal if

p*Tpar(p,n) = O(Tseq(n))

No idle time, work can actually be distributed over the p
processors, optimally load balanced

©Jesper Larsson Träff WS11/12

Overhead is cost minus sequential work

Overhead = p*Tpar(p,n)-Tseq(n)

Tpar

P0 P1 Pi P(p-1)

Overheads: extra work, synchronization, communication, idle
time/load imbalance

©Jesper Larsson Träff WS11/12

Theorem:
Cost-optimal algorithms have constant efficiency and overhead
O(1)

E(p,n) = Tseq(n)/p*Tpar(p,n) = Tseq(n)/c*Tseq(n) = 1/c

for some constant c hidden in O(Tseq(n))

©Jesper Larsson Träff WS11/12

Parallelization: a first example

Problem:
given two ordered sequences (xi), i=0,…,n-1, and (yi), i=0,…,m-1
stored in arrays A and B, merge the two sequences into a
single, ordered sequence (zi),i=0,…,m+n-1, stored in array C
such that zi=xk or zi=yk for some k, and for each xi and yi
there is a zk=xi and zk=yk

(Tedious formulation of) Well-known, and useful problem.
For simplicity, assume that all xi and yi are distinct

©Jesper Larsson Träff WS11/12

i = 0; j = 0; k = 0;

while (i<n&&j<m) {

 c[k++] = (a[i]<b[j]) ? a[i++] : b[j++];

}

while (i<n) c[k++] = a[i++];

while (j<m) c[k++] = b[j++];

Standard strictly sequential solution:

< a:

< b:

n

m

< c: < < < < < < < < <

n+m

Tseq(n+m) = (n+m)

©Jesper Larsson Träff WS11/12

Parallel solution?

Assumption 1:
p independently working, „parallel“ processors. All processors
have access to the full input and random access to the output
array: explicit, shared-memory programming model

Strategy:
Find a way to divide the merging steps evenly and independently
between the p processors.

©Jesper Larsson Träff WS11/12

Solution 1:
Restricted to p=n+m processors (as many processors as
elements in the input array)

Definition: element x, set A not containing x, rank(x,A) is the
number of elements in A smaller than x

©Jesper Larsson Träff WS11/12

< a:

< b:

n

m

< c: < < < < < < < < <

n+m

Processor i

rank(a[i],B)

i+rank(a[i],B)

if (i<n) c[i+rank(a[i],B)] = a[i];

else if (i<n+m) {

 j = i-n;

 c[j+rank(b[j],A)] = b[j];

}

for processor i,
0≤i<n+m

©Jesper Larsson Träff WS11/12

Observation: for an ordered sequence stored in an array
A, rank(x,A) can be computed by binary search!

Number of operations is O(log n) for an n-element array A

Tpar(n+m,n+m) = O(log (max(m,n))

Work = O((m+n)log(max(n,m)) ≤ O(2nlog n) = O(n logn)

The algorithm is not work efficient, Speedup(p) = p/log p

Exponential improvement
in time, with linear
number of processors!!

©Jesper Larsson Träff WS11/12

Problems:

•Algorithm is not efficient
•Normally, n>>p

•When is the computation done (are processes synchronized?)?

if (i<n) c[i+rank(a[i],B)] = a[i]; else if

(i<n+m) {

 j = i-n;

 c[j+rank(b[j],A)] = b[j];

}

barrier; // synchronization construct

Done!

©Jesper Larsson Träff WS11/12

< a:
n

Solution 2:
Divide a into p blocks of size approx. n/p, rank only first
element of each block, in parallel merge blocks of a with blocks
of b sequentially

< < <

<

m
b:

i*n/p

c:
n+m

i*n/p+rank(a[i*n/p],b)

©Jesper Larsson Träff WS11/12

merge(&a[i*(n/p)],n/p,

 &b[rank(a[i*(n/p)],b)],

 rank(a[(i+1)*(n/p)],b)]-rank(a[i*(n/p)],b),

 &c[i*(n/p)+rank(a[i*(n/p)],b)]);

barrier;

Processor i, 0≤i<n

Structure:
•Parallel preprocessing – rank: binary search - to divide problem
into p independent pieces
•Sequential algorithm to process subproblems in parallel

Work optimal: Work = p log m + p*(n/p)+m = p log m + (n+m) = O(n+m)

merge(a,n,b,m,c): merges a of size n and b of size m into c

©Jesper Larsson Träff WS11/12

Problems:

•Assumed that p divides n
•Severe load imbalance in worst case

< a:
n

< < <

<

m
b:

One processor does almost all work O(n/p+m), time is
O(n/p+m+log n)

©Jesper Larsson Träff WS11/12

Solution 3:
Divide a into p blocks of size approx. n/p, rank only first
element of each block, and divide b into p blocks of size approx.
m/p; in parallel merge blocks of a with blocks of b sequentially

< a:
n

< < <

<

m
b: < < <

2p smaller merge problems, but all O(n/p+m/p). Shown by
case analysis

©Jesper Larsson Träff WS11/12

Theorem:
On a shared-memory system, two ordered sequences of size n
and m can be merged in time O((n+m)/p+log n)

Exercise:
Implement, test and benchmark the merge algorithm in
pthreads or OpenMP

©Jesper Larsson Träff WS11/12

Parallelization (of merge problem):

•Focus on the problem
•Parallel work comparable to sequential work
•Consider potential for parallelization of known sequential
algorithm
•Look for good load balance
•Minimize synchronization points
•(Communication: not yet seen)
•Sequential algorithms as subalgorithms

Automatic parallelization???

©Jesper Larsson Träff WS11/12

Foster„s methodology:

[Ian Foster: Designing and building parallel programs. 1995]

1. Partitioning: divide the computation into independent tasks
2. Communication: determine communication needed between

tasks
3. Agglomeration/aggregation: combine tasks and

communications together into larger (independent) chunks
4. Mapping: assign tasks and communications to processes,

threads, …

Rule of thumb, not always applicable (architecture dependent:
what is the best granularity of „tasks“)

There is no recipe for parallelizing a problem or an algorithm!

