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This document describes the Message-Passing Interface (MPI) standard, version 2.2.
The MPI standard includes point-to-point message-passing, collective communications, group
and communicator concepts, process topologies, environmental management, process cre-
ation and management, one-sided communications, extended collective operations, external
interfaces, I/O, some miscellaneous topics, and a profiling interface. Language bindings for
C, C++ and Fortran are defined.

Technically, this version of the standard is based on “MPI: A Message-Passing Interface
Standard, version 2.1, June 23, 2008. The MPI Forum added seven new routines and a
number of enhancements and clarifications to the standard.

Historically, the evolution of the standards is from MPI-1.0 (June 1994) to MPI-1.1
(June 12, 1995) to MPI-1.2 (July 18, 1997), with several clarifications and additions and
published as part of the MPI-2 document, to MPI-2.0 (July 18, 1997), with new functionality,
to MPI-1.3 (May 30, 2008), combining for historical reasons the documents 1.1 and 1.2
and some errata documents to one combined document, and to MPI-2.1 (June 23, 2008),
combining the previous documents. This version, MPI-2.2, is based on MPI-2.1 and provides
additional clarifications and errata corrections as well as a few enhancements.

c©1993, 1994, 1995, 1996, 1997, 2008, 2009 University of Tennessee, Knoxville, Ten-
nessee. Permission to copy without fee all or part of this material is granted, provided the
University of Tennessee copyright notice and the title of this document appear, and notice
is given that copying is by permission of the University of Tennessee.
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Version 2.2: September 4, 2009. This document contains mostly corrections and clarifica-
tions to the MPI 2.1 document. A few extensions have been added; however all correct
MPI 2.1 programs are correct MPI 2.2 programs. New features were adopted only when
there were compelling needs for users, open source implementations, and minor impact on
existing MPI implementations.

Version 2.1: June 23, 2008. This document combines the previous documents MPI-1.3 (May
30, 2008) and MPI-2.0 (July 18, 1997). Certain parts of MPI-2.0, such as some sections of
Chapter 4, Miscellany, and Chapter 7, Extended Collective Operations have been merged
into the Chapters of MPI-1.3. Additional errata and clarifications collected by the MPI
Forum are also included in this document.

Version 1.3: May 30, 2008. This document combines the previous documents MPI-1.1 (June
12, 1995) and the MPI-1.2 Chapter in MPI-2 (July 18, 1997). Additional errata collected
by the MPI Forum referring to MPI-1.1 and MPI-1.2 are also included in this document.

Version 2.0: July 18, 1997. Beginning after the release of MPI-1.1, the MPI Forum began
meeting to consider corrections and extensions. MPI-2 has been focused on process creation
and management, one-sided communications, extended collective communications, external
interfaces and parallel I/O. A miscellany chapter discusses items that don’t fit elsewhere,
in particular language interoperability.

Version 1.2: July 18, 1997. The MPI-2 Forum introduced MPI-1.2 as Chapter 3 in the
standard ”MPI-2: Extensions to the Message-Passing Interface”, July 18, 1997. This section
contains clarifications and minor corrections to Version 1.1 of the MPI Standard. The only
new function in MPI-1.2 is one for identifying to which version of the MPI Standard the
implementation conforms. There are small differences between MPI-1 and MPI-1.1. There
are very few differences between MPI-1.1 and MPI-1.2, but large differences between MPI-1.2
and MPI-2.

Version 1.1: June, 1995. Beginning in March, 1995, the Message-Passing Interface Forum
reconvened to correct errors and make clarifications in the MPI document of May 5, 1994,
referred to below as Version 1.0. These discussions resulted in Version 1.1, which is this
document. The changes from Version 1.0 are minor. A version of this document with all
changes marked is available. This paragraph is an example of a change.

Version 1.0: May, 1994. The Message-Passing Interface Forum (MPIF), with participation
from over 40 organizations, has been meeting since January 1993 to discuss and define a set
of library interface standards for message passing. MPIF is not sanctioned or supported by
any official standards organization.

The goal of the Message-Passing Interface, simply stated, is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message-passing.

This is the final report, Version 1.0, of the Message-Passing Interface Forum. This
document contains all the technical features proposed for the interface. This copy of the
draft was processed by LATEX on May 5, 1994.
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Please send comments on MPI to mpi-comments@mpi-forum.org. Your comment will
be forwarded to MPI Forum committee members who will attempt to respond.
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Chapter 1

Introduction to MPI

1.1 Overview and Goals

MPI (Message-Passing Interface) is a message-passing library interface specification. All
parts of this definition are significant. MPI addresses primarily the message-passing parallel
programming model, in which data is moved from the address space of one process to that
of another process through cooperative operations on each process. (Extensions to the
“classical” message-passing model are provided in collective operations, remote-memory
access operations, dynamic process creation, and parallel I/O.) MPI is a specification, not
an implementation; there are multiple implementations of MPI. This specification is for a
library interface; MPI is not a language, and all MPI operations are expressed as functions,
subroutines, or methods, according to the appropriate language bindings, which for C,
C++, Fortran-77, and Fortran-95, are part of the MPI standard. The standard has been
defined through an open process by a community of parallel computing vendors, computer
scientists, and application developers. The next few sections provide an overview of the
history of MPI’s development.

The main advantages of establishing a message-passing standard are portability and
ease of use. In a distributed memory communication environment in which the higher level
routines and/or abstractions are built upon lower level message-passing routines the benefits
of standardization are particularly apparent. Furthermore, the definition of a message-
passing standard, such as that proposed here, provides vendors with a clearly defined base
set of routines that they can implement efficiently, or in some cases provide hardware support
for, thereby enhancing scalability.

The goal of the Message-Passing Interface simply stated is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message passing.

A complete list of goals follows.

• Design an application programming interface (not necessarily for compilers or a system
implementation library).

• Allow efficient communication: Avoid memory-to-memory copying, allow overlap of
computation and communication, and offload to communication co-processor, where
available.

• Allow for implementations that can be used in a heterogeneous environment.
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2 CHAPTER 1. INTRODUCTION TO MPI

• Allow convenient C, C++, Fortran-77, and Fortran-95 bindings for the interface.

• Assume a reliable communication interface: the user need not cope with communica-
tion failures. Such failures are dealt with by the underlying communication subsystem.

• Define an interface that can be implemented on many vendor’s platforms, with no
significant changes in the underlying communication and system software.

• Semantics of the interface should be language independent.

• The interface should be designed to allow for thread safety.

1.2 Background of MPI-1.0

MPI sought to make use of the most attractive features of a number of existing message-
passing systems, rather than selecting one of them and adopting it as the standard. Thus,
MPI was strongly influenced by work at the IBM T. J. Watson Research Center [1, 2], Intel’s
NX/2 [38], Express [12], nCUBE’s Vertex [34], p4 [7, 8], and PARMACS [5, 9]. Other
important contributions have come from Zipcode [40, 41], Chimp [16, 17], PVM [4, 14],
Chameleon [25], and PICL [24].

The MPI standardization effort involved about 60 people from 40 organizations mainly
from the United States and Europe. Most of the major vendors of concurrent computers
were involved in MPI, along with researchers from universities, government laboratories, and
industry. The standardization process began with the Workshop on Standards for Message-
Passing in a Distributed Memory Environment, sponsored by the Center for Research on
Parallel Computing, held April 29-30, 1992, in Williamsburg, Virginia [48]. At this workshop
the basic features essential to a standard message-passing interface were discussed, and a
working group established to continue the standardization process.

A preliminary draft proposal, known as MPI1, was put forward by Dongarra, Hempel,
Hey, and Walker in November 1992, and a revised version was completed in February
1993 [15]. MPI1 embodied the main features that were identified at the Williamsburg
workshop as being necessary in a message passing standard. Since MPI1 was primarily
intended to promote discussion and “get the ball rolling,” it focused mainly on point-to-point
communications. MPI1 brought to the forefront a number of important standardization
issues, but did not include any collective communication routines and was not thread-safe.

In November 1992, a meeting of the MPI working group was held in Minneapolis, at
which it was decided to place the standardization process on a more formal footing, and to
generally adopt the procedures and organization of the High Performance Fortran Forum.
Subcommittees were formed for the major component areas of the standard, and an email
discussion service established for each. In addition, the goal of producing a draft MPI
standard by the Fall of 1993 was set. To achieve this goal the MPI working group met every
6 weeks for two days throughout the first 9 months of 1993, and presented the draft MPI
standard at the Supercomputing 93 conference in November 1993. These meetings and the
email discussion together constituted the MPI Forum, membership of which has been open
to all members of the high performance computing community.
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1.3. BACKGROUND OF MPI-1.1, MPI-1.2, AND MPI-2.0 3

1.3 Background of MPI-1.1, MPI-1.2, and MPI-2.0

Beginning in March 1995, the MPI Forum began meeting to consider corrections and exten-
sions to the original MPI Standard document [21]. The first product of these deliberations
was Version 1.1 of the MPI specification, released in June of 1995 [22] (see
http://www.mpi-forum.org for official MPI document releases). At that time, effort
focused in five areas.

1. Further corrections and clarifications for the MPI-1.1 document.

2. Additions to MPI-1.1 that do not significantly change its types of functionality (new
datatype constructors, language interoperability, etc.).

3. Completely new types of functionality (dynamic processes, one-sided communication,
parallel I/O, etc.) that are what everyone thinks of as “MPI-2 functionality.”

4. Bindings for Fortran 90 and C++. MPI-2 specifies C++ bindings for both MPI-1
and MPI-2 functions, and extensions to the Fortran 77 binding of MPI-1 and MPI-2
to handle Fortran 90 issues.

5. Discussions of areas in which the MPI process and framework seem likely to be useful,
but where more discussion and experience are needed before standardization (e.g.
zero-copy semantics on shared-memory machines, real-time specifications).

Corrections and clarifications (items of type 1 in the above list) were collected in Chap-
ter 3 of the MPI-2 document: “Version 1.2 of MPI.” That chapter also contains the function
for identifying the version number. Additions to MPI-1.1 (items of types 2, 3, and 4 in the
above list) are in the remaining chapters of the MPI-2 document, and constitute the specifi-
cation for MPI-2. Items of type 5 in the above list have been moved to a separate document,
the “MPI Journal of Development” (JOD), and are not part of the MPI-2 Standard.

This structure makes it easy for users and implementors to understand what level of
MPI compliance a given implementation has:

• MPI-1 compliance will mean compliance with MPI-1.3. This is a useful level of com-
pliance. It means that the implementation conforms to the clarifications of MPI-1.1
function behavior given in Chapter 3 of the MPI-2 document. Some implementations
may require changes to be MPI-1 compliant.

• MPI-2 compliance will mean compliance with all of MPI-2.1.

• The MPI Journal of Development is not part of the MPI Standard.

It is to be emphasized that forward compatibility is preserved. That is, a valid MPI-1.1
program is both a valid MPI-1.3 program and a valid MPI-2.1 program, and a valid MPI-1.3
program is a valid MPI-2.1 program.

1.4 Background of MPI-1.3 and MPI-2.1

After the release of MPI-2.0, the MPI Forum kept working on errata and clarifications for
both standard documents (MPI-1.1 and MPI-2.0). The short document “Errata for MPI-1.1”
was released October 12, 1998. On July 5, 2001, a first ballot of errata and clarifications for
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4 CHAPTER 1. INTRODUCTION TO MPI

MPI-2.0 was released, and a second ballot was voted on May 22, 2002. Both votes were done
electronically. Both ballots were combined into one document: “Errata for MPI-2”, May
15, 2002. This errata process was then interrupted, but the Forum and its e-mail reflectors
kept working on new requests for clarification.

Restarting regular work of the MPI Forum was initiated in three meetings, at Eu-
roPVM/MPI’06 in Bonn, at EuroPVM/MPI’07 in Paris, and at SC’07 in Reno. In De-
cember 2007, a steering committee started the organization of new MPI Forum meetings at
regular 8-weeks intervals. At the January 14-16, 2008 meeting in Chicago, the MPI Forum
decided to combine the existing and future MPI documents to one single document for each
version of the MPI standard. For technical and historical reasons, this series was started
with MPI-1.3. Additional Ballots 3 and 4 solved old questions from the errata list started
in 1995 up to new questions from the last years. After all documents (MPI-1.1, MPI-2,
Errata for MPI-1.1 (Oct. 12, 1998), and MPI-2.1 Ballots 1-4) were combined into one draft
document, for each chapter, a chapter author and review team were defined. They cleaned
up the document to achieve a consistent MPI-2.1 document. The final MPI-2.1 standard
document was finished in June 2008, and finally released with a second vote in September
2008 in the meeting at Dublin, just before EuroPVM/MPI’08. The major work of the
current MPI Forum is the preparation of MPI-3.

1.5 Background of MPI-2.2

MPI-2.2 is a minor update to the MPI-2.1 standard. This version addresses additional errors
and ambiguities that were not corrected in the MPI-2.1 standard as well as a small number
of extensions to MPI-2.1 that met the following criteria:

• Any correct MPI-2.1 program is a correct MPI-2.2 program.

• Any extension must have significant benefit for users.

• Any extension must not require significant implementation effort. To that end, all
such changes are accompanied by an open source implementation.

The discussions of MPI-2.2 proceeded concurrently with the MPI-3 discussions; in some
cases, extensions were proposed for MPI-2.2 but were later moved to MPI-3.

1.6 Who Should Use This Standard?

This standard is intended for use by all those who want to write portable message-passing
programs in Fortran, C and C++. This includes individual application programmers, de-
velopers of software designed to run on parallel machines, and creators of environments
and tools. In order to be attractive to this wide audience, the standard must provide a
simple, easy-to-use interface for the basic user while not semantically precluding the high-
performance message-passing operations available on advanced machines.

1.7 What Platforms Are Targets For Implementation?

The attractiveness of the message-passing paradigm at least partially stems from its wide
portability. Programs expressed this way may run on distributed-memory multiprocessors,
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1.8. WHAT IS INCLUDED IN THE STANDARD? 5

networks of workstations, and combinations of all of these. In addition, shared-memory
implementations, including those for multi-core processors and hybrid architectures, are
possible. The paradigm will not be made obsolete by architectures combining the shared-
and distributed-memory views, or by increases in network speeds. It thus should be both
possible and useful to implement this standard on a great variety of machines, including
those “machines” consisting of collections of other machines, parallel or not, connected by
a communication network.

The interface is suitable for use by fully general MIMD programs, as well as those writ-
ten in the more restricted style of SPMD. MPI provides many features intended to improve
performance on scalable parallel computers with specialized interprocessor communication
hardware. Thus, we expect that native, high-performance implementations of MPI will be
provided on such machines. At the same time, implementations of MPI on top of stan-
dard Unix interprocessor communication protocols will provide portability to workstation
clusters and heterogenous networks of workstations.

1.8 What Is Included In The Standard?

The standard includes:

• Point-to-point communication

• Datatypes

• Collective operations

• Process groups

• Communication contexts

• Process topologies

• Environmental Management and inquiry

• The info object

• Process creation and management

• One-sided communication

• External interfaces

• Parallel file I/O

• Language Bindings for Fortran, C and C++

• Profiling interface
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6 CHAPTER 1. INTRODUCTION TO MPI

1.9 What Is Not Included In The Standard?

The standard does not specify:

• Operations that require more operating system support than is currently standard;
for example, interrupt-driven receives, remote execution, or active messages,

• Program construction tools,

• Debugging facilities.

There are many features that have been considered and not included in this standard.
This happened for a number of reasons, one of which is the time constraint that was self-
imposed in finishing the standard. Features that are not included can always be offered as
extensions by specific implementations. Perhaps future versions of MPI will address some
of these issues.

1.10 Organization of this Document

The following is a list of the remaining chapters in this document, along with a brief
description of each.

• Chapter 2, MPI Terms and Conventions, explains notational terms and conventions
used throughout the MPI document.

• Chapter 3, Point to Point Communication, defines the basic, pairwise communication
subset of MPI. Send and receive are found here, along with many associated functions
designed to make basic communication powerful and efficient.

• Chapter 4, Datatypes, defines a method to describe any data layout, e.g., an array of
structures in the memory, which can be used as message send or receive buffer.

• Chapter 5, Collective Communications, defines process-group collective communication
operations. Well known examples of this are barrier and broadcast over a group of
processes (not necessarily all the processes). With MPI-2, the semantics of collective
communication was extended to include intercommunicators. It also adds two new
collective operations.

• Chapter 6, Groups, Contexts, Communicators, and Caching, shows how groups of pro-
cesses are formed and manipulated, how unique communication contexts are obtained,
and how the two are bound together into a communicator.

• Chapter 7, Process Topologies, explains a set of utility functions meant to assist in
the mapping of process groups (a linearly ordered set) to richer topological structures
such as multi-dimensional grids.

• Chapter 8, MPI Environmental Management, explains how the programmer can manage
and make inquiries of the current MPI environment. These functions are needed for the
writing of correct, robust programs, and are especially important for the construction
of highly-portable message-passing programs.
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1.10. ORGANIZATION OF THIS DOCUMENT 7

• Chapter 9, The Info Object, defines an opaque object, that is used as input of several
MPI routines.

• Chapter 10, Process Creation and Management, defines routines that allow for creation
of processes.

• Chapter 11, One-Sided Communications, defines communication routines that can be
completed by a single process. These include shared-memory operations (put/get)
and remote accumulate operations.

• Chapter 12, External Interfaces, defines routines designed to allow developers to layer
on top of MPI. This includes generalized requests, routines that decode MPI opaque
objects, and threads.

• Chapter 13, I/O, defines MPI support for parallel I/O.

• Chapter 14, Profiling Interface, explains a simple name-shifting convention that any
MPI implementation must support. One motivation for this is the ability to put
performance profiling calls into MPI without the need for access to the MPI source
code. The name shift is merely an interface, it says nothing about how the actual
profiling should be done and in fact, the name shift can be useful for other purposes.

• Chapter 15, Deprecated Functions, describes routines that are kept for reference. How-
ever usage of these functions is discouraged, as they may be deleted in future versions
of the standard.

• Chapter 16, Language Bindings, describes the C++ binding, discusses Fortran issues,
and describes language interoperability aspects between C, C++, and Fortran.

The Appendices are:

• Annex A, Language Bindings Summary, gives specific syntax in C, C++, and Fortran,
for all MPI functions, constants, and types.

• Annex B, Change-Log, summarizes major changes since the previous version of the
standard.

• Several Index pages are showing the locations of examples, constants and predefined
handles, callback routines’ prototypes, and all MPI functions.

MPI provides various interfaces to facilitate interoperability of distinct MPI imple-
mentations. Among these are the canonical data representation for MPI I/O and for
MPI_PACK_EXTERNAL and MPI_UNPACK_EXTERNAL. The definition of an actual bind-
ing of these interfaces that will enable interoperability is outside the scope of this document.

A separate document consists of ideas that were discussed in the MPI Forum and
deemed to have value, but are not included in the MPI Standard. They are part of the
“Journal of Development” (JOD), lest good ideas be lost and in order to provide a starting
point for further work. The chapters in the JOD are

• Chapter 2, Spawning Independent Processes, includes some elements of dynamic pro-
cess management, in particular management of processes with which the spawning
processes do not intend to communicate, that the Forum discussed at length but
ultimately decided not to include in the MPI Standard.
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8 CHAPTER 1. INTRODUCTION TO MPI

• Chapter 3, Threads and MPI, describes some of the expected interaction between an
MPI implementation and a thread library in a multi-threaded environment.

• Chapter 4, Communicator ID, describes an approach to providing identifiers for com-
municators.

• Chapter 5, Miscellany, discusses Miscellaneous topics in the MPI JOD, in particu-
lar single-copy routines for use in shared-memory environments and new datatype
constructors.

• Chapter 6, Toward a Full Fortran 90 Interface, describes an approach to providing a
more elaborate Fortran 90 interface.

• Chapter 7, Split Collective Communication, describes a specification for certain non-
blocking collective operations.

• Chapter 8, Real-Time MPI, discusses MPI support for real time processing.
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Chapter 2

MPI Terms and Conventions

This chapter explains notational terms and conventions used throughout the MPI document,
some of the choices that have been made, and the rationale behind those choices. It is similar
to the MPI-1 Terms and Conventions chapter but differs in some major and minor ways.
Some of the major areas of difference are the naming conventions, some semantic definitions,
file objects, Fortran 90 vs Fortran 77, C++, processes, and interaction with signals.

2.1 Document Notation

Rationale. Throughout this document, the rationale for the design choices made in
the interface specification is set off in this format. Some readers may wish to skip
these sections, while readers interested in interface design may want to read them
carefully. (End of rationale.)

Advice to users. Throughout this document, material aimed at users and that
illustrates usage is set off in this format. Some readers may wish to skip these sections,
while readers interested in programming in MPI may want to read them carefully. (End
of advice to users.)

Advice to implementors. Throughout this document, material that is primarily
commentary to implementors is set off in this format. Some readers may wish to skip
these sections, while readers interested in MPI implementations may want to read
them carefully. (End of advice to implementors.)

2.2 Naming Conventions

In many cases MPI names for C functions are of the form MPI_Class_action_subset. This
convention originated with MPI-1. Since MPI-2 an attempt has been made to standardize the
names of MPI functions according to the following rules. The C++ bindings in particular
follow these rules (see Section 2.6.4 on page 18).

1. In C, all routines associated with a particular type of MPI object should be of the
form MPI_Class_action_subset or, if no subset exists, of the form MPI_Class_action.
In Fortran, all routines associated with a particular type of MPI object should be of
the form MPI_CLASS_ACTION_SUBSET or, if no subset exists, of the form
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10 CHAPTER 2. MPI TERMS AND CONVENTIONS

MPI_CLASS_ACTION. For C and Fortran we use the C++ terminology to define the
Class. In C++, the routine is a method on Class and is named
MPI::Class::Action_subset. If the routine is associated with a certain class, but does
not make sense as an object method, it is a static member function of the class.

2. If the routine is not associated with a class, the name should be of the form
MPI_Action_subset in C and MPI_ACTION_SUBSET in Fortran, and in C++ should
be scoped in the MPI namespace, MPI::Action_subset.

3. The names of certain actions have been standardized. In particular, Create creates
a new object, Get retrieves information about an object, Set sets this information,
Delete deletes information, Is asks whether or not an object has a certain property.

C and Fortran names for some MPI functions (that were defined during the MPI-1
process) violate these rules in several cases. The most common exceptions are the omission
of the Class name from the routine and the omission of the Action where one can be
inferred.

MPI identifiers are limited to 30 characters (31 with the profiling interface). This is
done to avoid exceeding the limit on some compilation systems.

2.3 Procedure Specification

MPI procedures are specified using a language-independent notation. The arguments of
procedure calls are marked as IN, OUT or INOUT. The meanings of these are:

• IN: the call may use the input value but does not update the argument,

• OUT: the call may update the argument but does not use its input value,

• INOUT: the call may both use and update the argument.

There is one special case — if an argument is a handle to an opaque object (these
terms are defined in Section 2.5.1), and the object is updated by the procedure call, then
the argument is marked INOUT or OUT. It is marked this way even though the handle itself
is not modified — we use the INOUT or OUT attribute to denote that what the handle
references is updated. Thus, in C++, IN arguments are usually either references or pointers
to const objects.

Rationale. The definition of MPI tries to avoid, to the largest possible extent, the use
of INOUT arguments, because such use is error-prone, especially for scalar arguments.
(End of rationale.)

MPI’s use of IN, OUT and INOUT is intended to indicate to the user how an argument
is to be used, but does not provide a rigorous classification that can be translated directly
into all language bindings (e.g., INTENT in Fortran 90 bindings or const in C bindings).
For instance, the “constant” MPI_BOTTOM can usually be passed to OUT buffer arguments.
Similarly, MPI_STATUS_IGNORE can be passed as the OUT status argument.

A common occurrence for MPI functions is an argument that is used as IN by some pro-
cesses and OUT by other processes. Such an argument is, syntactically, an INOUT argument
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2.4. SEMANTIC TERMS 11

and is marked as such, although, semantically, it is not used in one call both for input and
for output on a single process.

Another frequent situation arises when an argument value is needed only by a subset
of the processes. When an argument is not significant at a process then an arbitrary value
can be passed as an argument.

Unless specified otherwise, an argument of type OUT or type INOUT cannot be aliased
with any other argument passed to an MPI procedure. An example of argument aliasing in
C appears below. If we define a C procedure like this,

void copyIntBuffer( int *pin, int *pout, int len )
{ int i;

for (i=0; i<len; ++i) *pout++ = *pin++;
}

then a call to it in the following code fragment has aliased arguments.

int a[10];
copyIntBuffer( a, a+3, 7);

Although the C language allows this, such usage of MPI procedures is forbidden unless
otherwise specified. Note that Fortran prohibits aliasing of arguments.

All MPI functions are first specified in the language-independent notation. Immediately
below this, the ISO C version of the function is shown followed by a version of the same
function in Fortran and then the C++ binding. Fortran in this document refers to Fortran
90; see Section 2.6.

2.4 Semantic Terms

When discussing MPI procedures the following semantic terms are used.

nonblocking A procedure is nonblocking if the procedure may return before the opera-
tion completes, and before the user is allowed to reuse resources (such as buffers)
specified in the call. A nonblocking request is started by the call that initiates it,
e.g., MPI_ISEND. The word complete is used with respect to operations, requests,
and communications. An operation completes when the user is allowed to reuse
resources, and any output buffers have been updated; i.e. a call to MPI_TEST will
return flag = true. A request is completed by a call to wait, which returns, or
a test or get status call which returns flag = true. This completing call has two ef-
fects: the status is extracted from the request; in the case of test and wait, if the
request was nonpersistent, it is freed, and becomes inactive if it was persistent. A
communication completes when all participating operations complete.

blocking A procedure is blocking if return from the procedure indicates the user is allowed
to reuse resources specified in the call.

local A procedure is local if completion of the procedure depends only on the local executing
process.

non-local A procedure is non-local if completion of the operation may require the exe-
cution of some MPI procedure on another process. Such an operation may require
communication occurring with another user process.
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12 CHAPTER 2. MPI TERMS AND CONVENTIONS

collective A procedure is collective if all processes in a process group need to invoke the
procedure. A collective call may or may not be synchronizing. Collective calls over
the same communicator must be executed in the same order by all members of the
process group.

predefined A predefined datatype is a datatype with a predefined (constant) name (such
as MPI_INT, MPI_FLOAT_INT, or MPI_UB) or a datatype constructed with
MPI_TYPE_CREATE_F90_INTEGER, MPI_TYPE_CREATE_F90_REAL, or
MPI_TYPE_CREATE_F90_COMPLEX. The former are named whereas the latter are
unnamed.

derived A derived datatype is any datatype that is not predefined.

portable A datatype is portable, if it is a predefined datatype, or it is derived from a
portable datatype using only the type constructors MPI_TYPE_CONTIGUOUS,
MPI_TYPE_VECTOR, MPI_TYPE_INDEXED, MPI_TYPE_CREATE_INDEXED_BLOCK,
MPI_TYPE_CREATE_SUBARRAY, MPI_TYPE_DUP, and MPI_TYPE_CREATE_DARRAY.
Such a datatype is portable because all displacements in the datatype are in terms
of extents of one predefined datatype. Therefore, if such a datatype fits a data lay-
out in one memory, it will fit the corresponding data layout in another memory, if
the same declarations were used, even if the two systems have different architec-
tures. On the other hand, if a datatype was constructed using
MPI_TYPE_CREATE_HINDEXED, MPI_TYPE_CREATE_HVECTOR or
MPI_TYPE_CREATE_STRUCT, then the datatype contains explicit byte displace-
ments (e.g., providing padding to meet alignment restrictions). These displacements
are unlikely to be chosen correctly if they fit data layout on one memory, but are
used for data layouts on another process, running on a processor with a different
architecture.

equivalent Two datatypes are equivalent if they appear to have been created with the same
sequence of calls (and arguments) and thus have the same typemap. Two equivalent
datatypes do not necessarily have the same cached attributes or the same names.

2.5 Data Types

2.5.1 Opaque Objects

MPI manages system memory that is used for buffering messages and for storing internal
representations of various MPI objects such as groups, communicators, datatypes, etc. This
memory is not directly accessible to the user, and objects stored there are opaque: their
size and shape is not visible to the user. Opaque objects are accessed via handles, which
exist in user space. MPI procedures that operate on opaque objects are passed handle
arguments to access these objects. In addition to their use by MPI calls for object access,
handles can participate in assignments and comparisons.

In Fortran, all handles have type INTEGER. In C and C++, a different handle type is
defined for each category of objects. In addition, handles themselves are distinct objects
in C++. The C and C++ types must support the use of the assignment and equality
operators.
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2.5. DATA TYPES 13

Advice to implementors. In Fortran, the handle can be an index into a table of
opaque objects in a system table; in C it can be such an index or a pointer to the
object. C++ handles can simply “wrap up” a table index or pointer.

(End of advice to implementors.)

Opaque objects are allocated and deallocated by calls that are specific to each object
type. These are listed in the sections where the objects are described. The calls accept a
handle argument of matching type. In an allocate call this is an OUT argument that returns
a valid reference to the object. In a call to deallocate this is an INOUT argument which
returns with an “invalid handle” value. MPI provides an “invalid handle” constant for each
object type. Comparisons to this constant are used to test for validity of the handle.

A call to a deallocate routine invalidates the handle and marks the object for deal-
location. The object is not accessible to the user after the call. However, MPI need not
deallocate the object immediately. Any operation pending (at the time of the deallocate)
that involves this object will complete normally; the object will be deallocated afterwards.

An opaque object and its handle are significant only at the process where the object
was created and cannot be transferred to another process.

MPI provides certain predefined opaque objects and predefined, static handles to these
objects. The user must not free such objects. In C++, this is enforced by declaring the
handles to these predefined objects to be static const.

Rationale. This design hides the internal representation used for MPI data struc-
tures, thus allowing similar calls in C, C++, and Fortran. It also avoids conflicts with
the typing rules in these languages, and easily allows future extensions of functional-
ity. The mechanism for opaque objects used here loosely follows the POSIX Fortran
binding standard.

The explicit separation of handles in user space and objects in system space allows
space-reclaiming and deallocation calls to be made at appropriate points in the user
program. If the opaque objects were in user space, one would have to be very careful
not to go out of scope before any pending operation requiring that object completed.
The specified design allows an object to be marked for deallocation, the user program
can then go out of scope, and the object itself still persists until any pending operations
are complete.

The requirement that handles support assignment/comparison is made since such
operations are common. This restricts the domain of possible implementations. The
alternative would have been to allow handles to have been an arbitrary, opaque type.
This would force the introduction of routines to do assignment and comparison, adding
complexity, and was therefore ruled out. (End of rationale.)

Advice to users. A user may accidently create a dangling reference by assigning to a
handle the value of another handle, and then deallocating the object associated with
these handles. Conversely, if a handle variable is deallocated before the associated
object is freed, then the object becomes inaccessible (this may occur, for example, if
the handle is a local variable within a subroutine, and the subroutine is exited before
the associated object is deallocated). It is the user’s responsibility to avoid adding or
deleting references to opaque objects, except as a result of MPI calls that allocate or
deallocate such objects. (End of advice to users.)
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14 CHAPTER 2. MPI TERMS AND CONVENTIONS

Advice to implementors. The intended semantics of opaque objects is that opaque
objects are separate from one another; each call to allocate such an object copies
all the information required for the object. Implementations may avoid excessive
copying by substituting referencing for copying. For example, a derived datatype
may contain references to its components, rather then copies of its components; a
call to MPI_COMM_GROUP may return a reference to the group associated with the
communicator, rather than a copy of this group. In such cases, the implementation
must maintain reference counts, and allocate and deallocate objects in such a way that
the visible effect is as if the objects were copied. (End of advice to implementors.)

2.5.2 Array Arguments

An MPI call may need an argument that is an array of opaque objects, or an array of
handles. The array-of-handles is a regular array with entries that are handles to objects
of the same type in consecutive locations in the array. Whenever such an array is used,
an additional len argument is required to indicate the number of valid entries (unless this
number can be derived otherwise). The valid entries are at the beginning of the array;
len indicates how many of them there are, and need not be the size of the entire array.
The same approach is followed for other array arguments. In some cases NULL handles are
considered valid entries. When a NULL argument is desired for an array of statuses, one
uses MPI_STATUSES_IGNORE.

2.5.3 State

MPI procedures use at various places arguments with state types. The values of such a data
type are all identified by names, and no operation is defined on them. For example, the
MPI_TYPE_CREATE_SUBARRAY routine has a state argument order with values
MPI_ORDER_C and MPI_ORDER_FORTRAN.

2.5.4 Named Constants

MPI procedures sometimes assign a special meaning to a special value of a basic type argu-
ment; e.g., tag is an integer-valued argument of point-to-point communication operations,
with a special wild-card value, MPI_ANY_TAG. Such arguments will have a range of regular
values, which is a proper subrange of the range of values of the corresponding basic type;
special values (such as MPI_ANY_TAG) will be outside the regular range. The range of regu-
lar values, such as tag, can be queried using environmental inquiry functions (Chapter 7 of
the MPI-1 document). The range of other values, such as source, depends on values given
by other MPI routines (in the case of source it is the communicator size).

MPI also provides predefined named constant handles, such as MPI_COMM_WORLD.
All named constants, with the exceptions noted below for Fortran, can be used in

initialization expressions or assignments, but not necessarily in array declarations or as
labels in C/C++ switch or Fortran select/case statements. This implies named constants
to be link-time but not necessarily compile-time constants. The named constants listed
below are required to be compile-time constants in both C/C++ and Fortran. These
constants do not change values during execution. Opaque objects accessed by constant
handles are defined and do not change value between MPI initialization (MPI_INIT) and
MPI completion (MPI_FINALIZE). The handles themselves are constants and can be also
used in initialization expressions or assignments.
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2.5. DATA TYPES 15

The constants that are required to be compile-time constants (and can thus be used
for array length declarations and labels in C/C++ switch and Fortran case/select state-
ments) are:

MPI_MAX_PROCESSOR_NAME

MPI_MAX_ERROR_STRING

MPI_MAX_DATAREP_STRING

MPI_MAX_INFO_KEY

MPI_MAX_INFO_VAL

MPI_MAX_OBJECT_NAME

MPI_MAX_PORT_NAME

MPI_STATUS_SIZE (Fortran only)
MPI_ADDRESS_KIND (Fortran only)
MPI_INTEGER_KIND (Fortran only)
MPI_OFFSET_KIND (Fortran only)

and their C++ counterparts where appropriate.
The constants that cannot be used in initialization expressions or assignments in For-

tran are:
MPI_BOTTOM
MPI_STATUS_IGNORE
MPI_STATUSES_IGNORE
MPI_ERRCODES_IGNORE
MPI_IN_PLACE
MPI_ARGV_NULL
MPI_ARGVS_NULL
MPI_UNWEIGHTED

Advice to implementors. In Fortran the implementation of these special constants
may require the use of language constructs that are outside the Fortran standard.
Using special values for the constants (e.g., by defining them through PARAMETER
statements) is not possible because an implementation cannot distinguish these val-
ues from legal data. Typically, these constants are implemented as predefined static
variables (e.g., a variable in an MPI-declared COMMON block), relying on the fact that
the target compiler passes data by address. Inside the subroutine, this address can
be extracted by some mechanism outside the Fortran standard (e.g., by Fortran ex-
tensions or by implementing the function in C). (End of advice to implementors.)

2.5.5 Choice

MPI functions sometimes use arguments with a choice (or union) data type. Distinct calls
to the same routine may pass by reference actual arguments of different types. The mecha-
nism for providing such arguments will differ from language to language. For Fortran, the
document uses <type> to represent a choice variable; for C and C++, we use void *.

2.5.6 Addresses

Some MPI procedures use address arguments that represent an absolute address in the
calling program. The datatype of such an argument is MPI_Aint in C, MPI::Aint in C++
and INTEGER (KIND=MPI_ADDRESS_KIND) in Fortran. These types must have the same
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16 CHAPTER 2. MPI TERMS AND CONVENTIONS

width and encode address values in the same manner such that address values in one
language may be passed directly to another language without conversion. There is the MPI
constant MPI_BOTTOM to indicate the start of the address range.

2.5.7 File Offsets

For I/O there is a need to give the size, displacement, and offset into a file. These quantities
can easily be larger than 32 bits which can be the default size of a Fortran integer. To
overcome this, these quantities are declared to be INTEGER (KIND=MPI_OFFSET_KIND) in
Fortran. In C one uses MPI_Offset whereas in C++ one uses MPI::Offset. These types
must have the same width and encode address values in the same manner such that offset
values in one language may be passed directly to another language without conversion.

2.6 Language Binding

This section defines the rules for MPI language binding in general and for Fortran, ISO
C, and C++, in particular. (Note that ANSI C has been replaced by ISO C.) The C++
language bindings have been deprecated. Defined here are various object representations,
as well as the naming conventions used for expressing this standard. The actual calling
sequences are defined elsewhere.

MPI bindings are for Fortran 90, though they are designed to be usable in Fortran 77
environments.

Since the word PARAMETER is a keyword in the Fortran language, we use the word
“argument” to denote the arguments to a subroutine. These are normally referred to
as parameters in C and C++, however, we expect that C and C++ programmers will
understand the word “argument” (which has no specific meaning in C/C++), thus allowing
us to avoid unnecessary confusion for Fortran programmers.

Since Fortran is case insensitive, linkers may use either lower case or upper case when
resolving Fortran names. Users of case sensitive languages should avoid the “mpi_” and
“pmpi_” prefixes.

2.6.1 Deprecated Names and Functions

A number of chapters refer to deprecated or replaced MPI-1 constructs. These are constructs
that continue to be part of the MPI standard, as documented in Chapter 15, but that users
are recommended not to continue using, since better solutions were provided with MPI-2.
For example, the Fortran binding for MPI-1 functions that have address arguments uses
INTEGER. This is not consistent with the C binding, and causes problems on machines with
32 bit INTEGERs and 64 bit addresses. In MPI-2, these functions were given new names with
new bindings for the address arguments. The use of the old functions is deprecated. For
consistency, here and in a few other cases, new C functions are also provided, even though
the new functions are equivalent to the old functions. The old names are deprecated.
Another example is provided by the MPI-1 predefined datatypes MPI_UB and MPI_LB. They
are deprecated, since their use is awkward and error-prone. The MPI-2 function
MPI_TYPE_CREATE_RESIZED provides a more convenient mechanism to achieve the same
effect.

Table 2.1 shows a list of all of the deprecated constructs. Note that the constants
MPI_LB and MPI_UB are replaced by the function MPI_TYPE_CREATE_RESIZED; this is
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2.6. LANGUAGE BINDING 17

because their principal use was as input datatypes to MPI_TYPE_STRUCT to create resized
datatypes. Also note that some C typedefs and Fortran subroutine names are included in
this list; they are the types of callback functions.

Deprecated MPI-2 Replacement
MPI_ADDRESS MPI_GET_ADDRESS
MPI_TYPE_HINDEXED MPI_TYPE_CREATE_HINDEXED
MPI_TYPE_HVECTOR MPI_TYPE_CREATE_HVECTOR
MPI_TYPE_STRUCT MPI_TYPE_CREATE_STRUCT

MPI_TYPE_EXTENT MPI_TYPE_GET_EXTENT
MPI_TYPE_UB MPI_TYPE_GET_EXTENT
MPI_TYPE_LB MPI_TYPE_GET_EXTENT
MPI_LB MPI_TYPE_CREATE_RESIZED
MPI_UB MPI_TYPE_CREATE_RESIZED

MPI_ERRHANDLER_CREATE MPI_COMM_CREATE_ERRHANDLER
MPI_ERRHANDLER_GET MPI_COMM_GET_ERRHANDLER
MPI_ERRHANDLER_SET MPI_COMM_SET_ERRHANDLER
MPI_Handler_function MPI_Comm_errhandler_function

MPI_KEYVAL_CREATE MPI_COMM_CREATE_KEYVAL
MPI_KEYVAL_FREE MPI_COMM_FREE_KEYVAL
MPI_DUP_FN MPI_COMM_DUP_FN
MPI_NULL_COPY_FN MPI_COMM_NULL_COPY_FN
MPI_NULL_DELETE_FN MPI_COMM_NULL_DELETE_FN
MPI_Copy_function MPI_Comm_copy_attr_function
COPY_FUNCTION COMM_COPY_ATTR_FN
MPI_Delete_function MPI_Comm_delete_attr_function
DELETE_FUNCTION COMM_DELETE_ATTR_FN

MPI_ATTR_DELETE MPI_COMM_DELETE_ATTR
MPI_ATTR_GET MPI_COMM_GET_ATTR
MPI_ATTR_PUT MPI_COMM_SET_ATTR

Table 2.1: Deprecated constructs

2.6.2 Fortran Binding Issues

Originally, MPI-1.1 provided bindings for Fortran 77. These bindings are retained, but they
are now interpreted in the context of the Fortran 90 standard. MPI can still be used with
most Fortran 77 compilers, as noted below. When the term Fortran is used it means Fortran
90.

All MPI names have an MPI_ prefix, and all characters are capitals. Programs must
not declare variables, parameters, or functions with names beginning with the prefix MPI_.
To avoid conflicting with the profiling interface, programs should also avoid functions with
the prefix PMPI_. This is mandated to avoid possible name collisions.

All MPI Fortran subroutines have a return code in the last argument. A few MPI
operations which are functions do not have the return code argument. The return code value
for successful completion is MPI_SUCCESS. Other error codes are implementation dependent;
see the error codes in Chapter 8 and Annex A.
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18 CHAPTER 2. MPI TERMS AND CONVENTIONS

Constants representing the maximum length of a string are one smaller in Fortran than
in C and C++ as discussed in Section 16.3.9.

Handles are represented in Fortran as INTEGERs. Binary-valued variables are of type
LOGICAL.

Array arguments are indexed from one.
The MPI Fortran binding is inconsistent with the Fortran 90 standard in several re-

spects. These inconsistencies, such as register optimization problems, have implications for
user codes that are discussed in detail in Section 16.2.2. They are also inconsistent with
Fortran 77.

2.6.3 C Binding Issues

We use the ISO C declaration format. All MPI names have an MPI_ prefix, defined constants
are in all capital letters, and defined types and functions have one capital letter after the
prefix. Programs must not declare variables or functions with names beginning with the
prefix MPI_. To support the profiling interface, programs should not declare functions with
names beginning with the prefix PMPI_.

The definition of named constants, function prototypes, and type definitions must be
supplied in an include file mpi.h.

Almost all C functions return an error code. The successful return code will be
MPI_SUCCESS, but failure return codes are implementation dependent.

Type declarations are provided for handles to each category of opaque objects.
Array arguments are indexed from zero.
Logical flags are integers with value 0 meaning “false” and a non-zero value meaning

“true.”
Choice arguments are pointers of type void *.
Address arguments are of MPI defined type MPI_Aint. File displacements are of type

MPI_Offset. MPI_Aint is defined to be an integer of the size needed to hold any valid address
on the target architecture. MPI_Offset is defined to be an integer of the size needed to hold
any valid file size on the target architecture.

2.6.4 C++ Binding Issues

The C++ language bindings have been deprecated. There are places in the standard that
give rules for C and not for C++. In these cases, the C rule should be applied to the C++
case, as appropriate. In particular, the values of constants given in the text are the ones
for C and Fortran. A cross index of these with the C++ names is given in Annex A.

We use the ISO C++ declaration format. All MPI names are declared within the scope
of a namespace called MPI and therefore are referenced with an MPI:: prefix. Defined
constants are in all capital letters, and class names, defined types, and functions have only
their first letter capitalized. Programs must not declare variables or functions in the MPI
namespace. This is mandated to avoid possible name collisions.

The definition of named constants, function prototypes, and type definitions must be
supplied in an include file mpi.h.

Advice to implementors. The file mpi.h may contain both the C and C++ defini-
tions. Usually one can simply use the defined value (generally __cplusplus, but not
required) to see if one is using C++ to protect the C++ definitions. It is possible
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2.6. LANGUAGE BINDING 19

that a C compiler will require that the source protected this way be legal C code.
In this case, all the C++ definitions can be placed in a different include file and the
“#include” directive can be used to include the necessary C++ definitions in the
mpi.h file. (End of advice to implementors.)

C++ functions that create objects or return information usually place the object or
information in the return value. Since the language neutral prototypes of MPI functions
include the C++ return value as an OUT parameter, semantic descriptions of MPI functions
refer to the C++ return value by that parameter name. The remaining C++ functions
return void.

In some circumstances, MPI permits users to indicate that they do not want a return
value. For example, the user may indicate that the status is not filled in. Unlike C and
Fortran where this is achieved through a special input value, in C++ this is done by having
two bindings where one has the optional argument and one does not.

C++ functions do not return error codes. If the default error handler has been set
to MPI::ERRORS_THROW_EXCEPTIONS, the C++ exception mechanism is used to signal an
error by throwing an MPI::Exception object.

It should be noted that the default error handler (i.e., MPI::ERRORS_ARE_FATAL) on a
given type has not changed. User error handlers are also permitted. MPI::ERRORS_RETURN

simply returns control to the calling function; there is no provision for the user to retrieve
the error code.

User callback functions that return integer error codes should not throw exceptions;
the returned error will be handled by the MPI implementation by invoking the appropriate
error handler.

Advice to users. C++ programmers that want to handle MPI errors on their own
should use the MPI::ERRORS_THROW_EXCEPTIONS error handler, rather than
MPI::ERRORS_RETURN, that is used for that purpose in C. Care should be taken using
exceptions in mixed language situations. (End of advice to users.)

Opaque object handles must be objects in themselves, and have the assignment and
equality operators overridden to perform semantically like their C and Fortran counterparts.

Array arguments are indexed from zero.
Logical flags are of type bool.
Choice arguments are pointers of type void *.
Address arguments are of MPI-defined integer type MPI::Aint, defined to be an integer

of the size needed to hold any valid address on the target architecture. Analogously,
MPI::Offset is an integer to hold file offsets.

Most MPI functions are methods of MPI C++ classes. MPI class names are generated
from the language neutral MPI types by dropping the MPI_ prefix and scoping the type
within the MPI namespace. For example, MPI_DATATYPE becomes MPI::Datatype.

The names of MPI functions generally follow the naming rules given. In some circum-
stances, the MPI function is related to a function defined already for MPI-1 with a name
that does not follow the naming conventions. In this circumstance, the language neutral
name is in analogy to the MPI name even though this gives an MPI-2 name that violates the
naming conventions. The C and Fortran names are the same as the language neutral name
in this case. However, the C++ names do reflect the naming rules and can differ from the C
and Fortran names. Thus, the analogous name in C++ to the MPI name may be different
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20 CHAPTER 2. MPI TERMS AND CONVENTIONS

than the language neutral name. This results in the C++ name differing from the language
neutral name. An example of this is the language neutral name of MPI_FINALIZED and a
C++ name of MPI::Is_finalized.

In C++, function typedefs are made publicly within appropriate classes. However,
these declarations then become somewhat cumbersome, as with the following:
{typedef MPI::Grequest::Query_function(); (binding deprecated, see Section 15.2)}

would look like the following:

namespace MPI {
class Request {

// ...
};

class Grequest : public MPI::Request {
// ...
typedef Query_function(void* extra_state, MPI::Status& status);

};
};

Rather than including this scaffolding when declaring C++ typedefs, we use an abbreviated
form. In particular, we explicitly indicate the class and namespace scope for the typedef
of the function. Thus, the example above is shown in the text as follows:

typedef int MPI::Grequest::Query_function(void* extra_state,
MPI::Status& status)

The C++ bindings presented in Annex A.4 and throughout this document were gener-
ated by applying a simple set of name generation rules to the MPI function specifications.
While these guidelines may be sufficient in most cases, they may not be suitable for all
situations. In cases of ambiguity or where a specific semantic statement is desired, these
guidelines may be superseded as the situation dictates.

1. All functions, types, and constants are declared within the scope of a namespace called
MPI.

2. Arrays of MPI handles are always left in the argument list (whether they are IN or
OUT arguments).

3. If the argument list of an MPI function contains a scalar IN handle, and it makes sense
to define the function as a method of the object corresponding to that handle, the
function is made a member function of the corresponding MPI class. The member
functions are named according to the corresponding MPI function name, but without
the “MPI_” prefix and without the object name prefix (if applicable). In addition:

(a) The scalar IN handle is dropped from the argument list, and this corresponds
to the dropped argument.

(b) The function is declared const.

4. MPI functions are made into class functions (static) when they belong on a class but
do not have a unique scalar IN or INOUT parameter of that class.
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2.6. LANGUAGE BINDING 21

5. If the argument list contains a single OUT argument that is not of type MPI_STATUS
(or an array), that argument is dropped from the list and the function returns that
value.

Example 2.1 The C++ binding for MPI_COMM_SIZE is
int MPI::Comm::Get_size(void) const.

6. If there are multiple OUT arguments in the argument list, one is chosen as the return
value and is removed from the list.

7. If the argument list does not contain any OUT arguments, the function returns void.

Example 2.2 The C++ binding for MPI_REQUEST_FREE is
void MPI::Request::Free(void)

8. MPI functions to which the above rules do not apply are not members of any class,
but are defined in the MPI namespace.

Example 2.3 The C++ binding for MPI_BUFFER_ATTACH is
void MPI::Attach_buffer(void* buffer, int size).

9. All class names, defined types, and function names have only their first letter capital-
ized. Defined constants are in all capital letters.

10. Any IN pointer, reference, or array argument must be declared const.

11. Handles are passed by reference.

12. Array arguments are denoted with square brackets ([]), not pointers, as this is more
semantically precise.

2.6.5 Functions and Macros

An implementation is allowed to implement MPI_WTIME, MPI_WTICK, PMPI_WTIME,
PMPI_WTICK, and the handle-conversion functions (MPI_Group_f2c, etc.) in Section 16.3.4,
and no others, as macros in C.

Advice to implementors. Implementors should document which routines are imple-
mented as macros. (End of advice to implementors.)

Advice to users. If these routines are implemented as macros, they will not work
with the MPI profiling interface. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



22 CHAPTER 2. MPI TERMS AND CONVENTIONS

2.7 Processes

An MPI program consists of autonomous processes, executing their own code, in an MIMD
style. The codes executed by each process need not be identical. The processes communicate
via calls to MPI communication primitives. Typically, each process executes in its own
address space, although shared-memory implementations of MPI are possible.

This document specifies the behavior of a parallel program assuming that only MPI
calls are used. The interaction of an MPI program with other possible means of commu-
nication, I/O, and process management is not specified. Unless otherwise stated in the
specification of the standard, MPI places no requirements on the result of its interaction
with external mechanisms that provide similar or equivalent functionality. This includes,
but is not limited to, interactions with external mechanisms for process control, shared and
remote memory access, file system access and control, interprocess communication, process
signaling, and terminal I/O. High quality implementations should strive to make the results
of such interactions intuitive to users, and attempt to document restrictions where deemed
necessary.

Advice to implementors. Implementations that support such additional mechanisms
for functionality supported within MPI are expected to document how these interact
with MPI. (End of advice to implementors.)

The interaction of MPI and threads is defined in Section 12.4.

2.8 Error Handling

MPI provides the user with reliable message transmission. A message sent is always received
correctly, and the user does not need to check for transmission errors, time-outs, or other
error conditions. In other words, MPI does not provide mechanisms for dealing with failures
in the communication system. If the MPI implementation is built on an unreliable underly-
ing mechanism, then it is the job of the implementor of the MPI subsystem to insulate the
user from this unreliability, or to reflect unrecoverable errors as failures. Whenever possible,
such failures will be reflected as errors in the relevant communication call. Similarly, MPI
itself provides no mechanisms for handling processor failures.

Of course, MPI programs may still be erroneous. A program error can occur when
an MPI call is made with an incorrect argument (non-existing destination in a send oper-
ation, buffer too small in a receive operation, etc.). This type of error would occur in any
implementation. In addition, a resource error may occur when a program exceeds the
amount of available system resources (number of pending messages, system buffers, etc.).
The occurrence of this type of error depends on the amount of available resources in the
system and the resource allocation mechanism used; this may differ from system to system.
A high-quality implementation will provide generous limits on the important resources so
as to alleviate the portability problem this represents.

In C and Fortran, almost all MPI calls return a code that indicates successful completion
of the operation. Whenever possible, MPI calls return an error code if an error occurred
during the call. By default, an error detected during the execution of the MPI library
causes the parallel computation to abort, except for file operations. However, MPI provides
mechanisms for users to change this default and to handle recoverable errors. The user
may specify that no error is fatal, and handle error codes returned by MPI calls by himself
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2.9. IMPLEMENTATION ISSUES 23

or herself. Also, the user may provide his or her own error-handling routines, which will
be invoked whenever an MPI call returns abnormally. The MPI error handling facilities
are described in Section 8.3. The return values of C++ functions are not error codes.
If the default error handler has been set to MPI::ERRORS_THROW_EXCEPTIONS, the C++
exception mechanism is used to signal an error by throwing an MPI::Exception object. See
also Section 16.1.8 on page 476.

Several factors limit the ability of MPI calls to return with meaningful error codes
when an error occurs. MPI may not be able to detect some errors; other errors may be too
expensive to detect in normal execution mode; finally some errors may be “catastrophic”
and may prevent MPI from returning control to the caller in a consistent state.

Another subtle issue arises because of the nature of asynchronous communications: MPI
calls may initiate operations that continue asynchronously after the call returned. Thus, the
operation may return with a code indicating successful completion, yet later cause an error
exception to be raised. If there is a subsequent call that relates to the same operation (e.g.,
a call that verifies that an asynchronous operation has completed) then the error argument
associated with this call will be used to indicate the nature of the error. In a few cases, the
error may occur after all calls that relate to the operation have completed, so that no error
value can be used to indicate the nature of the error (e.g., an error on the receiver in a send
with the ready mode). Such an error must be treated as fatal, since information cannot be
returned for the user to recover from it.

This document does not specify the state of a computation after an erroneous MPI call
has occurred. The desired behavior is that a relevant error code be returned, and the effect
of the error be localized to the greatest possible extent. E.g., it is highly desirable that an
erroneous receive call will not cause any part of the receiver’s memory to be overwritten,
beyond the area specified for receiving the message.

Implementations may go beyond this document in supporting in a meaningful manner
MPI calls that are defined here to be erroneous. For example, MPI specifies strict type
matching rules between matching send and receive operations: it is erroneous to send a
floating point variable and receive an integer. Implementations may go beyond these type
matching rules, and provide automatic type conversion in such situations. It will be helpful
to generate warnings for such non-conforming behavior.

MPI defines a way for users to create new error codes as defined in Section 8.5.

2.9 Implementation Issues

There are a number of areas where an MPI implementation may interact with the operating
environment and system. While MPI does not mandate that any services (such as signal
handling) be provided, it does strongly suggest the behavior to be provided if those services
are available. This is an important point in achieving portability across platforms that
provide the same set of services.

2.9.1 Independence of Basic Runtime Routines

MPI programs require that library routines that are part of the basic language environment
(such as write in Fortran and printf and malloc in ISO C) and are executed after
MPI_INIT and before MPI_FINALIZE operate independently and that their completion is
independent of the action of other processes in an MPI program.
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24 CHAPTER 2. MPI TERMS AND CONVENTIONS

Note that this in no way prevents the creation of library routines that provide parallel
services whose operation is collective. However, the following program is expected to com-
plete in an ISO C environment regardless of the size of MPI_COMM_WORLD (assuming that
printf is available at the executing nodes).

int rank;
MPI_Init((void *)0, (void *)0);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) printf("Starting program\n");
MPI_Finalize();

The corresponding Fortran and C++ programs are also expected to complete.
An example of what is not required is any particular ordering of the action of these

routines when called by several tasks. For example, MPI makes neither requirements nor
recommendations for the output from the following program (again assuming that I/O is
available at the executing nodes).

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
printf("Output from task rank %d\n", rank);

In addition, calls that fail because of resource exhaustion or other error are not con-
sidered a violation of the requirements here (however, they are required to complete, just
not to complete successfully).

2.9.2 Interaction with Signals

MPI does not specify the interaction of processes with signals and does not require that MPI
be signal safe. The implementation may reserve some signals for its own use. It is required
that the implementation document which signals it uses, and it is strongly recommended
that it not use SIGALRM, SIGFPE, or SIGIO. Implementations may also prohibit the use of
MPI calls from within signal handlers.

In multithreaded environments, users can avoid conflicts between signals and the MPI
library by catching signals only on threads that do not execute MPI calls. High quality
single-threaded implementations will be signal safe: an MPI call suspended by a signal will
resume and complete normally after the signal is handled.

2.10 Examples

The examples in this document are for illustration purposes only. They are not intended
to specify the standard. Furthermore, the examples have not been carefully checked or
verified.
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Chapter 3

Point-to-Point Communication

3.1 Introduction

Sending and receiving of messages by processes is the basic MPI communication mechanism.
The basic point-to-point communication operations are send and receive. Their use is
illustrated in the example below.

#include "mpi.h"
int main( int argc, char **argv )
{
char message[20];
int myrank;
MPI_Status status;
MPI_Init( &argc, &argv );
MPI_Comm_rank( MPI_COMM_WORLD, &myrank );
if (myrank == 0) /* code for process zero */
{

strcpy(message,"Hello, there");
MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);

}
else if (myrank == 1) /* code for process one */
{

MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);
printf("received :%s:\n", message);

}
MPI_Finalize();

}

In this example, process zero (myrank = 0) sends a message to process one using the
send operation MPI_SEND. The operation specifies a send buffer in the sender memory
from which the message data is taken. In the example above, the send buffer consists of
the storage containing the variable message in the memory of process zero. The location,
size and type of the send buffer are specified by the first three parameters of the send
operation. The message sent will contain the 13 characters of this variable. In addition,
the send operation associates an envelope with the message. This envelope specifies the
message destination and contains distinguishing information that can be used by the receive
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26 CHAPTER 3. POINT-TO-POINT COMMUNICATION

operation to select a particular message. The last three parameters of the send operation,
along with the rank of the sender, specify the envelope for the message sent. Process one
(myrank = 1) receives this message with the receive operation MPI_RECV. The message to
be received is selected according to the value of its envelope, and the message data is stored
into the receive buffer. In the example above, the receive buffer consists of the storage
containing the string message in the memory of process one. The first three parameters
of the receive operation specify the location, size and type of the receive buffer. The next
three parameters are used for selecting the incoming message. The last parameter is used
to return information on the message just received.

The next sections describe the blocking send and receive operations. We discuss send,
receive, blocking communication semantics, type matching requirements, type conversion
in heterogeneous environments, and more general communication modes. Nonblocking
communication is addressed next, followed by channel-like constructs and send-receive
operations, Nonblocking communication is addressed next, followed by channel-like con-
structs and send-receive operations, ending with a description of the “dummy” process,
MPI_PROC_NULL.

3.2 Blocking Send and Receive Operations

3.2.1 Blocking Send

The syntax of the blocking send operation is given below.

MPI_SEND(buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Send(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

{void MPI::Comm::Send(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const (binding
deprecated, see Section 15.2) }

The blocking semantics of this call are described in Section 3.4.
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3.2. BLOCKING SEND AND RECEIVE OPERATIONS 27

3.2.2 Message Data

The send buffer specified by the MPI_SEND operation consists of count successive entries of
the type indicated by datatype, starting with the entry at address buf. Note that we specify
the message length in terms of number of elements, not number of bytes. The former is
machine independent and closer to the application level.

The data part of the message consists of a sequence of count values, each of the type
indicated by datatype. count may be zero, in which case the data part of the message is
empty. The basic datatypes that can be specified for message data values correspond to the
basic datatypes of the host language. Possible values of this argument for Fortran and the
corresponding Fortran types are listed in Table 3.1.

MPI datatype Fortran datatype
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER(1)
MPI_BYTE
MPI_PACKED

Table 3.1: Predefined MPI datatypes corresponding to Fortran datatypes

Possible values for this argument for C and the corresponding C types are listed in
Table 3.2.

The datatypes MPI_BYTE and MPI_PACKED do not correspond to a Fortran or C
datatype. A value of type MPI_BYTE consists of a byte (8 binary digits). A byte is
uninterpreted and is different from a character. Different machines may have different
representations for characters, or may use more than one byte to represent characters. On
the other hand, a byte has the same binary value on all machines. The use of the type
MPI_PACKED is explained in Section 4.2.

MPI requires support of these datatypes, which match the basic datatypes of Fortran
and ISO C. Additional MPI datatypes should be provided if the host language has additional
data types: MPI_DOUBLE_COMPLEX for double precision complex in Fortran declared to
be of type DOUBLE COMPLEX; MPI_REAL2, MPI_REAL4 and MPI_REAL8 for Fortran reals,
declared to be of type REAL*2, REAL*4 and REAL*8, respectively; MPI_INTEGER1
MPI_INTEGER2 and MPI_INTEGER4 for Fortran integers, declared to be of type INTEGER*1,
INTEGER*2 and INTEGER*4, respectively; etc.

Rationale. One goal of the design is to allow for MPI to be implemented as a
library, with no need for additional preprocessing or compilation. Thus, one cannot
assume that a communication call has information on the datatype of variables in the
communication buffer; this information must be supplied by an explicit argument.
The need for such datatype information will become clear in Section 3.3.2. (End of
rationale.)
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28 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI datatype C datatype
MPI_CHAR char

(treated as printable character)
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_LONG_LONG_INT signed long long int
MPI_LONG_LONG (as a synonym) signed long long int
MPI_SIGNED_CHAR signed char

(treated as integral value)
MPI_UNSIGNED_CHAR unsigned char

(treated as integral value)
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_UNSIGNED_LONG_LONG unsigned long long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_WCHAR wchar_t

(defined in <stddef.h>)
(treated as printable character)

MPI_C_BOOL _Bool
MPI_INT8_T int8_t
MPI_INT16_T int16_t
MPI_INT32_T int32_t
MPI_INT64_T int64_t
MPI_UINT8_T uint8_t
MPI_UINT16_T uint16_t
MPI_UINT32_T uint32_t
MPI_UINT64_T uint64_t
MPI_C_COMPLEX float _Complex
MPI_C_FLOAT_COMPLEX (as a synonym) float _Complex
MPI_C_DOUBLE_COMPLEX double _Complex
MPI_C_LONG_DOUBLE_COMPLEX long double _Complex
MPI_BYTE
MPI_PACKED

Table 3.2: Predefined MPI datatypes corresponding to C datatypes

Rationale. The datatypes MPI_C_BOOL, MPI_INT8_T, MPI_INT16_T,
MPI_INT32_T, MPI_UINT8_T, MPI_UINT16_T, MPI_UINT32_T, MPI_C_COMPLEX,
MPI_C_FLOAT_COMPLEX, MPI_C_DOUBLE_COMPLEX, and
MPI_C_LONG_DOUBLE_COMPLEX have no corresponding C++ bindings. This was
intentionally done to avoid potential collisions with the C preprocessor and names-
paced C++ names. C++ applications can use the C bindings with no loss of func-
tionality. (End of rationale.)
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3.2. BLOCKING SEND AND RECEIVE OPERATIONS 29

MPI datatype C datatype Fortran datatype
MPI_AINT MPI_Aint INTEGER (KIND=MPI_ADDRESS_KIND)
MPI_OFFSET MPI_Offset INTEGER (KIND=MPI_OFFSET_KIND)

Table 3.3: Predefined MPI datatypes corresponding to both C and Fortran datatypes

The datatypes MPI_AINT and MPI_OFFSET correspond to the MPI-defined C types
MPI_Aint and MPI_Offset and their Fortran equivalents INTEGER (KIND=
MPI_ADDRESS_KIND) and INTEGER (KIND=MPI_OFFSET_KIND). This is described in Ta-
ble 3.3. See Section 16.3.10 for information on interlanguage communication with these
types.

3.2.3 Message Envelope

In addition to the data part, messages carry information that can be used to distinguish
messages and selectively receive them. This information consists of a fixed number of fields,
which we collectively call the message envelope. These fields are

source
destination

tag
communicator

The message source is implicitly determined by the identity of the message sender. The
other fields are specified by arguments in the send operation.

The message destination is specified by the dest argument.
The integer-valued message tag is specified by the tag argument. This integer can be

used by the program to distinguish different types of messages. The range of valid tag
values is 0,...,UB, where the value of UB is implementation dependent. It can be found by
querying the value of the attribute MPI_TAG_UB, as described in Chapter 8. MPI requires
that UB be no less than 32767.

The comm argument specifies the communicator that is used for the send operation.
Communicators are explained in Chapter 6; below is a brief summary of their usage.

A communicator specifies the communication context for a communication operation.
Each communication context provides a separate “communication universe:” messages are
always received within the context they were sent, and messages sent in different contexts
do not interfere.

The communicator also specifies the set of processes that share this communication
context. This process group is ordered and processes are identified by their rank within
this group. Thus, the range of valid values for dest is 0, ... , n-1, where n is the number of
processes in the group. (If the communicator is an inter-communicator, then destinations
are identified by their rank in the remote group. See Chapter 6.)

A predefined communicator MPI_COMM_WORLD is provided by MPI. It allows com-
munication with all processes that are accessible after MPI initialization and processes are
identified by their rank in the group of MPI_COMM_WORLD.

Advice to users. Users that are comfortable with the notion of a flat name space
for processes, and a single communication context, as offered by most existing com-
munication libraries, need only use the predefined variable MPI_COMM_WORLD as the
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30 CHAPTER 3. POINT-TO-POINT COMMUNICATION

comm argument. This will allow communication with all the processes available at
initialization time.

Users may define new communicators, as explained in Chapter 6. Communicators
provide an important encapsulation mechanism for libraries and modules. They allow
modules to have their own disjoint communication universe and their own process
numbering scheme. (End of advice to users.)

Advice to implementors. The message envelope would normally be encoded by a
fixed-length message header. However, the actual encoding is implementation depen-
dent. Some of the information (e.g., source or destination) may be implicit, and need
not be explicitly carried by messages. Also, processes may be identified by relative
ranks, or absolute ids, etc. (End of advice to implementors.)

3.2.4 Blocking Receive

The syntax of the blocking receive operation is given below.

MPI_RECV (buf, count, datatype, source, tag, comm, status)

OUT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative in-
teger)

IN datatype datatype of each receive buffer element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status *status)

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE),
IERROR

{void MPI::Comm::Recv(void* buf, int count, const MPI::Datatype& datatype,
int source, int tag, MPI::Status& status) const (binding
deprecated, see Section 15.2) }

{void MPI::Comm::Recv(void* buf, int count, const MPI::Datatype& datatype,
int source, int tag) const (binding deprecated, see Section 15.2) }

The blocking semantics of this call are described in Section 3.4.
The receive buffer consists of the storage containing count consecutive elements of the

type specified by datatype, starting at address buf. The length of the received message must
be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.
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3.2. BLOCKING SEND AND RECEIVE OPERATIONS 31

If a message that is shorter than the receive buffer arrives, then only those locations
corresponding to the (shorter) message are modified.

Advice to users. The MPI_PROBE function described in Section 3.8 can be used to
receive messages of unknown length. (End of advice to users.)

Advice to implementors. Even though no specific behavior is mandated by MPI for
erroneous programs, the recommended handling of overflow situations is to return in
status information about the source and tag of the incoming message. The receive
operation will return an error code. A quality implementation will also ensure that
no memory that is outside the receive buffer will ever be overwritten.

In the case of a message shorter than the receive buffer, MPI is quite strict in that it
allows no modification of the other locations. A more lenient statement would allow
for some optimizations but this is not allowed. The implementation must be ready to
end a copy into the receiver memory exactly at the end of the receive buffer, even if
it is an odd address. (End of advice to implementors.)

The selection of a message by a receive operation is governed by the value of the
message envelope. A message can be received by a receive operation if its envelope matches
the source, tag and comm values specified by the receive operation. The receiver may
specify a wildcard MPI_ANY_SOURCE value for source, and/or a wildcard MPI_ANY_TAG

value for tag, indicating that any source and/or tag are acceptable. It cannot specify a
wildcard value for comm. Thus, a message can be received by a receive operation only
if it is addressed to the receiving process, has a matching communicator, has matching
source unless source=MPI_ANY_SOURCE in the pattern, and has a matching tag unless
tag=MPI_ANY_TAG in the pattern.

The message tag is specified by the tag argument of the receive operation. The
argument source, if different from MPI_ANY_SOURCE, is specified as a rank within the
process group associated with that same communicator (remote process group, for in-
tercommunicators). Thus, the range of valid values for the source argument is {0,...,n-
1}∪{MPI_ANY_SOURCE}, where n is the number of processes in this group.

Note the asymmetry between send and receive operations: A receive operation may
accept messages from an arbitrary sender, on the other hand, a send operation must specify
a unique receiver. This matches a “push” communication mechanism, where data transfer
is effected by the sender (rather than a “pull” mechanism, where data transfer is effected
by the receiver).

Source = destination is allowed, that is, a process can send a message to itself. (How-
ever, it is unsafe to do so with the blocking send and receive operations described above,
since this may lead to deadlock. See Section 3.5.)

Advice to implementors. Message context and other communicator information can
be implemented as an additional tag field. It differs from the regular message tag
in that wild card matching is not allowed on this field, and that value setting for
this field is controlled by communicator manipulation functions. (End of advice to
implementors.)

3.2.5 Return Status

The source or tag of a received message may not be known if wildcard values were used
in the receive operation. Also, if multiple requests are completed by a single MPI function
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32 CHAPTER 3. POINT-TO-POINT COMMUNICATION

(see Section 3.7.5), a distinct error code may need to be returned for each request. The
information is returned by the status argument of MPI_RECV. The type of status is MPI-
defined. Status variables need to be explicitly allocated by the user, that is, they are not
system objects.

In C, status is a structure that contains three fields named MPI_SOURCE, MPI_TAG,
and MPI_ERROR; the structure may contain additional fields. Thus,
status.MPI_SOURCE, status.MPI_TAG and status.MPI_ERROR contain the source, tag, and
error code, respectively, of the received message.

In Fortran, status is an array of INTEGERs of size MPI_STATUS_SIZE. The constants
MPI_SOURCE, MPI_TAG and MPI_ERROR are the indices of the entries that store the source,
tag and error fields. Thus, status(MPI_SOURCE), status(MPI_TAG) and
status(MPI_ERROR) contain, respectively, the source, tag and error code of the received
message.

In C++, the status object is handled through the following methods:
{int MPI::Status::Get_source() const (binding deprecated, see Section 15.2) }

{void MPI::Status::Set_source(int source) (binding deprecated, see Section 15.2) }

{int MPI::Status::Get_tag() const (binding deprecated, see Section 15.2) }

{void MPI::Status::Set_tag(int tag) (binding deprecated, see Section 15.2) }

{int MPI::Status::Get_error() const (binding deprecated, see Section 15.2) }

{void MPI::Status::Set_error(int error) (binding deprecated, see Section 15.2) }

In general, message-passing calls do not modify the value of the error code field of
status variables. This field may be updated only by the functions in Section 3.7.5 which
return multiple statuses. The field is updated if and only if such function returns with an
error code of MPI_ERR_IN_STATUS.

Rationale. The error field in status is not needed for calls that return only one status,
such as MPI_WAIT, since that would only duplicate the information returned by the
function itself. The current design avoids the additional overhead of setting it, in such
cases. The field is needed for calls that return multiple statuses, since each request
may have had a different failure. (End of rationale.)

The status argument also returns information on the length of the message received.
However, this information is not directly available as a field of the status variable and a call
to MPI_GET_COUNT is required to “decode” this information.

MPI_GET_COUNT(status, datatype, count)

IN status return status of receive operation (Status)

IN datatype datatype of each receive buffer entry (handle)

OUT count number of received entries (integer)

int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)

MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)
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3.2. BLOCKING SEND AND RECEIVE OPERATIONS 33

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

{int MPI::Status::Get_count(const MPI::Datatype& datatype) const (binding
deprecated, see Section 15.2) }

Returns the number of entries received. (Again, we count entries, each of type datatype,
not bytes.) The datatype argument should match the argument provided by the receive call
that set the status variable. (We shall later see, in Section 4.1.11, that MPI_GET_COUNT
may return, in certain situations, the value MPI_UNDEFINED.)

Rationale. Some message-passing libraries use INOUT count, tag and
source arguments, thus using them both to specify the selection criteria for incoming
messages and return the actual envelope values of the received message. The use of a
separate status argument prevents errors that are often attached with INOUT argument
(e.g., using the MPI_ANY_TAG constant as the tag in a receive). Some libraries use
calls that refer implicitly to the “last message received.” This is not thread safe.

The datatype argument is passed to MPI_GET_COUNT so as to improve performance.
A message might be received without counting the number of elements it contains,
and the count value is often not needed. Also, this allows the same function to be
used after a call to MPI_PROBE or MPI_IPROBE. With a status from MPI_PROBE
or MPI_IPROBE, the same datatypes are allowed as in a call to MPI_RECV to receive
this message. (End of rationale.)

The value returned as the count argument of MPI_GET_COUNT for a datatype of length
zero where zero bytes have been transferred is zero. If the number of bytes transfered is
greater than zero, MPI_UNDEFINED is returned.

Rationale. Zero-length datatypes may be created in a number of cases. An important
case is MPI_TYPE_CREATE_DARRAY, where the definition of the particular darray
results in an empty block on some MPI process. Programs written in an SPMD style
will not check for this special case and may want to use MPI_GET_COUNT to check
the status. (End of rationale.)

Advice to users. The buffer size required for the receive can be affected by data con-
versions and by the stride of the receive datatype. In most cases, the safest approach
is to use the same datatype with MPI_GET_COUNT and the receive. (End of advice
to users.)

All send and receive operations use the buf, count, datatype, source, dest, tag, comm and
status arguments in the same way as the blocking MPI_SEND and MPI_RECV operations
described in this section.

3.2.6 Passing MPI_STATUS_IGNORE for Status

Every call to MPI_RECV includes a status argument, wherein the system can return details
about the message received. There are also a number of other MPI calls where status
is returned. An object of type MPI_STATUS is not an MPI opaque object; its structure
is declared in mpi.h and mpif.h, and it exists in the user’s program. In many cases,
application programs are constructed so that it is unnecessary for them to examine the
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34 CHAPTER 3. POINT-TO-POINT COMMUNICATION

status fields. In these cases, it is a waste for the user to allocate a status object, and it is
particularly wasteful for the MPI implementation to fill in fields in this object.

To cope with this problem, there are two predefined constants, MPI_STATUS_IGNORE

and MPI_STATUSES_IGNORE, which when passed to a receive, wait, or test function, inform
the implementation that the status fields are not to be filled in. Note that
MPI_STATUS_IGNORE is not a special type of MPI_STATUS object; rather, it is a special
value for the argument. In C one would expect it to be NULL, not the address of a special
MPI_STATUS.

MPI_STATUS_IGNORE, and the array version MPI_STATUSES_IGNORE, can be used every-
where a status argument is passed to a receive, wait, or test function. MPI_STATUS_IGNORE

cannot be used when status is an IN argument. Note that in Fortran MPI_STATUS_IGNORE

and MPI_STATUSES_IGNORE are objects like MPI_BOTTOM (not usable for initialization or
assignment). See Section 2.5.4.

In general, this optimization can apply to all functions for which status or an array of
statuses is an OUT argument. Note that this converts status into an INOUT argument. The
functions that can be passed MPI_STATUS_IGNORE are all the various forms of MPI_RECV,
MPI_TEST, and MPI_WAIT, as well as MPI_REQUEST_GET_STATUS. When an array is
passed, as in the MPI_{TEST|WAIT}{ALL|SOME} functions, a separate constant,
MPI_STATUSES_IGNORE, is passed for the array argument. It is possible for an MPI function
to return MPI_ERR_IN_STATUS even when MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE

has been passed to that function.
MPI_STATUS_IGNORE and MPI_STATUSES_IGNORE are not required to have the same

values in C and Fortran.
It is not allowed to have some of the statuses in an array of statuses for

MPI_{TEST|WAIT}{ALL|SOME} functions set to MPI_STATUS_IGNORE; one either specifies
ignoring all of the statuses in such a call with MPI_STATUSES_IGNORE, or none of them by
passing normal statuses in all positions in the array of statuses.

There are no C++ bindings for MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE. To
allow an OUT or INOUT MPI::Status argument to be ignored, all MPI C++ bindings that
have OUT or INOUT MPI::Status parameters are overloaded with a second version that
omits the OUT or INOUT MPI::Status parameter.

Example 3.1 The C++ bindings for MPI_PROBE are:
void MPI::Comm::Probe(int source, int tag, MPI::Status& status) const
void MPI::Comm::Probe(int source, int tag) const

3.3 Data Type Matching and Data Conversion

3.3.1 Type Matching Rules

One can think of message transfer as consisting of the following three phases.

1. Data is pulled out of the send buffer and a message is assembled.

2. A message is transferred from sender to receiver.

3. Data is pulled from the incoming message and disassembled into the receive buffer.

Type matching has to be observed at each of these three phases: The type of each
variable in the sender buffer has to match the type specified for that entry by the send
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3.3. DATA TYPE MATCHING AND DATA CONVERSION 35

operation; the type specified by the send operation has to match the type specified by the
receive operation; and the type of each variable in the receive buffer has to match the type
specified for that entry by the receive operation. A program that fails to observe these three
rules is erroneous.

To define type matching more precisely, we need to deal with two issues: matching of
types of the host language with types specified in communication operations; and matching
of types at sender and receiver.

The types of a send and receive match (phase two) if both operations use identical
names. That is, MPI_INTEGER matches MPI_INTEGER, MPI_REAL matches MPI_REAL,
and so on. There is one exception to this rule, discussed in Section 4.2, the type
MPI_PACKED can match any other type.

The type of a variable in a host program matches the type specified in the commu-
nication operation if the datatype name used by that operation corresponds to the basic
type of the host program variable. For example, an entry with type name MPI_INTEGER
matches a Fortran variable of type INTEGER. A table giving this correspondence for Fortran
and C appears in Section 3.2.2. There are two exceptions to this last rule: an entry with
type name MPI_BYTE or MPI_PACKED can be used to match any byte of storage (on a
byte-addressable machine), irrespective of the datatype of the variable that contains this
byte. The type MPI_PACKED is used to send data that has been explicitly packed, or
receive data that will be explicitly unpacked, see Section 4.2. The type MPI_BYTE allows
one to transfer the binary value of a byte in memory unchanged.

To summarize, the type matching rules fall into the three categories below.

• Communication of typed values (e.g., with datatype different from MPI_BYTE), where
the datatypes of the corresponding entries in the sender program, in the send call, in
the receive call and in the receiver program must all match.

• Communication of untyped values (e.g., of datatype MPI_BYTE), where both sender
and receiver use the datatype MPI_BYTE. In this case, there are no requirements on
the types of the corresponding entries in the sender and the receiver programs, nor is
it required that they be the same.

• Communication involving packed data, where MPI_PACKED is used.

The following examples illustrate the first two cases.

Example 3.2 Sender and receiver specify matching types.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(1), 15, MPI_REAL, 0, tag, comm, status, ierr)
END IF

This code is correct if both a and b are real arrays of size ≥ 10. (In Fortran, it might
be correct to use this code even if a or b have size < 10: e.g., when a(1) can be equivalenced
to an array with ten reals.)

Example 3.3 Sender and receiver do not specify matching types.
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36 CHAPTER 3. POINT-TO-POINT COMMUNICATION

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(1), 40, MPI_BYTE, 0, tag, comm, status, ierr)
END IF

This code is erroneous, since sender and receiver do not provide matching datatype
arguments.

Example 3.4 Sender and receiver specify communication of untyped values.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(a(1), 40, MPI_BYTE, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(1), 60, MPI_BYTE, 0, tag, comm, status, ierr)
END IF

This code is correct, irrespective of the type and size of a and b (unless this results in
an out of bound memory access).

Advice to users. If a buffer of type MPI_BYTE is passed as an argument to MPI_SEND,
then MPI will send the data stored at contiguous locations, starting from the address
indicated by the buf argument. This may have unexpected results when the data
layout is not as a casual user would expect it to be. For example, some Fortran
compilers implement variables of type CHARACTER as a structure that contains the
character length and a pointer to the actual string. In such an environment, sending
and receiving a Fortran CHARACTER variable using the MPI_BYTE type will not have
the anticipated result of transferring the character string. For this reason, the user is
advised to use typed communications whenever possible. (End of advice to users.)

Type MPI_CHARACTER

The type MPI_CHARACTER matches one character of a Fortran variable of type CHARACTER,
rather then the entire character string stored in the variable. Fortran variables of type
CHARACTER or substrings are transferred as if they were arrays of characters. This is
illustrated in the example below.

Example 3.5 Transfer of Fortran CHARACTERs.

CHARACTER*10 a
CHARACTER*10 b

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(a, 5, MPI_CHARACTER, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(6:10), 5, MPI_CHARACTER, 0, tag, comm, status, ierr)
END IF
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3.3. DATA TYPE MATCHING AND DATA CONVERSION 37

The last five characters of string b at process 1 are replaced by the first five characters
of string a at process 0.

Rationale. The alternative choice would be for MPI_CHARACTER to match a char-
acter of arbitrary length. This runs into problems.

A Fortran character variable is a constant length string, with no special termina-
tion symbol. There is no fixed convention on how to represent characters, and how
to store their length. Some compilers pass a character argument to a routine as a
pair of arguments, one holding the address of the string and the other holding the
length of string. Consider the case of an MPI communication call that is passed a
communication buffer with type defined by a derived datatype (Section 4.1). If this
communicator buffer contains variables of type CHARACTER then the information on
their length will not be passed to the MPI routine.

This problem forces us to provide explicit information on character length with the
MPI call. One could add a length parameter to the type MPI_CHARACTER, but this
does not add much convenience and the same functionality can be achieved by defining
a suitable derived datatype. (End of rationale.)

Advice to implementors. Some compilers pass Fortran CHARACTER arguments as a
structure with a length and a pointer to the actual string. In such an environment,
the MPI call needs to dereference the pointer in order to reach the string. (End of
advice to implementors.)

3.3.2 Data Conversion

One of the goals of MPI is to support parallel computations across heterogeneous environ-
ments. Communication in a heterogeneous environment may require data conversions. We
use the following terminology.

type conversion changes the datatype of a value, e.g., by rounding a REAL to an INTEGER.

representation conversion changes the binary representation of a value, e.g., from Hex
floating point to IEEE floating point.

The type matching rules imply that MPI communication never entails type conversion.
On the other hand, MPI requires that a representation conversion be performed when a
typed value is transferred across environments that use different representations for the
datatype of this value. MPI does not specify rules for representation conversion. Such
conversion is expected to preserve integer, logical or character values, and to convert a
floating point value to the nearest value that can be represented on the target system.

Overflow and underflow exceptions may occur during floating point conversions. Con-
version of integers or characters may also lead to exceptions when a value that can be
represented in one system cannot be represented in the other system. An exception occur-
ring during representation conversion results in a failure of the communication. An error
occurs either in the send operation, or the receive operation, or both.

If a value sent in a message is untyped (i.e., of type MPI_BYTE), then the binary
representation of the byte stored at the receiver is identical to the binary representation
of the byte loaded at the sender. This holds true, whether sender and receiver run in the
same or in distinct environments. No representation conversion is required. (Note that
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38 CHAPTER 3. POINT-TO-POINT COMMUNICATION

representation conversion may occur when values of type MPI_CHARACTER or MPI_CHAR
are transferred, for example, from an EBCDIC encoding to an ASCII encoding.)

No conversion need occur when an MPI program executes in a homogeneous system,
where all processes run in the same environment.

Consider the three examples, 3.2–3.4. The first program is correct, assuming that a and
b are REAL arrays of size ≥ 10. If the sender and receiver execute in different environments,
then the ten real values that are fetched from the send buffer will be converted to the
representation for reals on the receiver site before they are stored in the receive buffer.
While the number of real elements fetched from the send buffer equal the number of real
elements stored in the receive buffer, the number of bytes stored need not equal the number
of bytes loaded. For example, the sender may use a four byte representation and the receiver
an eight byte representation for reals.

The second program is erroneous, and its behavior is undefined.
The third program is correct. The exact same sequence of forty bytes that were loaded

from the send buffer will be stored in the receive buffer, even if sender and receiver run in
a different environment. The message sent has exactly the same length (in bytes) and the
same binary representation as the message received. If a and b are of different types, or if
they are of the same type but different data representations are used, then the bits stored
in the receive buffer may encode values that are different from the values they encoded in
the send buffer.

Data representation conversion also applies to the envelope of a message: source, des-
tination and tag are all integers that may need to be converted.

Advice to implementors. The current definition does not require messages to carry
data type information. Both sender and receiver provide complete data type infor-
mation. In a heterogeneous environment, one can either use a machine independent
encoding such as XDR, or have the receiver convert from the sender representation
to its own, or even have the sender do the conversion.

Additional type information might be added to messages in order to allow the sys-
tem to detect mismatches between datatype at sender and receiver. This might be
particularly useful in a slower but safer debug mode. (End of advice to implementors.)

MPI requires support for inter-language communication, i.e., if messages are sent by a
C or C++ process and received by a Fortran process, or vice-versa. The behavior is defined
in Section 16.3 on page 497.

3.4 Communication Modes

The send call described in Section 3.2.1 is blocking: it does not return until the message
data and envelope have been safely stored away so that the sender is free to modify the
send buffer. The message might be copied directly into the matching receive buffer, or it
might be copied into a temporary system buffer.

Message buffering decouples the send and receive operations. A blocking send can com-
plete as soon as the message was buffered, even if no matching receive has been executed by
the receiver. On the other hand, message buffering can be expensive, as it entails additional
memory-to-memory copying, and it requires the allocation of memory for buffering. MPI
offers the choice of several communication modes that allow one to control the choice of the
communication protocol.
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3.4. COMMUNICATION MODES 39

The send call described in Section 3.2.1 uses the standard communication mode. In
this mode, it is up to MPI to decide whether outgoing messages will be buffered. MPI may
buffer outgoing messages. In such a case, the send call may complete before a matching
receive is invoked. On the other hand, buffer space may be unavailable, or MPI may choose
not to buffer outgoing messages, for performance reasons. In this case, the send call will
not complete until a matching receive has been posted, and the data has been moved to the
receiver.

Thus, a send in standard mode can be started whether or not a matching receive has
been posted. It may complete before a matching receive is posted. The standard mode send
is non-local: successful completion of the send operation may depend on the occurrence
of a matching receive.

Rationale. The reluctance of MPI to mandate whether standard sends are buffering
or not stems from the desire to achieve portable programs. Since any system will run
out of buffer resources as message sizes are increased, and some implementations may
want to provide little buffering, MPI takes the position that correct (and therefore,
portable) programs do not rely on system buffering in standard mode. Buffering may
improve the performance of a correct program, but it doesn’t affect the result of the
program. If the user wishes to guarantee a certain amount of buffering, the user-
provided buffer system of Section 3.6 should be used, along with the buffered-mode
send. (End of rationale.)

There are three additional communication modes.
A buffered mode send operation can be started whether or not a matching receive

has been posted. It may complete before a matching receive is posted. However, unlike
the standard send, this operation is local, and its completion does not depend on the
occurrence of a matching receive. Thus, if a send is executed and no matching receive is
posted, then MPI must buffer the outgoing message, so as to allow the send call to complete.
An error will occur if there is insufficient buffer space. The amount of available buffer space
is controlled by the user — see Section 3.6. Buffer allocation by the user may be required
for the buffered mode to be effective.

A send that uses the synchronous mode can be started whether or not a matching
receive was posted. However, the send will complete successfully only if a matching receive is
posted, and the receive operation has started to receive the message sent by the synchronous
send. Thus, the completion of a synchronous send not only indicates that the send buffer
can be reused, but it also indicates that the receiver has reached a certain point in its
execution, namely that it has started executing the matching receive. If both sends and
receives are blocking operations then the use of the synchronous mode provides synchronous
communication semantics: a communication does not complete at either end before both
processes rendezvous at the communication. A send executed in this mode is non-local.

A send that uses the ready communication mode may be started only if the matching
receive is already posted. Otherwise, the operation is erroneous and its outcome is unde-
fined. On some systems, this allows the removal of a hand-shake operation that is otherwise
required and results in improved performance. The completion of the send operation does
not depend on the status of a matching receive, and merely indicates that the send buffer
can be reused. A send operation that uses the ready mode has the same semantics as a
standard send operation, or a synchronous send operation; it is merely that the sender
provides additional information to the system (namely that a matching receive is already
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40 CHAPTER 3. POINT-TO-POINT COMMUNICATION

posted), that can save some overhead. In a correct program, therefore, a ready send could
be replaced by a standard send with no effect on the behavior of the program other than
performance.

Three additional send functions are provided for the three additional communication
modes. The communication mode is indicated by a one letter prefix: B for buffered, S for
synchronous, and R for ready.

MPI_BSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Bsend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

{void MPI::Comm::Bsend(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const (binding
deprecated, see Section 15.2) }

Send in buffered mode.

MPI_SSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Ssend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR
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3.4. COMMUNICATION MODES 41

{void MPI::Comm::Ssend(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const (binding
deprecated, see Section 15.2) }

Send in synchronous mode.

MPI_RSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Rsend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

{void MPI::Comm::Rsend(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const (binding
deprecated, see Section 15.2) }

Send in ready mode.
There is only one receive operation, but it matches any of the send modes. The receive

operation described in the last section is blocking: it returns only after the receive buffer
contains the newly received message. A receive can complete before the matching send has
completed (of course, it can complete only after the matching send has started).

In a multi-threaded implementation of MPI, the system may de-schedule a thread that
is blocked on a send or receive operation, and schedule another thread for execution in
the same address space. In such a case it is the user’s responsibility not to modify a
communication buffer until the communication completes. Otherwise, the outcome of the
computation is undefined.

Advice to implementors. Since a synchronous send cannot complete before a matching
receive is posted, one will not normally buffer messages sent by such an operation.

It is recommended to choose buffering over blocking the sender, whenever possible,
for standard sends. The programmer can signal his or her preference for blocking the
sender until a matching receive occurs by using the synchronous send mode.

A possible communication protocol for the various communication modes is outlined
below.

ready send: The message is sent as soon as possible.
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42 CHAPTER 3. POINT-TO-POINT COMMUNICATION

synchronous send: The sender sends a request-to-send message. The receiver stores
this request. When a matching receive is posted, the receiver sends back a permission-
to-send message, and the sender now sends the message.

standard send: First protocol may be used for short messages, and second protocol for
long messages.

buffered send: The sender copies the message into a buffer and then sends it with a
nonblocking send (using the same protocol as for standard send).

Additional control messages might be needed for flow control and error recovery. Of
course, there are many other possible protocols.

Ready send can be implemented as a standard send. In this case there will be no
performance advantage (or disadvantage) for the use of ready send.

A standard send can be implemented as a synchronous send. In such a case, no data
buffering is needed. However, users may expect some buffering.

In a multi-threaded environment, the execution of a blocking communication should
block only the executing thread, allowing the thread scheduler to de-schedule this
thread and schedule another thread for execution. (End of advice to implementors.)

3.5 Semantics of Point-to-Point Communication

A valid MPI implementation guarantees certain general properties of point-to-point com-
munication, which are described in this section.

Order Messages are non-overtaking: If a sender sends two messages in succession to the
same destination, and both match the same receive, then this operation cannot receive the
second message if the first one is still pending. If a receiver posts two receives in succession,
and both match the same message, then the second receive operation cannot be satisfied
by this message, if the first one is still pending. This requirement facilitates matching of
sends to receives. It guarantees that message-passing code is deterministic, if processes are
single-threaded and the wildcard MPI_ANY_SOURCE is not used in receives. (Some of the
calls described later, such as MPI_CANCEL or MPI_WAITANY, are additional sources of
nondeterminism.)

If a process has a single thread of execution, then any two communications executed
by this process are ordered. On the other hand, if the process is multi-threaded, then the
semantics of thread execution may not define a relative order between two send operations
executed by two distinct threads. The operations are logically concurrent, even if one
physically precedes the other. In such a case, the two messages sent can be received in
any order. Similarly, if two receive operations that are logically concurrent receive two
successively sent messages, then the two messages can match the two receives in either
order.

Example 3.6 An example of non-overtaking messages.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_BSEND(buf2, count, MPI_REAL, 1, tag, comm, ierr)
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3.5. SEMANTICS OF POINT-TO-POINT COMMUNICATION 43

ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(buf1, count, MPI_REAL, 0, MPI_ANY_TAG, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag, comm, status, ierr)

END IF

The message sent by the first send must be received by the first receive, and the message
sent by the second send must be received by the second receive.

Progress If a pair of matching send and receives have been initiated on two processes, then
at least one of these two operations will complete, independently of other actions in the
system: the send operation will complete, unless the receive is satisfied by another message,
and completes; the receive operation will complete, unless the message sent is consumed by
another matching receive that was posted at the same destination process.

Example 3.7 An example of two, intertwined matching pairs.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
CALL MPI_SSEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)

END IF

Both processes invoke their first communication call. Since the first send of process zero
uses the buffered mode, it must complete, irrespective of the state of process one. Since
no matching receive is posted, the message will be copied into buffer space. (If insufficient
buffer space is available, then the program will fail.) The second send is then invoked. At
that point, a matching pair of send and receive operation is enabled, and both operations
must complete. Process one next invokes its second receive call, which will be satisfied by
the buffered message. Note that process one received the messages in the reverse order they
were sent.

Fairness MPI makes no guarantee of fairness in the handling of communication. Suppose
that a send is posted. Then it is possible that the destination process repeatedly posts a
receive that matches this send, yet the message is never received, because it is each time
overtaken by another message, sent from another source. Similarly, suppose that a receive
was posted by a multi-threaded process. Then it is possible that messages that match this
receive are repeatedly received, yet the receive is never satisfied, because it is overtaken
by other receives posted at this node (by other executing threads). It is the programmer’s
responsibility to prevent starvation in such situations.

Resource limitations Any pending communication operation consumes system resources
that are limited. Errors may occur when lack of resources prevent the execution of an MPI
call. A quality implementation will use a (small) fixed amount of resources for each pending
send in the ready or synchronous mode and for each pending receive. However, buffer space
may be consumed to store messages sent in standard mode, and must be consumed to store
messages sent in buffered mode, when no matching receive is available. The amount of space
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44 CHAPTER 3. POINT-TO-POINT COMMUNICATION

available for buffering will be much smaller than program data memory on many systems.
Then, it will be easy to write programs that overrun available buffer space.

MPI allows the user to provide buffer memory for messages sent in the buffered mode.
Furthermore, MPI specifies a detailed operational model for the use of this buffer. An MPI
implementation is required to do no worse than implied by this model. This allows users to
avoid buffer overflows when they use buffered sends. Buffer allocation and use is described
in Section 3.6.

A buffered send operation that cannot complete because of a lack of buffer space is
erroneous. When such a situation is detected, an error is signalled that may cause the
program to terminate abnormally. On the other hand, a standard send operation that
cannot complete because of lack of buffer space will merely block, waiting for buffer space
to become available or for a matching receive to be posted. This behavior is preferable in
many situations. Consider a situation where a producer repeatedly produces new values
and sends them to a consumer. Assume that the producer produces new values faster
than the consumer can consume them. If buffered sends are used, then a buffer overflow
will result. Additional synchronization has to be added to the program so as to prevent
this from occurring. If standard sends are used, then the producer will be automatically
throttled, as its send operations will block when buffer space is unavailable.

In some situations, a lack of buffer space leads to deadlock situations. This is illustrated
by the examples below.

Example 3.8 An exchange of messages.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF

This program will succeed even if no buffer space for data is available. The standard send
operation can be replaced, in this example, with a synchronous send.

Example 3.9 An errant attempt to exchange messages.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF

The receive operation of the first process must complete before its send, and can complete
only if the matching send of the second processor is executed. The receive operation of the
second process must complete before its send and can complete only if the matching send
of the first process is executed. This program will always deadlock. The same holds for any
other send mode.
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3.6. BUFFER ALLOCATION AND USAGE 45

Example 3.10 An exchange that relies on buffering.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

END IF

The message sent by each process has to be copied out before the send operation returns
and the receive operation starts. For the program to complete, it is necessary that at least
one of the two messages sent be buffered. Thus, this program can succeed only if the
communication system can buffer at least count words of data.

Advice to users. When standard send operations are used, then a deadlock situation
may occur where both processes are blocked because buffer space is not available. The
same will certainly happen, if the synchronous mode is used. If the buffered mode is
used, and not enough buffer space is available, then the program will not complete
either. However, rather than a deadlock situation, we shall have a buffer overflow
error.

A program is “safe” if no message buffering is required for the program to complete.
One can replace all sends in such program with synchronous sends, and the pro-
gram will still run correctly. This conservative programming style provides the best
portability, since program completion does not depend on the amount of buffer space
available or on the communication protocol used.

Many programmers prefer to have more leeway and opt to use the “unsafe” program-
ming style shown in Example 3.10. In such cases, the use of standard sends is likely
to provide the best compromise between performance and robustness: quality imple-
mentations will provide sufficient buffering so that “common practice” programs will
not deadlock. The buffered send mode can be used for programs that require more
buffering, or in situations where the programmer wants more control. This mode
might also be used for debugging purposes, as buffer overflow conditions are easier to
diagnose than deadlock conditions.

Nonblocking message-passing operations, as described in Section 3.7, can be used to
avoid the need for buffering outgoing messages. This prevents deadlocks due to lack
of buffer space, and improves performance, by allowing overlap of computation and
communication, and avoiding the overheads of allocating buffers and copying messages
into buffers. (End of advice to users.)

3.6 Buffer Allocation and Usage

A user may specify a buffer to be used for buffering messages sent in buffered mode. Buffer-
ing is done by the sender.
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46 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_BUFFER_ATTACH(buffer, size)

IN buffer initial buffer address (choice)

IN size buffer size, in bytes (non-negative integer)

int MPI_Buffer_attach(void* buffer, int size)

MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)
<type> BUFFER(*)
INTEGER SIZE, IERROR

{void MPI::Attach_buffer(void* buffer, int size) (binding deprecated, see
Section 15.2) }

Provides to MPI a buffer in the user’s memory to be used for buffering outgoing mes-
sages. The buffer is used only by messages sent in buffered mode. Only one buffer can be
attached to a process at a time.

MPI_BUFFER_DETACH(buffer_addr, size)

OUT buffer_addr initial buffer address (choice)

OUT size buffer size, in bytes (non-negative integer)

int MPI_Buffer_detach(void* buffer_addr, int* size)

MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)
<type> BUFFER_ADDR(*)
INTEGER SIZE, IERROR

{int MPI::Detach_buffer(void*& buffer) (binding deprecated, see Section 15.2) }

Detach the buffer currently associated with MPI. The call returns the address and the
size of the detached buffer. This operation will block until all messages currently in the
buffer have been transmitted. Upon return of this function, the user may reuse or deallocate
the space taken by the buffer.

Example 3.11 Calls to attach and detach buffers.

#define BUFFSIZE 10000
int size;
char *buff;
MPI_Buffer_attach( malloc(BUFFSIZE), BUFFSIZE);
/* a buffer of 10000 bytes can now be used by MPI_Bsend */
MPI_Buffer_detach( &buff, &size);
/* Buffer size reduced to zero */
MPI_Buffer_attach( buff, size);
/* Buffer of 10000 bytes available again */

Advice to users. Even though the C functions MPI_Buffer_attach and
MPI_Buffer_detach both have a first argument of type void*, these arguments are
used differently: A pointer to the buffer is passed to MPI_Buffer_attach; the address
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3.6. BUFFER ALLOCATION AND USAGE 47

of the pointer is passed to MPI_Buffer_detach, so that this call can return the pointer
value. (End of advice to users.)

Rationale. Both arguments are defined to be of type void* (rather than
void* and void**, respectively), so as to avoid complex type casts. E.g., in the last
example, &buff, which is of type char**, can be passed as argument to
MPI_Buffer_detach without type casting. If the formal parameter had type void**
then we would need a type cast before and after the call. (End of rationale.)

The statements made in this section describe the behavior of MPI for buffered-mode
sends. When no buffer is currently associated, MPI behaves as if a zero-sized buffer is
associated with the process.

MPI must provide as much buffering for outgoing messages as if outgoing message
data were buffered by the sending process, in the specified buffer space, using a circular,
contiguous-space allocation policy. We outline below a model implementation that defines
this policy. MPI may provide more buffering, and may use a better buffer allocation algo-
rithm than described below. On the other hand, MPI may signal an error whenever the
simple buffering allocator described below would run out of space. In particular, if no buffer
is explicitly associated with the process, then any buffered send may cause an error.

MPI does not provide mechanisms for querying or controlling buffering done by standard
mode sends. It is expected that vendors will provide such information for their implemen-
tations.

Rationale. There is a wide spectrum of possible implementations of buffered com-
munication: buffering can be done at sender, at receiver, or both; buffers can be
dedicated to one sender-receiver pair, or be shared by all communications; buffering
can be done in real or in virtual memory; it can use dedicated memory, or memory
shared by other processes; buffer space may be allocated statically or be changed dy-
namically; etc. It does not seem feasible to provide a portable mechanism for querying
or controlling buffering that would be compatible with all these choices, yet provide
meaningful information. (End of rationale.)

3.6.1 Model Implementation of Buffered Mode

The model implementation uses the packing and unpacking functions described in Sec-
tion 4.2 and the nonblocking communication functions described in Section 3.7.

We assume that a circular queue of pending message entries (PME) is maintained.
Each entry contains a communication request handle that identifies a pending nonblocking
send, a pointer to the next entry and the packed message data. The entries are stored in
successive locations in the buffer. Free space is available between the queue tail and the
queue head.

A buffered send call results in the execution of the following code.

• Traverse sequentially the PME queue from head towards the tail, deleting all entries
for communications that have completed, up to the first entry with an uncompleted
request; update queue head to point to that entry.

• Compute the number, n, of bytes needed to store an entry for the new message. An up-
per bound on n can be computed as follows: A call to the function
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MPI_PACK_SIZE(count, datatype, comm, size), with the count, datatype and comm
arguments used in the MPI_BSEND call, returns an upper bound on the amount
of space needed to buffer the message data (see Section 4.2). The MPI constant
MPI_BSEND_OVERHEAD provides an upper bound on the additional space consumed
by the entry (e.g., for pointers or envelope information).

• Find the next contiguous empty space of n bytes in buffer (space following queue tail,
or space at start of buffer if queue tail is too close to end of buffer). If space is not
found then raise buffer overflow error.

• Append to end of PME queue in contiguous space the new entry that contains request
handle, next pointer and packed message data; MPI_PACK is used to pack data.

• Post nonblocking send (standard mode) for packed data.

• Return

3.7 Nonblocking Communication

One can improve performance on many systems by overlapping communication and com-
putation. This is especially true on systems where communication can be executed au-
tonomously by an intelligent communication controller. Light-weight threads are one mech-
anism for achieving such overlap. An alternative mechanism that often leads to better
performance is to use nonblocking communication. A nonblocking send start call ini-
tiates the send operation, but does not complete it. The send start call can return before
the message was copied out of the send buffer. A separate send complete call is needed
to complete the communication, i.e., to verify that the data has been copied out of the send
buffer. With suitable hardware, the transfer of data out of the sender memory may proceed
concurrently with computations done at the sender after the send was initiated and before it
completed. Similarly, a nonblocking receive start call initiates the receive operation, but
does not complete it. The call can return before a message is stored into the receive buffer.
A separate receive complete call is needed to complete the receive operation and verify
that the data has been received into the receive buffer. With suitable hardware, the transfer
of data into the receiver memory may proceed concurrently with computations done after
the receive was initiated and before it completed. The use of nonblocking receives may also
avoid system buffering and memory-to-memory copying, as information is provided early
on the location of the receive buffer.

Nonblocking send start calls can use the same four modes as blocking sends: standard,
buffered, synchronous and ready. These carry the same meaning. Sends of all modes, ready
excepted, can be started whether a matching receive has been posted or not; a nonblocking
ready send can be started only if a matching receive is posted. In all cases, the send start call
is local: it returns immediately, irrespective of the status of other processes. If the call causes
some system resource to be exhausted, then it will fail and return an error code. Quality
implementations of MPI should ensure that this happens only in “pathological” cases. That
is, an MPI implementation should be able to support a large number of pending nonblocking
operations.

The send-complete call returns when data has been copied out of the send buffer. It
may carry additional meaning, depending on the send mode.
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3.7. NONBLOCKING COMMUNICATION 49

If the send mode is synchronous, then the send can complete only if a matching receive
has started. That is, a receive has been posted, and has been matched with the send. In
this case, the send-complete call is non-local. Note that a synchronous, nonblocking send
may complete, if matched by a nonblocking receive, before the receive complete call occurs.
(It can complete as soon as the sender “knows” the transfer will complete, but before the
receiver “knows” the transfer will complete.)

If the send mode is buffered then the message must be buffered if there is no pending
receive. In this case, the send-complete call is local, and must succeed irrespective of the
status of a matching receive.

If the send mode is standard then the send-complete call may return before a matching
receive is posted, if the message is buffered. On the other hand, the send-complete may not
complete until a matching receive is posted, and the message was copied into the receive
buffer.

Nonblocking sends can be matched with blocking receives, and vice-versa.

Advice to users. The completion of a send operation may be delayed, for standard
mode, and must be delayed, for synchronous mode, until a matching receive is posted.
The use of nonblocking sends in these two cases allows the sender to proceed ahead
of the receiver, so that the computation is more tolerant of fluctuations in the speeds
of the two processes.

Nonblocking sends in the buffered and ready modes have a more limited impact, e.g.,
the blocking version of buffered send is capable of completing regardless of when a
matching receive call is made. However, separating the start from the completion
of these sends still gives some opportunity for optimization within the MPI library.
For example, starting a buffered send gives an implementation more flexibility in
determining if and how the message is buffered. There are also advantages for both
nonblocking buffered and ready modes when data copying can be done concurrently
with computation.

The message-passing model implies that communication is initiated by the sender.
The communication will generally have lower overhead if a receive is already posted
when the sender initiates the communication (data can be moved directly to the
receive buffer, and there is no need to queue a pending send request). However, a
receive operation can complete only after the matching send has occurred. The use
of nonblocking receives allows one to achieve lower communication overheads without
blocking the receiver while it waits for the send. (End of advice to users.)

3.7.1 Communication Request Objects

Nonblocking communications use opaque request objects to identify communication oper-
ations and match the operation that initiates the communication with the operation that
terminates it. These are system objects that are accessed via a handle. A request object
identifies various properties of a communication operation, such as the send mode, the com-
munication buffer that is associated with it, its context, the tag and destination arguments
to be used for a send, or the tag and source arguments to be used for a receive. In addition,
this object stores information about the status of the pending communication operation.
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50 CHAPTER 3. POINT-TO-POINT COMMUNICATION

3.7.2 Communication Initiation

We use the same naming conventions as for blocking communication: a prefix of B, S, or
R is used for buffered, synchronous or ready mode. In addition a prefix of I (for immediate)
indicates that the call is nonblocking.

MPI_ISEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Isend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

{MPI::Request MPI::Comm::Isend(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const (binding
deprecated, see Section 15.2) }

Start a standard mode, nonblocking send.

MPI_IBSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ibsend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



3.7. NONBLOCKING COMMUNICATION 51

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

{MPI::Request MPI::Comm::Ibsend(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const (binding
deprecated, see Section 15.2) }

Start a buffered mode, nonblocking send.

MPI_ISSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Issend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

{MPI::Request MPI::Comm::Issend(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const (binding
deprecated, see Section 15.2) }

Start a synchronous mode, nonblocking send.

MPI_IRSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Irsend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)
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MPI_IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

{MPI::Request MPI::Comm::Irsend(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const (binding
deprecated, see Section 15.2) }

Start a ready mode nonblocking send.

MPI_IRECV (buf, count, datatype, source, tag, comm, request)

OUT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative in-
teger)

IN datatype datatype of each receive buffer element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

{MPI::Request MPI::Comm::Irecv(void* buf, int count, const
MPI::Datatype& datatype, int source, int tag) const (binding
deprecated, see Section 15.2) }

Start a nonblocking receive.
These calls allocate a communication request object and associate it with the request

handle (the argument request). The request can be used later to query the status of the
communication or wait for its completion.

A nonblocking send call indicates that the system may start copying data out of the
send buffer. The sender should not modify any part of the send buffer after a nonblocking
send operation is called, until the send completes.

A nonblocking receive call indicates that the system may start writing data into the re-
ceive buffer. The receiver should not access any part of the receive buffer after a nonblocking
receive operation is called, until the receive completes.

Advice to users. To prevent problems with the argument copying and register opti-
mization done by Fortran compilers, please note the hints in subsections “Problems
Due to Data Copying and Sequence Association,” and “A Problem with Register
Optimization” in Section 16.2.2 on pages 482 and 485. (End of advice to users.)
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3.7.3 Communication Completion

The functions MPI_WAIT and MPI_TEST are used to complete a nonblocking communica-
tion. The completion of a send operation indicates that the sender is now free to update the
locations in the send buffer (the send operation itself leaves the content of the send buffer
unchanged). It does not indicate that the message has been received, rather, it may have
been buffered by the communication subsystem. However, if a synchronous mode send was
used, the completion of the send operation indicates that a matching receive was initiated,
and that the message will eventually be received by this matching receive.

The completion of a receive operation indicates that the receive buffer contains the
received message, the receiver is now free to access it, and that the status object is set. It
does not indicate that the matching send operation has completed (but indicates, of course,
that the send was initiated).

We shall use the following terminology: A null handle is a handle with value
MPI_REQUEST_NULL. A persistent request and the handle to it are inactive if the request
is not associated with any ongoing communication (see Section 3.9). A handle is active if
it is neither null nor inactive. An empty status is a status which is set to return tag
= MPI_ANY_TAG, source = MPI_ANY_SOURCE, error = MPI_SUCCESS, and is also internally
configured so that calls to MPI_GET_COUNT and MPI_GET_ELEMENTS return count = 0
and MPI_TEST_CANCELLED returns false. We set a status variable to empty when the
value returned by it is not significant. Status is set in this way so as to prevent errors due
to accesses of stale information.

The fields in a status object returned by a call to MPI_WAIT, MPI_TEST, or any
of the other derived functions (MPI_{TEST|WAIT}{ALL|SOME|ANY}), where the request
corresponds to a send call, are undefined, with two exceptions: The error status field will
contain valid information if the wait or test call returned with MPI_ERR_IN_STATUS; and
the returned status can be queried by the call MPI_TEST_CANCELLED.

Error codes belonging to the error class MPI_ERR_IN_STATUS should be returned only
by the MPI completion functions that take arrays of MPI_STATUS. For the functions
MPI_TEST, MPI_TESTANY, MPI_WAIT, and MPI_WAITANY, which return a single
MPI_STATUS value, the normal MPI error return process should be used (not the
MPI_ERROR field in the MPI_STATUS argument).

MPI_WAIT(request, status)

INOUT request request (handle)

OUT status status object (Status)

int MPI_Wait(MPI_Request *request, MPI_Status *status)

MPI_WAIT(REQUEST, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

{void MPI::Request::Wait(MPI::Status& status) (binding deprecated, see
Section 15.2) }

{void MPI::Request::Wait() (binding deprecated, see Section 15.2) }

A call to MPI_WAIT returns when the operation identified by request is complete. If
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54 CHAPTER 3. POINT-TO-POINT COMMUNICATION

the communication object associated with this request was created by a nonblocking send
or receive call, then the object is deallocated by the call to MPI_WAIT and the request
handle is set to MPI_REQUEST_NULL. MPI_WAIT is a non-local operation.

The call returns, in status, information on the completed operation. The content of
the status object for a receive operation can be accessed as described in Section 3.2.5. The
status object for a send operation may be queried by a call to MPI_TEST_CANCELLED
(see Section 3.8).

One is allowed to call MPI_WAIT with a null or inactive request argument. In this case
the operation returns immediately with empty status.

Advice to users. Successful return of MPI_WAIT after a MPI_IBSEND implies that
the user send buffer can be reused — i.e., data has been sent out or copied into
a buffer attached with MPI_BUFFER_ATTACH. Note that, at this point, we can no
longer cancel the send (see Section 3.8). If a matching receive is never posted, then the
buffer cannot be freed. This runs somewhat counter to the stated goal of MPI_CANCEL
(always being able to free program space that was committed to the communication
subsystem). (End of advice to users.)

Advice to implementors. In a multi-threaded environment, a call to MPI_WAIT should
block only the calling thread, allowing the thread scheduler to schedule another thread
for execution. (End of advice to implementors.)

MPI_TEST(request, flag, status)

INOUT request communication request (handle)

OUT flag true if operation completed (logical)

OUT status status object (Status)

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

MPI_TEST(REQUEST, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

{bool MPI::Request::Test(MPI::Status& status) (binding deprecated, see
Section 15.2) }

{bool MPI::Request::Test() (binding deprecated, see Section 15.2) }

A call to MPI_TEST returns flag = true if the operation identified by
request is complete. In such a case, the status object is set to contain information on the
completed operation; if the communication object was created by a nonblocking send or
receive, then it is deallocated and the request handle is set to MPI_REQUEST_NULL. The
call returns flag = false, otherwise. In this case, the value of the status object is undefined.
MPI_TEST is a local operation.

The return status object for a receive operation carries information that can be accessed
as described in Section 3.2.5. The status object for a send operation carries information
that can be accessed by a call to MPI_TEST_CANCELLED (see Section 3.8).
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3.7. NONBLOCKING COMMUNICATION 55

One is allowed to call MPI_TEST with a null or inactive request argument. In such a
case the operation returns with flag = true and empty status.

The functions MPI_WAIT and MPI_TEST can be used to complete both sends and
receives.

Advice to users. The use of the nonblocking MPI_TEST call allows the user to
schedule alternative activities within a single thread of execution. An event-driven
thread scheduler can be emulated with periodic calls to MPI_TEST. (End of advice to
users.)

Example 3.12 Simple usage of nonblocking operations and MPI_WAIT.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_ISEND(a(1), 10, MPI_REAL, 1, tag, comm, request, ierr)
**** do some computation to mask latency ****
CALL MPI_WAIT(request, status, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_IRECV(a(1), 15, MPI_REAL, 0, tag, comm, request, ierr)
**** do some computation to mask latency ****
CALL MPI_WAIT(request, status, ierr)

END IF

A request object can be deallocated without waiting for the associated communication
to complete, by using the following operation.

MPI_REQUEST_FREE(request)

INOUT request communication request (handle)

int MPI_Request_free(MPI_Request *request)

MPI_REQUEST_FREE(REQUEST, IERROR)
INTEGER REQUEST, IERROR

{void MPI::Request::Free() (binding deprecated, see Section 15.2) }

Mark the request object for deallocation and set request to MPI_REQUEST_NULL. An
ongoing communication that is associated with the request will be allowed to complete. The
request will be deallocated only after its completion.

Rationale. The MPI_REQUEST_FREE mechanism is provided for reasons of perfor-
mance and convenience on the sending side. (End of rationale.)

Advice to users. Once a request is freed by a call to MPI_REQUEST_FREE, it is not
possible to check for the successful completion of the associated communication with
calls to MPI_WAIT or MPI_TEST. Also, if an error occurs subsequently during the
communication, an error code cannot be returned to the user — such an error must
be treated as fatal. An active receive request should never be freed as the receiver
will have no way to verify that the receive has completed and the receive buffer can
be reused. (End of advice to users.)
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Example 3.13 An example using MPI_REQUEST_FREE.

CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
IF (rank.EQ.0) THEN

DO i=1, n
CALL MPI_ISEND(outval, 1, MPI_REAL, 1, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_REQUEST_FREE(req, ierr)
CALL MPI_IRECV(inval, 1, MPI_REAL, 1, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)

END DO
ELSE IF (rank.EQ.1) THEN

CALL MPI_IRECV(inval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)
DO I=1, n-1

CALL MPI_ISEND(outval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_REQUEST_FREE(req, ierr)
CALL MPI_IRECV(inval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)

END DO
CALL MPI_ISEND(outval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)

END IF

3.7.4 Semantics of Nonblocking Communications

The semantics of nonblocking communication is defined by suitably extending the definitions
in Section 3.5.

Order Nonblocking communication operations are ordered according to the execution order
of the calls that initiate the communication. The non-overtaking requirement of Section 3.5
is extended to nonblocking communication, with this definition of order being used.

Example 3.14 Message ordering for nonblocking operations.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (RANK.EQ.0) THEN

CALL MPI_ISEND(a, 1, MPI_REAL, 1, 0, comm, r1, ierr)
CALL MPI_ISEND(b, 1, MPI_REAL, 1, 0, comm, r2, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_IRECV(a, 1, MPI_REAL, 0, MPI_ANY_TAG, comm, r1, ierr)
CALL MPI_IRECV(b, 1, MPI_REAL, 0, 0, comm, r2, ierr)

END IF
CALL MPI_WAIT(r1, status, ierr)
CALL MPI_WAIT(r2, status, ierr)

The first send of process zero will match the first receive of process one, even if both messages
are sent before process one executes either receive.
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Progress A call to MPI_WAIT that completes a receive will eventually terminate and return
if a matching send has been started, unless the send is satisfied by another receive. In
particular, if the matching send is nonblocking, then the receive should complete even if no
call is executed by the sender to complete the send. Similarly, a call to MPI_WAIT that
completes a send will eventually return if a matching receive has been started, unless the
receive is satisfied by another send, and even if no call is executed to complete the receive.

Example 3.15 An illustration of progress semantics.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (RANK.EQ.0) THEN

CALL MPI_SSEND(a, 1, MPI_REAL, 1, 0, comm, ierr)
CALL MPI_SEND(b, 1, MPI_REAL, 1, 1, comm, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_IRECV(a, 1, MPI_REAL, 0, 0, comm, r, ierr)
CALL MPI_RECV(b, 1, MPI_REAL, 0, 1, comm, status, ierr)
CALL MPI_WAIT(r, status, ierr)

END IF

This code should not deadlock in a correct MPI implementation. The first synchronous
send of process zero must complete after process one posts the matching (nonblocking)
receive even if process one has not yet reached the completing wait call. Thus, process zero
will continue and execute the second send, allowing process one to complete execution.

If an MPI_TEST that completes a receive is repeatedly called with the same arguments,
and a matching send has been started, then the call will eventually return flag = true, unless
the send is satisfied by another receive. If an MPI_TEST that completes a send is repeatedly
called with the same arguments, and a matching receive has been started, then the call will
eventually return flag = true, unless the receive is satisfied by another send.

3.7.5 Multiple Completions

It is convenient to be able to wait for the completion of any, some, or all the operations
in a list, rather than having to wait for a specific message. A call to MPI_WAITANY or
MPI_TESTANY can be used to wait for the completion of one out of several operations. A
call to MPI_WAITALL or MPI_TESTALL can be used to wait for all pending operations in
a list. A call to MPI_WAITSOME or MPI_TESTSOME can be used to complete all enabled
operations in a list.

MPI_WAITANY (count, array_of_requests, index, status)

IN count list length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT index index of handle for operation that completed (integer)

OUT status status object (Status)

int MPI_Waitany(int count, MPI_Request *array_of_requests, int *index,
MPI_Status *status)
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MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),
IERROR

{static int MPI::Request::Waitany(int count,
MPI::Request array_of_requests[], MPI::Status& status) (binding
deprecated, see Section 15.2) }

{static int MPI::Request::Waitany(int count,
MPI::Request array_of_requests[]) (binding deprecated, see
Section 15.2) }

Blocks until one of the operations associated with the active requests in the array has
completed. If more then one operation is enabled and can terminate, one is arbitrarily
chosen. Returns in index the index of that request in the array and returns in status the
status of the completing communication. (The array is indexed from zero in C, and from
one in Fortran.) If the request was allocated by a nonblocking communication operation,
then it is deallocated and the request handle is set to MPI_REQUEST_NULL.

The array_of_requests list may contain null or inactive handles. If the list contains no
active handles (list has length zero or all entries are null or inactive), then the call returns
immediately with index = MPI_UNDEFINED, and a empty status.

The execution of MPI_WAITANY(count, array_of_requests, index, status) has the same
effect as the execution of MPI_WAIT(&array_of_requests[i], status), where i is the value
returned by index (unless the value of index is MPI_UNDEFINED). MPI_WAITANY with an
array containing one active entry is equivalent to MPI_WAIT.

MPI_TESTANY(count, array_of_requests, index, flag, status)

IN count list length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT index index of operation that completed, or
MPI_UNDEFINED if none completed (integer)

OUT flag true if one of the operations is complete (logical)

OUT status status object (Status)

int MPI_Testany(int count, MPI_Request *array_of_requests, int *index,
int *flag, MPI_Status *status)

MPI_TESTANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),
IERROR

{static bool MPI::Request::Testany(int count,
MPI::Request array_of_requests[], int& index,
MPI::Status& status) (binding deprecated, see Section 15.2) }

{static bool MPI::Request::Testany(int count,
MPI::Request array_of_requests[], int& index) (binding
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3.7. NONBLOCKING COMMUNICATION 59

deprecated, see Section 15.2) }

Tests for completion of either one or none of the operations associated with active
handles. In the former case, it returns flag = true, returns in index the index of this request
in the array, and returns in status the status of that operation; if the request was allocated
by a nonblocking communication call then the request is deallocated and the handle is set
to MPI_REQUEST_NULL. (The array is indexed from zero in C, and from one in Fortran.)
In the latter case (no operation completed), it returns flag = false, returns a value of
MPI_UNDEFINED in index and status is undefined.

The array may contain null or inactive handles. If the array contains no active handles
then the call returns immediately with flag = true, index = MPI_UNDEFINED, and an empty
status.

If the array of requests contains active handles then the execution of
MPI_TESTANY(count, array_of_requests, index, status) has the same effect as the execution
of MPI_TEST( &array_of_requests[i], flag, status), for i=0, 1 ,..., count-1, in some arbitrary
order, until one call returns flag = true, or all fail. In the former case, index is set to the
last value of i, and in the latter case, it is set to MPI_UNDEFINED. MPI_TESTANY with an
array containing one active entry is equivalent to MPI_TEST.

MPI_WAITALL( count, array_of_requests, array_of_statuses)

IN count lists length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT array_of_statuses array of status objects (array of Status)

int MPI_Waitall(int count, MPI_Request *array_of_requests,
MPI_Status *array_of_statuses)

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*)
INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

{static void MPI::Request::Waitall(int count,
MPI::Request array_of_requests[],
MPI::Status array_of_statuses[]) (binding deprecated, see
Section 15.2) }

{static void MPI::Request::Waitall(int count,
MPI::Request array_of_requests[]) (binding deprecated, see
Section 15.2) }

Blocks until all communication operations associated with active handles in the list
complete, and return the status of all these operations (this includes the case where no
handle in the list is active). Both arrays have the same number of valid entries. The i-th
entry in array_of_statuses is set to the return status of the i-th operation. Requests that were
created by nonblocking communication operations are deallocated and the corresponding
handles in the array are set to MPI_REQUEST_NULL. The list may contain null or inactive
handles. The call sets to empty the status of each such entry.
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The error-free execution of MPI_WAITALL(count, array_of_requests, array_of_statuses)
has the same effect as the execution of
MPI_WAIT(&array_of_request[i], &array_of_statuses[i]), for i=0 ,..., count-1, in some arbi-
trary order. MPI_WAITALL with an array of length one is equivalent to MPI_WAIT.

When one or more of the communications completed by a call to MPI_WAITALL fail,
it is desireable to return specific information on each communication. The function
MPI_WAITALL will return in such case the error code MPI_ERR_IN_STATUS and will set the
error field of each status to a specific error code. This code will be MPI_SUCCESS, if the
specific communication completed; it will be another specific error code, if it failed; or it can
be MPI_ERR_PENDING if it has neither failed nor completed. The function MPI_WAITALL
will return MPI_SUCCESS if no request had an error, or will return another error code if it
failed for other reasons (such as invalid arguments). In such cases, it will not update the
error fields of the statuses.

Rationale. This design streamlines error handling in the application. The application
code need only test the (single) function result to determine if an error has occurred. It
needs to check each individual status only when an error occurred. (End of rationale.)

MPI_TESTALL(count, array_of_requests, flag, array_of_statuses)

IN count lists length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT flag (logical)

OUT array_of_statuses array of status objects (array of Status)

int MPI_Testall(int count, MPI_Request *array_of_requests, int *flag,
MPI_Status *array_of_statuses)

MPI_TESTALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY_OF_REQUESTS(*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

{static bool MPI::Request::Testall(int count,
MPI::Request array_of_requests[],
MPI::Status array_of_statuses[]) (binding deprecated, see
Section 15.2) }

{static bool MPI::Request::Testall(int count,
MPI::Request array_of_requests[]) (binding deprecated, see
Section 15.2) }

Returns flag = true if all communications associated with active handles in the array
have completed (this includes the case where no handle in the list is active). In this case,
each status entry that corresponds to an active handle request is set to the status of the
corresponding communication; if the request was allocated by a nonblocking communication
call then it is deallocated, and the handle is set to MPI_REQUEST_NULL. Each status entry
that corresponds to a null or inactive handle is set to empty.
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3.7. NONBLOCKING COMMUNICATION 61

Otherwise, flag = false is returned, no request is modified and the values of the status
entries are undefined. This is a local operation.

Errors that occurred during the execution of MPI_TESTALL are handled as errors in
MPI_WAITALL.

MPI_WAITSOME(incount, array_of_requests, outcount, array_of_indices, array_of_statuses)

IN incount length of array_of_requests (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT outcount number of completed requests (integer)

OUT array_of_indices array of indices of operations that completed (array of
integers)

OUT array_of_statuses array of status objects for operations that completed
(array of Status)

int MPI_Waitsome(int incount, MPI_Request *array_of_requests,
int *outcount, int *array_of_indices,
MPI_Status *array_of_statuses)

MPI_WAITSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
ARRAY_OF_STATUSES, IERROR)

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

{static int MPI::Request::Waitsome(int incount,
MPI::Request array_of_requests[], int array_of_indices[],
MPI::Status array_of_statuses[]) (binding deprecated, see
Section 15.2) }

{static int MPI::Request::Waitsome(int incount,
MPI::Request array_of_requests[], int array_of_indices[])
(binding deprecated, see Section 15.2) }

Waits until at least one of the operations associated with active handles in the list have
completed. Returns in outcount the number of requests from the list array_of_requests that
have completed. Returns in the first outcount locations of the array array_of_indices the
indices of these operations (index within the array array_of_requests; the array is indexed
from zero in C and from one in Fortran). Returns in the first outcount locations of the array
array_of_status the status for these completed operations. If a request that completed was
allocated by a nonblocking communication call, then it is deallocated, and the associated
handle is set to MPI_REQUEST_NULL.

If the list contains no active handles, then the call returns immediately with outcount
= MPI_UNDEFINED.

When one or more of the communications completed by MPI_WAITSOME fails, then
it is desirable to return specific information on each communication. The arguments
outcount, array_of_indices and array_of_statuses will be adjusted to indicate completion of
all communications that have succeeded or failed. The call will return the error code
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62 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_ERR_IN_STATUS and the error field of each status returned will be set to indicate
success or to indicate the specific error that occurred. The call will return MPI_SUCCESS

if no request resulted in an error, and will return another error code if it failed for other
reasons (such as invalid arguments). In such cases, it will not update the error fields of the
statuses.

MPI_TESTSOME(incount, array_of_requests, outcount, array_of_indices, array_of_statuses)

IN incount length of array_of_requests (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT outcount number of completed requests (integer)

OUT array_of_indices array of indices of operations that completed (array of
integers)

OUT array_of_statuses array of status objects for operations that completed
(array of Status)

int MPI_Testsome(int incount, MPI_Request *array_of_requests,
int *outcount, int *array_of_indices,
MPI_Status *array_of_statuses)

MPI_TESTSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
ARRAY_OF_STATUSES, IERROR)

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

{static int MPI::Request::Testsome(int incount,
MPI::Request array_of_requests[], int array_of_indices[],
MPI::Status array_of_statuses[]) (binding deprecated, see
Section 15.2) }

{static int MPI::Request::Testsome(int incount,
MPI::Request array_of_requests[], int array_of_indices[])
(binding deprecated, see Section 15.2) }

Behaves like MPI_WAITSOME, except that it returns immediately. If no operation has
completed it returns outcount = 0. If there is no active handle in the list it returns outcount
= MPI_UNDEFINED.

MPI_TESTSOME is a local operation, which returns immediately, whereas
MPI_WAITSOME will block until a communication completes, if it was passed a list that
contains at least one active handle. Both calls fulfill a fairness requirement: If a request for
a receive repeatedly appears in a list of requests passed to MPI_WAITSOME or
MPI_TESTSOME, and a matching send has been posted, then the receive will eventually
succeed, unless the send is satisfied by another receive; and similarly for send requests.

Errors that occur during the execution of MPI_TESTSOME are handled as for
MPI_WAITSOME.

Advice to users. The use of MPI_TESTSOME is likely to be more efficient than the use
of MPI_TESTANY. The former returns information on all completed communications,
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3.7. NONBLOCKING COMMUNICATION 63

with the latter, a new call is required for each communication that completes.

A server with multiple clients can use MPI_WAITSOME so as not to starve any client.
Clients send messages to the server with service requests. The server calls
MPI_WAITSOME with one receive request for each client, and then handles all receives
that completed. If a call to MPI_WAITANY is used instead, then one client could starve
while requests from another client always sneak in first. (End of advice to users.)

Advice to implementors. MPI_TESTSOME should complete as many pending com-
munications as possible. (End of advice to implementors.)

Example 3.16 Client-server code (starvation can occur).

CALL MPI_COMM_SIZE(comm, size, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank .GT. 0) THEN ! client code

DO WHILE(.TRUE.)
CALL MPI_ISEND(a, n, MPI_REAL, 0, tag, comm, request, ierr)
CALL MPI_WAIT(request, status, ierr)

END DO
ELSE ! rank=0 -- server code

DO i=1, size-1
CALL MPI_IRECV(a(1,i), n, MPI_REAL, i, tag,

comm, request_list(i), ierr)
END DO
DO WHILE(.TRUE.)

CALL MPI_WAITANY(size-1, request_list, index, status, ierr)
CALL DO_SERVICE(a(1,index)) ! handle one message
CALL MPI_IRECV(a(1, index), n, MPI_REAL, index, tag,

comm, request_list(index), ierr)
END DO

END IF

Example 3.17 Same code, using MPI_WAITSOME.

CALL MPI_COMM_SIZE(comm, size, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank .GT. 0) THEN ! client code

DO WHILE(.TRUE.)
CALL MPI_ISEND(a, n, MPI_REAL, 0, tag, comm, request, ierr)
CALL MPI_WAIT(request, status, ierr)

END DO
ELSE ! rank=0 -- server code

DO i=1, size-1
CALL MPI_IRECV(a(1,i), n, MPI_REAL, i, tag,

comm, request_list(i), ierr)
END DO
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DO WHILE(.TRUE.)
CALL MPI_WAITSOME(size, request_list, numdone,

indices, statuses, ierr)
DO i=1, numdone

CALL DO_SERVICE(a(1, indices(i)))
CALL MPI_IRECV(a(1, indices(i)), n, MPI_REAL, 0, tag,

comm, request_list(indices(i)), ierr)
END DO

END DO
END IF

3.7.6 Non-destructive Test of status

This call is useful for accessing the information associated with a request, without freeing
the request (in case the user is expected to access it later). It allows one to layer libraries
more conveniently, since multiple layers of software may access the same completed request
and extract from it the status information.

MPI_REQUEST_GET_STATUS( request, flag, status )

IN request request (handle)

OUT flag boolean flag, same as from MPI_TEST (logical)

OUT status MPI_STATUS object if flag is true (Status)

int MPI_Request_get_status(MPI_Request request, int *flag,
MPI_Status *status)

MPI_REQUEST_GET_STATUS( REQUEST, FLAG, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

{bool MPI::Request::Get_status(MPI::Status& status) const (binding deprecated,
see Section 15.2) }

{bool MPI::Request::Get_status() const (binding deprecated, see Section 15.2) }

Sets flag=true if the operation is complete, and, if so, returns in status the request
status. However, unlike test or wait, it does not deallocate or inactivate the request; a
subsequent call to test, wait or free should be executed with that request. It sets flag=false
if the operation is not complete.

One is allowed to call MPI_REQUEST_GET_STATUS with a null or inactive request
argument. In such a case the operation returns with flag=true and empty status.

3.8 Probe and Cancel

The MPI_PROBE and MPI_IPROBE operations allow incoming messages to be checked for,
without actually receiving them. The user can then decide how to receive them, based on
the information returned by the probe (basically, the information returned by status). In
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3.8. PROBE AND CANCEL 65

particular, the user may allocate memory for the receive buffer, according to the length of
the probed message.

The MPI_CANCEL operation allows pending communications to be canceled. This is
required for cleanup. Posting a send or a receive ties up user resources (send or receive
buffers), and a cancel may be needed to free these resources gracefully.

MPI_IPROBE(source, tag, comm, flag, status)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT flag (logical)

OUT status status object (Status)

int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
MPI_Status *status)

MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

{bool MPI::Comm::Iprobe(int source, int tag, MPI::Status& status) const
(binding deprecated, see Section 15.2) }

{bool MPI::Comm::Iprobe(int source, int tag) const (binding deprecated, see
Section 15.2) }

MPI_IPROBE(source, tag, comm, flag, status) returns flag = true if there is a message
that can be received and that matches the pattern specified by the arguments source, tag,
and comm. The call matches the same message that would have been received by a call to
MPI_RECV(..., source, tag, comm, status) executed at the same point in the program, and
returns in status the same value that would have been returned by MPI_RECV(). Otherwise,
the call returns flag = false, and leaves status undefined.

If MPI_IPROBE returns flag = true, then the content of the status object can be sub-
sequently accessed as described in Section 3.2.5 to find the source, tag and length of the
probed message.

A subsequent receive executed with the same communicator, and the source and tag
returned in status by MPI_IPROBE will receive the message that was matched by the probe,
if no other intervening receive occurs after the probe, and the send is not successfully
cancelled before the receive. If the receiving process is multi-threaded, it is the user’s
responsibility to ensure that the last condition holds.

The source argument of MPI_PROBE can be MPI_ANY_SOURCE, and the tag argument
can be MPI_ANY_TAG, so that one can probe for messages from an arbitrary source and/or
with an arbitrary tag. However, a specific communication context must be provided with
the comm argument.

It is not necessary to receive a message immediately after it has been probed for, and
the same message may be probed for several times before it is received.
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MPI_PROBE(source, tag, comm, status)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

{void MPI::Comm::Probe(int source, int tag, MPI::Status& status) const
(binding deprecated, see Section 15.2) }

{void MPI::Comm::Probe(int source, int tag) const (binding deprecated, see
Section 15.2) }

MPI_PROBE behaves like MPI_IPROBE except that it is a blocking call that returns
only after a matching message has been found.

The MPI implementation of MPI_PROBE and MPI_IPROBE needs to guarantee progress:
if a call to MPI_PROBE has been issued by a process, and a send that matches the probe
has been initiated by some process, then the call to MPI_PROBE will return, unless the
message is received by another concurrent receive operation (that is executed by another
thread at the probing process). Similarly, if a process busy waits with MPI_IPROBE and
a matching message has been issued, then the call to MPI_IPROBE will eventually return
flag = true unless the message is received by another concurrent receive operation.

Example 3.18 Use blocking probe to wait for an incoming message.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)
ELSE IF (rank.EQ.2) THEN

DO i=1, 2
CALL MPI_PROBE(MPI_ANY_SOURCE, 0,

comm, status, ierr)
IF (status(MPI_SOURCE) .EQ. 0) THEN

100 CALL MPI_RECV(i, 1, MPI_INTEGER, 0, 0, comm, status, ierr)
ELSE

200 CALL MPI_RECV(x, 1, MPI_REAL, 1, 0, comm, status, ierr)
END IF

END DO
END IF

Each message is received with the right type.

Example 3.19 A similar program to the previous example, but now it has a problem.
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CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)
ELSE IF (rank.EQ.2) THEN

DO i=1, 2
CALL MPI_PROBE(MPI_ANY_SOURCE, 0,

comm, status, ierr)
IF (status(MPI_SOURCE) .EQ. 0) THEN

100 CALL MPI_RECV(i, 1, MPI_INTEGER, MPI_ANY_SOURCE,
0, comm, status, ierr)

ELSE
200 CALL MPI_RECV(x, 1, MPI_REAL, MPI_ANY_SOURCE,

0, comm, status, ierr)
END IF

END DO
END IF

We slightly modified Example 3.18, using MPI_ANY_SOURCE as the source argument in
the two receive calls in statements labeled 100 and 200. The program is now incorrect: the
receive operation may receive a message that is distinct from the message probed by the
preceding call to MPI_PROBE.

Advice to implementors. A call to MPI_PROBE(source, tag, comm, status) will match
the message that would have been received by a call to MPI_RECV(..., source, tag,
comm, status) executed at the same point. Suppose that this message has source s,
tag t and communicator c. If the tag argument in the probe call has value
MPI_ANY_TAG then the message probed will be the earliest pending message from
source s with communicator c and any tag; in any case, the message probed will be
the earliest pending message from source s with tag t and communicator c (this is the
message that would have been received, so as to preserve message order). This message
continues as the earliest pending message from source s with tag t and communicator
c, until it is received. A receive operation subsequent to the probe that uses the
same communicator as the probe and uses the tag and source values returned by
the probe, must receive this message, unless it has already been received by another
receive operation. (End of advice to implementors.)

MPI_CANCEL(request)

IN request communication request (handle)

int MPI_Cancel(MPI_Request *request)

MPI_CANCEL(REQUEST, IERROR)
INTEGER REQUEST, IERROR

{void MPI::Request::Cancel() const (binding deprecated, see Section 15.2) }
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68 CHAPTER 3. POINT-TO-POINT COMMUNICATION

A call to MPI_CANCEL marks for cancellation a pending, nonblocking communication
operation (send or receive). The cancel call is local. It returns immediately, possibly before
the communication is actually canceled. It is still necessary to complete a communication
that has been marked for cancellation, using a call to MPI_REQUEST_FREE, MPI_WAIT or
MPI_TEST (or any of the derived operations).

If a communication is marked for cancellation, then a MPI_WAIT call for that com-
munication is guaranteed to return, irrespective of the activities of other processes (i.e.,
MPI_WAIT behaves as a local function); similarly if MPI_TEST is repeatedly called in a
busy wait loop for a canceled communication, then MPI_TEST will eventually be success-
ful.

MPI_CANCEL can be used to cancel a communication that uses a persistent request (see
Section 3.9), in the same way it is used for nonpersistent requests. A successful cancellation
cancels the active communication, but not the request itself. After the call to MPI_CANCEL
and the subsequent call to MPI_WAIT or MPI_TEST, the request becomes inactive and can
be activated for a new communication.

The successful cancellation of a buffered send frees the buffer space occupied by the
pending message.

Either the cancellation succeeds, or the communication succeeds, but not both. If a
send is marked for cancellation, then it must be the case that either the send completes
normally, in which case the message sent was received at the destination process, or that
the send is successfully canceled, in which case no part of the message was received at the
destination. Then, any matching receive has to be satisfied by another send. If a receive is
marked for cancellation, then it must be the case that either the receive completes normally,
or that the receive is successfully canceled, in which case no part of the receive buffer is
altered. Then, any matching send has to be satisfied by another receive.

If the operation has been canceled, then information to that effect will be returned in
the status argument of the operation that completes the communication.

Rationale. Although the IN request handle parameter should not need to be passed
by reference, the C binding has listed the argument type as MPI_Request* since MPI-
1.0. This function signature therefore cannot be changed without breaking existing
MPI applications. (End of rationale.)

MPI_TEST_CANCELLED(status, flag)

IN status status object (Status)

OUT flag (logical)

int MPI_Test_cancelled(MPI_Status *status, int *flag)

MPI_TEST_CANCELLED(STATUS, FLAG, IERROR)
LOGICAL FLAG
INTEGER STATUS(MPI_STATUS_SIZE), IERROR

{bool MPI::Status::Is_cancelled() const (binding deprecated, see Section 15.2) }

Returns flag = true if the communication associated with the status object was canceled
successfully. In such a case, all other fields of status (such as count or tag) are undefined.
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3.9. PERSISTENT COMMUNICATION REQUESTS 69

Returns flag = false, otherwise. If a receive operation might be canceled then one should
call MPI_TEST_CANCELLED first, to check whether the operation was canceled, before
checking on the other fields of the return status.

Advice to users. Cancel can be an expensive operation that should be used only
exceptionally. (End of advice to users.)

Advice to implementors. If a send operation uses an “eager” protocol (data is
transferred to the receiver before a matching receive is posted), then the cancellation
of this send may require communication with the intended receiver in order to free
allocated buffers. On some systems this may require an interrupt to the intended
receiver. Note that, while communication may be needed to implement
MPI_CANCEL, this is still a local operation, since its completion does not depend on
the code executed by other processes. If processing is required on another process,
this should be transparent to the application (hence the need for an interrupt and an
interrupt handler). (End of advice to implementors.)

3.9 Persistent Communication Requests

Often a communication with the same argument list is repeatedly executed within the in-
ner loop of a parallel computation. In such a situation, it may be possible to optimize
the communication by binding the list of communication arguments to a persistent com-
munication request once and, then, repeatedly using the request to initiate and complete
messages. The persistent request thus created can be thought of as a communication port or
a “half-channel.” It does not provide the full functionality of a conventional channel, since
there is no binding of the send port to the receive port. This construct allows reduction
of the overhead for communication between the process and communication controller, but
not of the overhead for communication between one communication controller and another.
It is not necessary that messages sent with a persistent request be received by a receive
operation using a persistent request, or vice versa.

A persistent communication request is created using one of the five following calls.
These calls involve no communication.

MPI_SEND_INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (non-negative integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Send_init(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



70 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

{MPI::Prequest MPI::Comm::Send_init(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const (binding
deprecated, see Section 15.2) }

Creates a persistent communication request for a standard mode send operation, and
binds to it all the arguments of a send operation.

MPI_BSEND_INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (non-negative integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Bsend_init(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_BSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

{MPI::Prequest MPI::Comm::Bsend_init(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const (binding
deprecated, see Section 15.2) }

Creates a persistent communication request for a buffered mode send.

MPI_SSEND_INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (non-negative integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ssend_init(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)
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MPI_SSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

{MPI::Prequest MPI::Comm::Ssend_init(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const (binding
deprecated, see Section 15.2) }

Creates a persistent communication object for a synchronous mode send operation.

MPI_RSEND_INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (non-negative integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Rsend_init(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_RSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

{MPI::Prequest MPI::Comm::Rsend_init(const void* buf, int count, const
MPI::Datatype& datatype, int dest, int tag) const (binding
deprecated, see Section 15.2) }

Creates a persistent communication object for a ready mode send operation.

MPI_RECV_INIT(buf, count, datatype, source, tag, comm, request)

OUT buf initial address of receive buffer (choice)

IN count number of elements received (non-negative integer)

IN datatype type of each element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Recv_init(void* buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)
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72 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

{MPI::Prequest MPI::Comm::Recv_init(void* buf, int count, const
MPI::Datatype& datatype, int source, int tag) const (binding
deprecated, see Section 15.2) }

Creates a persistent communication request for a receive operation. The argument buf
is marked as OUT because the user gives permission to write on the receive buffer by passing
the argument to MPI_RECV_INIT.

A persistent communication request is inactive after it was created — no active com-
munication is attached to the request.

A communication (send or receive) that uses a persistent request is initiated by the
function MPI_START.

MPI_START(request)

INOUT request communication request (handle)

int MPI_Start(MPI_Request *request)

MPI_START(REQUEST, IERROR)
INTEGER REQUEST, IERROR

{void MPI::Prequest::Start() (binding deprecated, see Section 15.2) }

The argument, request, is a handle returned by one of the previous five calls. The
associated request should be inactive. The request becomes active once the call is made.

If the request is for a send with ready mode, then a matching receive should be posted
before the call is made. The communication buffer should not be modified after the call,
and until the operation completes.

The call is local, with similar semantics to the nonblocking communication operations
described in Section 3.7. That is, a call to MPI_START with a request created by
MPI_SEND_INIT starts a communication in the same manner as a call to MPI_ISEND; a
call to MPI_START with a request created by MPI_BSEND_INIT starts a communication
in the same manner as a call to MPI_IBSEND; and so on.

MPI_STARTALL(count, array_of_requests)

IN count list length (non-negative integer)

INOUT array_of_requests array of requests (array of handle)

int MPI_Startall(int count, MPI_Request *array_of_requests)

MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR

{static void MPI::Prequest::Startall(int count,
MPI::Prequest array_of_requests[]) (binding deprecated, see
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3.10. SEND-RECEIVE 73

Section 15.2) }

Start all communications associated with requests in array_of_requests. A call to
MPI_STARTALL(count, array_of_requests) has the same effect as calls to
MPI_START (&array_of_requests[i]), executed for i=0 ,..., count-1, in some arbitrary order.

A communication started with a call to MPI_START or MPI_STARTALL is completed
by a call to MPI_WAIT, MPI_TEST, or one of the derived functions described in Sec-
tion 3.7.5. The request becomes inactive after successful completion of such call. The re-
quest is not deallocated and it can be activated anew by an MPI_START or MPI_STARTALL
call.

A persistent request is deallocated by a call to MPI_REQUEST_FREE (Section 3.7.3).
The call to MPI_REQUEST_FREE can occur at any point in the program after the per-

sistent request was created. However, the request will be deallocated only after it becomes
inactive. Active receive requests should not be freed. Otherwise, it will not be possible
to check that the receive has completed. It is preferable, in general, to free requests when
they are inactive. If this rule is followed, then the functions described in this section will
be invoked in a sequence of the form,

Create (Start Complete)∗ Free

where ∗ indicates zero or more repetitions. If the same communication object is used in
several concurrent threads, it is the user’s responsibility to coordinate calls so that the
correct sequence is obeyed.

A send operation initiated with MPI_START can be matched with any receive operation
and, likewise, a receive operation initiated with MPI_START can receive messages generated
by any send operation.

Advice to users. To prevent problems with the argument copying and register opti-
mization done by Fortran compilers, please note the hints in subsections “Problems
Due to Data Copying and Sequence Association,” and “A Problem with Register
Optimization” in Section 16.2.2 on pages 482 and 485. (End of advice to users.)

3.10 Send-Receive

The send-receive operations combine in one call the sending of a message to one desti-
nation and the receiving of another message, from another process. The two (source and
destination) are possibly the same. A send-receive operation is very useful for executing
a shift operation across a chain of processes. If blocking sends and receives are used for
such a shift, then one needs to order the sends and receives correctly (for example, even
processes send, then receive, odd processes receive first, then send) so as to prevent cyclic
dependencies that may lead to deadlock. When a send-receive operation is used, the com-
munication subsystem takes care of these issues. The send-receive operation can be used
in conjunction with the functions described in Chapter 7 in order to perform shifts on var-
ious logical topologies. Also, a send-receive operation is useful for implementing remote
procedure calls.

A message sent by a send-receive operation can be received by a regular receive oper-
ation or probed by a probe operation; a send-receive operation can receive a message sent
by a regular send operation.
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74 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount, recvtype,
source, recvtag, comm, status)

IN sendbuf initial address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype type of elements in send buffer (handle)

IN dest rank of destination (integer)

IN sendtag send tag (integer)

OUT recvbuf initial address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-
teger)

IN recvtype type of elements in receive buffer (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN recvtag receive tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype,
int dest, int sendtag, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,
RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,
SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

{void MPI::Comm::Sendrecv(const void *sendbuf, int sendcount, const
MPI::Datatype& sendtype, int dest, int sendtag, void *recvbuf,
int recvcount, const MPI::Datatype& recvtype, int source,
int recvtag, MPI::Status& status) const (binding deprecated, see
Section 15.2) }

{void MPI::Comm::Sendrecv(const void *sendbuf, int sendcount, const
MPI::Datatype& sendtype, int dest, int sendtag, void *recvbuf,
int recvcount, const MPI::Datatype& recvtype, int source,
int recvtag) const (binding deprecated, see Section 15.2) }

Execute a blocking send and receive operation. Both send and receive use the same
communicator, but possibly different tags. The send buffer and receive buffers must be
disjoint, and may have different lengths and datatypes.

The semantics of a send-receive operation is what would be obtained if the caller forked
two concurrent threads, one to execute the send, and one to execute the receive, followed
by a join of these two threads.
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MPI_SENDRECV_REPLACE(buf, count, datatype, dest, sendtag, source, recvtag, comm, sta-
tus)

INOUT buf initial address of send and receive buffer (choice)

IN count number of elements in send and receive buffer (non-
negative integer)

IN datatype type of elements in send and receive buffer (handle)

IN dest rank of destination (integer)

IN sendtag send message tag (integer)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN recvtag receive message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI_Sendrecv_replace(void* buf, int count, MPI_Datatype datatype,
int dest, int sendtag, int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

MPI_SENDRECV_REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,
COMM, STATUS, IERROR)

<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,
STATUS(MPI_STATUS_SIZE), IERROR

{void MPI::Comm::Sendrecv_replace(void* buf, int count, const
MPI::Datatype& datatype, int dest, int sendtag, int source,
int recvtag, MPI::Status& status) const (binding deprecated, see
Section 15.2) }

{void MPI::Comm::Sendrecv_replace(void* buf, int count, const
MPI::Datatype& datatype, int dest, int sendtag, int source,
int recvtag) const (binding deprecated, see Section 15.2) }

Execute a blocking send and receive. The same buffer is used both for the send and
for the receive, so that the message sent is replaced by the message received.

Advice to implementors. Additional intermediate buffering is needed for the “replace”
variant. (End of advice to implementors.)

3.11 Null Processes

In many instances, it is convenient to specify a “dummy” source or destination for commu-
nication. This simplifies the code that is needed for dealing with boundaries, for example,
in the case of a non-circular shift done with calls to send-receive.

The special value MPI_PROC_NULL can be used instead of a rank wherever a source or a
destination argument is required in a call. A communication with process MPI_PROC_NULL

has no effect. A send to MPI_PROC_NULL succeeds and returns as soon as possible. A receive
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76 CHAPTER 3. POINT-TO-POINT COMMUNICATION

from MPI_PROC_NULL succeeds and returns as soon as possible with no modifications to the
receive buffer. When a receive with source = MPI_PROC_NULL is executed then the status
object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG and count = 0.
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Chapter 4

Datatypes

Basic datatypes were introduced in Section 3.2.2 Message Data on page 27 and in Section 3.3
Data Type Matching and Data Conversion on page 34. In this chapter, this model is extended
to describe any data layout. We consider general datatypes that allow one to transfer
efficiently heterogeneous and noncontiguous data. We conclude with the description of calls
for explicit packing and unpacking of messages.

4.1 Derived Datatypes

Up to here, all point to point communication have involved only buffers containing a se-
quence of identical basic datatypes. This is too constraining on two accounts. One often
wants to pass messages that contain values with different datatypes (e.g., an integer count,
followed by a sequence of real numbers); and one often wants to send noncontiguous data
(e.g., a sub-block of a matrix). One solution is to pack noncontiguous data into a contiguous
buffer at the sender site and unpack it at the receiver site. This has the disadvantage of
requiring additional memory-to-memory copy operations at both sites, even when the com-
munication subsystem has scatter-gather capabilities. Instead, MPI provides mechanisms
to specify more general, mixed, and noncontiguous communication buffers. It is up to the
implementation to decide whether data should be first packed in a contiguous buffer before
being transmitted, or whether it can be collected directly from where it resides.

The general mechanisms provided here allow one to transfer directly, without copying,
objects of various shape and size. It is not assumed that the MPI library is cognizant of
the objects declared in the host language. Thus, if one wants to transfer a structure, or an
array section, it will be necessary to provide in MPI a definition of a communication buffer
that mimics the definition of the structure or array section in question. These facilities can
be used by library designers to define communication functions that can transfer objects
defined in the host language — by decoding their definitions as available in a symbol table
or a dope vector. Such higher-level communication functions are not part of MPI.

More general communication buffers are specified by replacing the basic datatypes that
have been used so far with derived datatypes that are constructed from basic datatypes using
the constructors described in this section. These methods of constructing derived datatypes
can be applied recursively.

A general datatype is an opaque object that specifies two things:

• A sequence of basic datatypes
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78 CHAPTER 4. DATATYPES

• A sequence of integer (byte) displacements

The displacements are not required to be positive, distinct, or in increasing order.
Therefore, the order of items need not coincide with their order in store, and an item may
appear more than once. We call such a pair of sequences (or sequence of pairs) a type
map. The sequence of basic datatypes (displacements ignored) is the type signature of
the datatype.

Let

Typemap = {(type0, disp0), ..., (typen−1, dispn−1)},

be such a type map, where typei are basic types, and dispi are displacements. Let

Typesig = {type0, ..., typen−1}

be the associated type signature. This type map, together with a base address buf, specifies
a communication buffer: the communication buffer that consists of n entries, where the
i-th entry is at address buf + dispi and has type typei. A message assembled from such a
communication buffer will consist of n values, of the types defined by Typesig.

Most datatype constructors have replication count or block length arguments. Allowed
values are non-negative integers. If the value is zero, no elements are generated in the type
map and there is no effect on datatype bounds or extent.

We can use a handle to a general datatype as an argument in a send or receive operation,
instead of a basic datatype argument. The operation MPI_SEND(buf, 1, datatype,...) will use
the send buffer defined by the base address buf and the general datatype associated with
datatype; it will generate a message with the type signature determined by the datatype
argument. MPI_RECV(buf, 1, datatype,...) will use the receive buffer defined by the base
address buf and the general datatype associated with datatype.

General datatypes can be used in all send and receive operations. We discuss, in
Section 4.1.11, the case where the second argument count has value > 1.

The basic datatypes presented in Section 3.2.2 are particular cases of a general datatype,
and are predefined. Thus, MPI_INT is a predefined handle to a datatype with type map
{(int, 0)}, with one entry of type int and displacement zero. The other basic datatypes are
similar.

The extent of a datatype is defined to be the span from the first byte to the last byte
occupied by entries in this datatype, rounded up to satisfy alignment requirements. That
is, if

Typemap = {(type0, disp0), ..., (typen−1, dispn−1)},

then

lb(Typemap) = min
j
dispj ,

ub(Typemap) = max
j

(dispj + sizeof(typej)) + ε, and

extent(Typemap) = ub(Typemap)− lb(Typemap). (4.1)

If typei requires alignment to a byte address that is a multiple of ki, then ε is the least
non-negative increment needed to round extent(Typemap) to the next multiple of maxi ki.
The complete definition of extent is given on page 96.
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4.1. DERIVED DATATYPES 79

Example 4.1 Assume that Type = {(double, 0), (char, 8)} (a double at displacement zero,
followed by a char at displacement eight). Assume, furthermore, that doubles have to be
strictly aligned at addresses that are multiples of eight. Then, the extent of this datatype is
16 (9 rounded to the next multiple of 8). A datatype that consists of a character immediately
followed by a double will also have an extent of 16.

Rationale. The definition of extent is motivated by the assumption that the amount
of padding added at the end of each structure in an array of structures is the least
needed to fulfill alignment constraints. More explicit control of the extent is provided
in Section 4.1.6. Such explicit control is needed in cases where the assumption does
not hold, for example, where union types are used. (End of rationale.)

4.1.1 Type Constructors with Explicit Addresses

In Fortran, the functions MPI_TYPE_CREATE_HVECTOR, MPI_TYPE_CREATE_HINDEXED,
MPI_TYPE_CREATE_STRUCT, and MPI_GET_ADDRESS accept arguments of type
INTEGER(KIND=MPI_ADDRESS_KIND), wherever arguments of type MPI_Aint and MPI::Aint are
used in C and C++. On Fortran 77 systems that do not support the Fortran 90 KIND nota-
tion, and where addresses are 64 bits whereas default INTEGERs are 32 bits, these arguments
will be of type INTEGER*8.

4.1.2 Datatype Constructors

Contiguous The simplest datatype constructor is MPI_TYPE_CONTIGUOUS which allows
replication of a datatype into contiguous locations.

MPI_TYPE_CONTIGUOUS(count, oldtype, newtype)

IN count replication count (non-negative integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_contiguous(int count, MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

{MPI::Datatype MPI::Datatype::Create_contiguous(int count) const (binding
deprecated, see Section 15.2) }

newtype is the datatype obtained by concatenating count copies of
oldtype. Concatenation is defined using extent as the size of the concatenated copies.

Example 4.2 Let oldtype have type map {(double, 0), (char, 8)}, with extent 16, and let
count = 3. The type map of the datatype returned by newtype is

{(double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40)};

i.e., alternating double and char elements, with displacements 0, 8, 16, 24, 32, 40.
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80 CHAPTER 4. DATATYPES

In general, assume that the type map of oldtype is

{(type0, disp0), ..., (typen−1, dispn−1)},

with extent ex. Then newtype has a type map with count · n entries defined by:

{(type0, disp0), ..., (typen−1, dispn−1), (type0, disp0 + ex), ..., (typen−1, dispn−1 + ex),

..., (type0, disp0 + ex · (count− 1)), ..., (typen−1, dispn−1 + ex · (count− 1))}.

Vector The function MPI_TYPE_VECTOR is a more general constructor that allows repli-
cation of a datatype into locations that consist of equally spaced blocks. Each block is
obtained by concatenating the same number of copies of the old datatype. The spacing
between blocks is a multiple of the extent of the old datatype.

MPI_TYPE_VECTOR( count, blocklength, stride, oldtype, newtype)

IN count number of blocks (non-negative integer)

IN blocklength number of elements in each block (non-negative inte-
ger)

IN stride number of elements between start of each block (inte-
ger)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

{MPI::Datatype MPI::Datatype::Create_vector(int count, int blocklength,
int stride) const (binding deprecated, see Section 15.2) }

Example 4.3 Assume, again, that oldtype has type map {(double, 0), (char, 8)}, with extent
16. A call to MPI_TYPE_VECTOR( 2, 3, 4, oldtype, newtype) will create the datatype with
type map,

{(double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40),

(double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104)}.

That is, two blocks with three copies each of the old type, with a stride of 4 elements (4 · 16
bytes) between the blocks.
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4.1. DERIVED DATATYPES 81

Example 4.4 A call to MPI_TYPE_VECTOR(3, 1, -2, oldtype, newtype) will create the
datatype,

{(double, 0), (char, 8), (double,−32), (char,−24), (double,−64), (char,−56)}.

In general, assume that oldtype has type map,

{(type0, disp0), ..., (typen−1, dispn−1)},

with extent ex. Let bl be the blocklength. The newly created datatype has a type map with
count · bl · n entries:

{(type0, disp0), ..., (typen−1, dispn−1),

(type0, disp0 + ex), ..., (typen−1, dispn−1 + ex), ...,

(type0, disp0 + (bl− 1) · ex), ..., (typen−1, dispn−1 + (bl− 1) · ex),

(type0, disp0 + stride · ex), ..., (typen−1, dispn−1 + stride · ex), ...,

(type0, disp0 + (stride + bl− 1) · ex), ..., (typen−1, dispn−1 + (stride + bl− 1) · ex), ....,

(type0, disp0 + stride · (count− 1) · ex), ...,

(typen−1, dispn−1 + stride · (count− 1) · ex), ...,

(type0, disp0 + (stride · (count− 1) + bl− 1) · ex), ...,

(typen−1, dispn−1 + (stride · (count− 1) + bl− 1) · ex)}.

A call to MPI_TYPE_CONTIGUOUS(count, oldtype, newtype) is equivalent to a call to
MPI_TYPE_VECTOR(count, 1, 1, oldtype, newtype), or to a call to MPI_TYPE_VECTOR(1,
count, n, oldtype, newtype), n arbitrary.

Hvector The function MPI_TYPE_CREATE_HVECTOR is identical to
MPI_TYPE_VECTOR, except that stride is given in bytes, rather than in elements. The
use for both types of vector constructors is illustrated in Section 4.1.14. (H stands for
“heterogeneous”).

MPI_TYPE_CREATE_HVECTOR( count, blocklength, stride, oldtype, newtype)

IN count number of blocks (non-negative integer)

IN blocklength number of elements in each block (non-negative inte-
ger)

IN stride number of bytes between start of each block (integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)
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int MPI_Type_create_hvector(int count, int blocklength, MPI_Aint stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_TYPE_CREATE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE,
IERROR)

INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) STRIDE

{MPI::Datatype MPI::Datatype::Create_hvector(int count, int blocklength,
MPI::Aint stride) const (binding deprecated, see Section 15.2) }

This function replaces MPI_TYPE_HVECTOR, whose use is deprecated. See also Chap-
ter 15.

Assume that oldtype has type map,

{(type0, disp0), ..., (typen−1, dispn−1)},

with extent ex. Let bl be the blocklength. The newly created datatype has a type map with
count · bl · n entries:

{(type0, disp0), ..., (typen−1, dispn−1),

(type0, disp0 + ex), ..., (typen−1, dispn−1 + ex), ...,

(type0, disp0 + (bl− 1) · ex), ..., (typen−1, dispn−1 + (bl− 1) · ex),

(type0, disp0 + stride), ..., (typen−1, dispn−1 + stride), ...,

(type0, disp0 + stride + (bl− 1) · ex), ...,

(typen−1, dispn−1 + stride + (bl− 1) · ex), ....,

(type0, disp0 + stride · (count− 1)), ..., (typen−1, dispn−1 + stride · (count− 1)), ...,

(type0, disp0 + stride · (count− 1) + (bl− 1) · ex), ...,

(typen−1, dispn−1 + stride · (count− 1) + (bl− 1) · ex)}.

Indexed The function MPI_TYPE_INDEXED allows replication of an old datatype into a
sequence of blocks (each block is a concatenation of the old datatype), where each block
can contain a different number of copies and have a different displacement. All block
displacements are multiples of the old type extent.
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MPI_TYPE_INDEXED( count, array_of_blocklengths, array_of_displacements, oldtype, new-
type)

IN count number of blocks – also number of entries in
array_of_displacements and array_of_blocklengths (non-
negative integer)

IN array_of_blocklengths number of elements per block (array of non-negative
integers)

IN array_of_displacements displacement for each block, in multiples of oldtype

extent (array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_indexed(int count, int *array_of_blocklengths,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),
OLDTYPE, NEWTYPE, IERROR

{MPI::Datatype MPI::Datatype::Create_indexed(int count,
const int array_of_blocklengths[],
const int array_of_displacements[]) const (binding deprecated, see
Section 15.2) }

Example 4.5 Let oldtype have type map {(double, 0), (char, 8)}, with extent 16. Let B =
(3, 1) and let D = (4, 0). A call to MPI_TYPE_INDEXED(2, B, D, oldtype, newtype) returns
a datatype with type map,

{(double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104),

(double, 0), (char, 8)}.

That is, three copies of the old type starting at displacement 64, and one copy starting at
displacement 0.

In general, assume that oldtype has type map,

{(type0, disp0), ..., (typen−1, dispn−1)},

with extent ex. Let B be the array_of_blocklength argument and D be the
array_of_displacements argument. The newly created datatype has n ·

∑count−1
i=0 B[i] entries:

{(type0, disp0 + D[0] · ex), ..., (typen−1, dispn−1 + D[0] · ex), ...,

(type0, disp0 + (D[0] + B[0]− 1) · ex), ..., (typen−1, dispn−1 + (D[0] + B[0]− 1) · ex), ...,
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(type0, disp0 + D[count-1] · ex), ..., (typen−1, dispn−1 + D[count-1] · ex), ...,

(type0, disp0 + (D[count-1] + B[count-1]− 1) · ex), ...,

(typen−1, dispn−1 + (D[count-1] + B[count-1]− 1) · ex)}.

A call to MPI_TYPE_VECTOR(count, blocklength, stride, oldtype, newtype) is equivalent
to a call to MPI_TYPE_INDEXED(count, B, D, oldtype, newtype) where

D[j] = j · stride, j = 0, ..., count− 1,

and

B[j] = blocklength, j = 0, ..., count− 1.

Hindexed The function MPI_TYPE_CREATE_HINDEXED is identical to
MPI_TYPE_INDEXED, except that block displacements in array_of_displacements are spec-
ified in bytes, rather than in multiples of the oldtype extent.

MPI_TYPE_CREATE_HINDEXED( count, array_of_blocklengths, array_of_displacements, old-
type, newtype)

IN count number of blocks — also number of entries in
array_of_displacements and array_of_blocklengths (non-
negative integer)

IN array_of_blocklengths number of elements in each block (array of non-negative
integers)

IN array_of_displacements byte displacement of each block (array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_create_hindexed(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_TYPE_CREATE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS,
ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

{MPI::Datatype MPI::Datatype::Create_hindexed(int count,
const int array_of_blocklengths[],
const MPI::Aint array_of_displacements[]) const (binding
deprecated, see Section 15.2) }

This function replaces MPI_TYPE_HINDEXED, whose use is deprecated. See also Chap-
ter 15.
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Assume that oldtype has type map,

{(type0, disp0), ..., (typen−1, dispn−1)},

with extent ex. Let B be the array_of_blocklength argument and D be the
array_of_displacements argument. The newly created datatype has a type map with n ·∑count−1

i=0 B[i] entries:

{(type0, disp0 + D[0]), ..., (typen−1, dispn−1 + D[0]), ...,

(type0, disp0 + D[0] + (B[0]− 1) · ex), ...,

(typen−1, dispn−1 + D[0] + (B[0]− 1) · ex), ...,

(type0, disp0 + D[count-1]), ..., (typen−1, dispn−1 + D[count-1]), ...,

(type0, disp0 + D[count-1] + (B[count-1]− 1) · ex), ...,

(typen−1, dispn−1 + D[count-1] + (B[count-1]− 1) · ex)}.

Indexed_block This function is the same as MPI_TYPE_INDEXED except that the block-
length is the same for all blocks. There are many codes using indirect addressing arising
from unstructured grids where the blocksize is always 1 (gather/scatter). The following
convenience function allows for constant blocksize and arbitrary displacements.

MPI_TYPE_CREATE_INDEXED_BLOCK(count, blocklength, array_of_displacements, oldtype,
newtype)

IN count length of array of displacements (non-negative integer)

IN blocklength size of block (non-negative integer)

IN array_of_displacements array of displacements (array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_create_indexed_block(int count, int blocklength,
int array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_TYPE_CREATE_INDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS(*), OLDTYPE,
NEWTYPE, IERROR

{MPI::Datatype MPI::Datatype::Create_indexed_block(int count,
int blocklength, const int array_of_displacements[]) const
(binding deprecated, see Section 15.2) }
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Struct MPI_TYPE_STRUCT is the most general type constructor. It further generalizes
MPI_TYPE_CREATE_HINDEXED in that it allows each block to consist of replications of
different datatypes.

MPI_TYPE_CREATE_STRUCT(count, array_of_blocklengths, array_of_displacements,
array_of_types, newtype)

IN count number of blocks (non-negative integer) — also num-
ber of entries in arrays array_of_types,
array_of_displacements and array_of_blocklengths

IN array_of_blocklength number of elements in each block (array of non-negative
integer)

IN array_of_displacements byte displacement of each block (array of integer)

IN array_of_types type of elements in each block (array of handles to
datatype objects)

OUT newtype new datatype (handle)

int MPI_Type_create_struct(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[],
MPI_Datatype array_of_types[], MPI_Datatype *newtype)

MPI_TYPE_CREATE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS,
ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*), NEWTYPE,
IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

{static MPI::Datatype MPI::Datatype::Create_struct(int count,
const int array_of_blocklengths[], const MPI::Aint
array_of_displacements[],
const MPI::Datatype array_of_types[]) (binding deprecated, see
Section 15.2) }

This function replaces MPI_TYPE_STRUCT, whose use is deprecated. See also Chap-
ter 15.

Example 4.6 Let type1 have type map,

{(double, 0), (char, 8)},

with extent 16. Let B = (2, 1, 3), D = (0, 16, 26), and T = (MPI_FLOAT, type1, MPI_CHAR).
Then a call to MPI_TYPE_STRUCT(3, B, D, T, newtype) returns a datatype with type map,

{(float, 0), (float, 4), (double, 16), (char, 24), (char, 26), (char, 27), (char, 28)}.

That is, two copies of MPI_FLOAT starting at 0, followed by one copy of type1 starting at
16, followed by three copies of MPI_CHAR, starting at 26. (We assume that a float occupies
four bytes.)
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In general, let T be the array_of_types argument, where T[i] is a handle to,

typemapi = {(typei0, dispi
0), ..., (typeini−1, disp

i
ni−1)},

with extent exi. Let B be the array_of_blocklength argument and D be the
array_of_displacements argument. Let c be the count argument. Then the newly created
datatype has a type map with

∑c−1
i=0 B[i] · ni entries:

{(type00, disp0
0 + D[0]), ..., (type0n0

, disp0
n0

+ D[0]), ...,

(type00, disp
0
0 + D[0] + (B[0]− 1) · ex0), ..., (type0n0

, disp0
n0

+ D[0] + (B[0]-1) · ex0), ...,

(typec−1
0 , dispc−1

0 + D[c-1]), ..., (typec−1
nc−1−1, disp

c−1
nc−1−1 + D[c-1]), ...,

(typec−1
0 , dispc−1

0 + D[c-1] + (B[c-1]− 1) · exc−1), ...,

(typec−1
nc−1−1, disp

c−1
nc−1−1 + D[c-1] + (B[c-1]-1) · exc−1)}.

A call to MPI_TYPE_CREATE_HINDEXED(count, B, D, oldtype, newtype) is equivalent
to a call to MPI_TYPE_CREATE_STRUCT(count, B, D, T, newtype), where each entry of T
is equal to oldtype.

4.1.3 Subarray Datatype Constructor

MPI_TYPE_CREATE_SUBARRAY(ndims, array_of_sizes, array_of_subsizes, array_of_starts,
order, oldtype, newtype)

IN ndims number of array dimensions (positive integer)

IN array_of_sizes number of elements of type oldtype in each dimension
of the full array (array of positive integers)

IN array_of_subsizes number of elements of type oldtype in each dimension
of the subarray (array of positive integers)

IN array_of_starts starting coordinates of the subarray in each dimension
(array of non-negative integers)

IN order array storage order flag (state)

IN oldtype array element datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_create_subarray(int ndims, int array_of_sizes[],
int array_of_subsizes[], int array_of_starts[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, ARRAY_OF_SUBSIZES,
ARRAY_OF_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)

INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*),
ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR
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{MPI::Datatype MPI::Datatype::Create_subarray(int ndims,
const int array_of_sizes[], const int array_of_subsizes[],
const int array_of_starts[], int order) const (binding
deprecated, see Section 15.2) }

The subarray type constructor creates an MPI datatype describing an n-dimensional
subarray of an n-dimensional array. The subarray may be situated anywhere within the
full array, and may be of any nonzero size up to the size of the larger array as long as it
is confined within this array. This type constructor facilitates creating filetypes to access
arrays distributed in blocks among processes to a single file that contains the global array,
see MPI I/O, especially Section 13.1.1 on page 389.

This type constructor can handle arrays with an arbitrary number of dimensions and
works for both C and Fortran ordered matrices (i.e., row-major or column-major). Note
that a C program may use Fortran order and a Fortran program may use C order.

The ndims parameter specifies the number of dimensions in the full data array and
gives the number of elements in array_of_sizes, array_of_subsizes, and array_of_starts.

The number of elements of type oldtype in each dimension of the n-dimensional ar-
ray and the requested subarray are specified by array_of_sizes and array_of_subsizes, re-
spectively. For any dimension i, it is erroneous to specify array_of_subsizes[i] < 1 or
array_of_subsizes[i] > array_of_sizes[i].

The array_of_starts contains the starting coordinates of each dimension of the subarray.
Arrays are assumed to be indexed starting from zero. For any dimension i, it is erroneous to
specify array_of_starts[i] < 0 or array_of_starts[i] > (array_of_sizes[i] − array_of_subsizes[i]).

Advice to users. In a Fortran program with arrays indexed starting from 1, if the
starting coordinate of a particular dimension of the subarray is n, then the entry in
array_of_starts for that dimension is n-1. (End of advice to users.)

The order argument specifies the storage order for the subarray as well as the full array.
It must be set to one of the following:

MPI_ORDER_C The ordering used by C arrays, (i.e., row-major order)

MPI_ORDER_FORTRAN The ordering used by Fortran arrays, (i.e., column-major order)

A ndims-dimensional subarray (newtype) with no extra padding can be defined by the
function Subarray() as follows:

newtype = Subarray(ndims, {size0, size1, . . . , sizendims−1},
{subsize0, subsize1, . . . , subsizendims−1},
{start0, start1, . . . , startndims−1}, oldtype)

Let the typemap of oldtype have the form:

{(type0, disp0), (type1, disp1), . . . , (typen−1, dispn−1)}

where typei is a predefined MPI datatype, and let ex be the extent of oldtype. Then we define
the Subarray() function recursively using the following three equations. Equation 4.2 defines
the base step. Equation 4.3 defines the recursion step when order = MPI_ORDER_FORTRAN,
and Equation 4.4 defines the recursion step when order = MPI_ORDER_C.
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Subarray(1, {size0}, {subsize0}, {start0}, (4.2)
{(type0, disp0), (type1, disp1), . . . , (typen−1, dispn−1)})

= {(MPI_LB, 0),
(type0, disp0 + start0 × ex), . . . , (typen−1, dispn−1 + start0 × ex),
(type0, disp0 + (start0 + 1)× ex), . . . , (typen−1,

dispn−1 + (start0 + 1)× ex), . . .
(type0, disp0 + (start0 + subsize0 − 1)× ex), . . . ,

(typen−1, dispn−1 + (start0 + subsize0 − 1)× ex),
(MPI_UB, size0 × ex)}

Subarray(ndims, {size0, size1, . . . , sizendims−1}, (4.3)
{subsize0, subsize1, . . . , subsizendims−1},
{start0, start1, . . . , startndims−1}, oldtype)

= Subarray(ndims− 1, {size1, size2, . . . , sizendims−1},
{subsize1, subsize2, . . . , subsizendims−1},
{start1, start2, . . . , startndims−1},

Subarray(1, {size0}, {subsize0}, {start0}, oldtype))

Subarray(ndims, {size0, size1, . . . , sizendims−1}, (4.4)
{subsize0, subsize1, . . . , subsizendims−1},
{start0, start1, . . . , startndims−1}, oldtype)

= Subarray(ndims− 1, {size0, size1, . . . , sizendims−2},
{subsize0, subsize1, . . . , subsizendims−2},
{start0, start1, . . . , startndims−2},

Subarray(1, {sizendims−1}, {subsizendims−1}, {startndims−1}, oldtype))

For an example use of MPI_TYPE_CREATE_SUBARRAY in the context of I/O see Sec-
tion 13.9.2.

4.1.4 Distributed Array Datatype Constructor

The distributed array type constructor supports HPF-like [30] data distributions. However,
unlike in HPF, the storage order may be specified for C arrays as well as for Fortran arrays.

Advice to users. One can create an HPF-like file view using this type constructor as
follows. Complementary filetypes are created by having every process of a group call
this constructor with identical arguments (with the exception of rank which should be
set appropriately). These filetypes (along with identical disp and etype) are then used
to define the view (via MPI_FILE_SET_VIEW), see MPI I/O, especially Section 13.1.1
on page 389 and Section 13.3 on page 401. Using this view, a collective data access
operation (with identical offsets) will yield an HPF-like distribution pattern. (End of
advice to users.)
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MPI_TYPE_CREATE_DARRAY(size, rank, ndims, array_of_gsizes, array_of_distribs,
array_of_dargs, array_of_psizes, order, oldtype, newtype)

IN size size of process group (positive integer)

IN rank rank in process group (non-negative integer)

IN ndims number of array dimensions as well as process grid
dimensions (positive integer)

IN array_of_gsizes number of elements of type oldtype in each dimension
of global array (array of positive integers)

IN array_of_distribs distribution of array in each dimension (array of state)

IN array_of_dargs distribution argument in each dimension (array of pos-
itive integers)

IN array_of_psizes size of process grid in each dimension (array of positive
integers)

IN order array storage order flag (state)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_create_darray(int size, int rank, int ndims,
int array_of_gsizes[], int array_of_distribs[], int
array_of_dargs[], int array_of_psizes[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS, ARRAY_OF_GSIZES,
ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS, ARRAY_OF_PSIZES, ORDER,
OLDTYPE, NEWTYPE, IERROR)

INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*), ARRAY_OF_DISTRIBS(*),
ARRAY_OF_DARGS(*), ARRAY_OF_PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERROR

{MPI::Datatype MPI::Datatype::Create_darray(int size, int rank, int ndims,
const int array_of_gsizes[], const int array_of_distribs[],
const int array_of_dargs[], const int array_of_psizes[],
int order) const (binding deprecated, see Section 15.2) }

MPI_TYPE_CREATE_DARRAY can be used to generate the datatypes corresponding to
the distribution of an ndims-dimensional array of oldtype elements onto an ndims-dimensional
grid of logical processes. Unused dimensions of array_of_psizes should be set to 1. (See
Example 4.7, page 93.) For a call to MPI_TYPE_CREATE_DARRAY to be correct, the
equation

∏ndims−1
i=0 array_of_psizes[i] = size must be satisfied. The ordering of processes

in the process grid is assumed to be row-major, as in the case of virtual Cartesian process
topologies .

Advice to users. For both Fortran and C arrays, the ordering of processes in the
process grid is assumed to be row-major. This is consistent with the ordering used in
virtual Cartesian process topologies in MPI. To create such virtual process topologies,
or to find the coordinates of a process in the process grid, etc., users may use the
corresponding process topology functions, see Chapter 7 on page 245. (End of advice
to users.)
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Each dimension of the array can be distributed in one of three ways:

• MPI_DISTRIBUTE_BLOCK - Block distribution

• MPI_DISTRIBUTE_CYCLIC - Cyclic distribution

• MPI_DISTRIBUTE_NONE - Dimension not distributed.

The constant MPI_DISTRIBUTE_DFLT_DARG specifies a default distribution argument.
The distribution argument for a dimension that is not distributed is ignored. For any
dimension i in which the distribution is MPI_DISTRIBUTE_BLOCK, it is erroneous to specify
array_of_dargs[i] ∗ array_of_psizes[i] < array_of_gsizes[i].

For example, the HPF layout ARRAY(CYCLIC(15)) corresponds to
MPI_DISTRIBUTE_CYCLIC with a distribution argument of 15, and the HPF layout AR-
RAY(BLOCK) corresponds to MPI_DISTRIBUTE_BLOCK with a distribution argument of
MPI_DISTRIBUTE_DFLT_DARG.

The order argument is used as in MPI_TYPE_CREATE_SUBARRAY to specify the stor-
age order. Therefore, arrays described by this type constructor may be stored in Fortran
(column-major) or C (row-major) order. Valid values for order are MPI_ORDER_FORTRAN

and MPI_ORDER_C.
This routine creates a new MPI datatype with a typemap defined in terms of a function

called “cyclic()” (see below).
Without loss of generality, it suffices to define the typemap for the

MPI_DISTRIBUTE_CYCLIC case where MPI_DISTRIBUTE_DFLT_DARG is not used.
MPI_DISTRIBUTE_BLOCK and MPI_DISTRIBUTE_NONE can be reduced to the

MPI_DISTRIBUTE_CYCLIC case for dimension i as follows.
MPI_DISTRIBUTE_BLOCK with array_of_dargs[i] equal to MPI_DISTRIBUTE_DFLT_DARG

is equivalent to MPI_DISTRIBUTE_CYCLIC with array_of_dargs[i] set to

(array_of_gsizes[i] + array_of_psizes[i]− 1)/array_of_psizes[i].

If array_of_dargs[i] is not MPI_DISTRIBUTE_DFLT_DARG, then MPI_DISTRIBUTE_BLOCK and
MPI_DISTRIBUTE_CYCLIC are equivalent.

MPI_DISTRIBUTE_NONE is equivalent to MPI_DISTRIBUTE_CYCLIC with
array_of_dargs[i] set to array_of_gsizes[i].

Finally, MPI_DISTRIBUTE_CYCLIC with array_of_dargs[i] equal to
MPI_DISTRIBUTE_DFLT_DARG is equivalent to MPI_DISTRIBUTE_CYCLIC with
array_of_dargs[i] set to 1.

For MPI_ORDER_FORTRAN, an ndims-dimensional distributed array (newtype) is defined
by the following code fragment:

oldtype[0] = oldtype;
for ( i = 0; i < ndims; i++ ) {

oldtype[i+1] = cyclic(array_of_dargs[i],
array_of_gsizes[i],
r[i],
array_of_psizes[i],
oldtype[i]);

}
newtype = oldtype[ndims];
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For MPI_ORDER_C, the code is:

oldtype[0] = oldtype;
for ( i = 0; i < ndims; i++ ) {

oldtype[i + 1] = cyclic(array_of_dargs[ndims - i - 1],
array_of_gsizes[ndims - i - 1],
r[ndims - i - 1],
array_of_psizes[ndims - i - 1],
oldtype[i]);

}
newtype = oldtype[ndims];

where r[i] is the position of the process (with rank rank) in the process grid at dimension i.
The values of r[i] are given by the following code fragment:

t_rank = rank;
t_size = 1;
for (i = 0; i < ndims; i++)

t_size *= array_of_psizes[i];
for (i = 0; i < ndims; i++) {

t_size = t_size / array_of_psizes[i];
r[i] = t_rank / t_size;
t_rank = t_rank % t_size;

}

Let the typemap of oldtype have the form:

{(type0, disp0), (type1, disp1), . . . , (typen−1, dispn−1)}

where typei is a predefined MPI datatype, and let ex be the extent of oldtype.
Given the above, the function cyclic() is defined as follows:

cyclic(darg, gsize, r, psize, oldtype)
= {(MPI_LB, 0),

(type0, disp0 + r × darg × ex), . . . ,
(typen−1, dispn−1 + r × darg × ex),

(type0, disp0 + (r × darg + 1)× ex), . . . ,
(typen−1, dispn−1 + (r × darg + 1)× ex),

. . .

(type0, disp0 + ((r + 1)× darg − 1)× ex), . . . ,
(typen−1, dispn−1 + ((r + 1)× darg − 1)× ex),

(type0, disp0 + r × darg × ex+ psize× darg × ex), . . . ,
(typen−1, dispn−1 + r × darg × ex+ psize× darg × ex),

(type0, disp0 + (r × darg + 1)× ex+ psize× darg × ex), . . . ,
(typen−1, dispn−1 + (r × darg + 1)× ex+ psize× darg × ex),
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. . .

(type0, disp0 + ((r + 1)× darg − 1)× ex+ psize× darg × ex), . . . ,
(typen−1, dispn−1 + ((r + 1)× darg − 1)× ex+ psize× darg × ex),
...

(type0, disp0 + r × darg × ex+ psize× darg × ex× (count− 1)), . . . ,
(typen−1, dispn−1 + r × darg × ex+ psize× darg × ex× (count− 1)),

(type0, disp0 + (r × darg + 1)× ex+ psize× darg × ex× (count− 1)), . . . ,
(typen−1, dispn−1 + (r × darg + 1)× ex

+psize× darg × ex× (count− 1)),
. . .

(type0, disp0 + (r × darg + darglast − 1)× ex
+psize× darg × ex× (count− 1)), . . . ,

(typen−1, dispn−1 + (r × darg + darglast − 1)× ex
+psize× darg × ex× (count− 1)),

(MPI_UB, gsize ∗ ex)}

where count is defined by this code fragment:

nblocks = (gsize + (darg - 1)) / darg;
count = nblocks / psize;
left_over = nblocks - count * psize;
if (r < left_over)

count = count + 1;

Here, nblocks is the number of blocks that must be distributed among the processors.
Finally, darglast is defined by this code fragment:

if ((num_in_last_cyclic = gsize % (psize * darg)) == 0)
darg_last = darg;

else
darg_last = num_in_last_cyclic - darg * r;
if (darg_last > darg)

darg_last = darg;
if (darg_last <= 0)

darg_last = darg;

Example 4.7 Consider generating the filetypes corresponding to the HPF distribution:

<oldtype> FILEARRAY(100, 200, 300)
!HPF$ PROCESSORS PROCESSES(2, 3)
!HPF$ DISTRIBUTE FILEARRAY(CYCLIC(10), *, BLOCK) ONTO PROCESSES

This can be achieved by the following Fortran code, assuming there will be six processes
attached to the run:

ndims = 3
array_of_gsizes(1) = 100
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array_of_distribs(1) = MPI_DISTRIBUTE_CYCLIC
array_of_dargs(1) = 10
array_of_gsizes(2) = 200
array_of_distribs(2) = MPI_DISTRIBUTE_NONE
array_of_dargs(2) = 0
array_of_gsizes(3) = 300
array_of_distribs(3) = MPI_DISTRIBUTE_BLOCK
array_of_dargs(3) = MPI_DISTRIBUTE_DFLT_DARG
array_of_psizes(1) = 2
array_of_psizes(2) = 1
array_of_psizes(3) = 3
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_TYPE_CREATE_DARRAY(size, rank, ndims, array_of_gsizes, &

array_of_distribs, array_of_dargs, array_of_psizes, &
MPI_ORDER_FORTRAN, oldtype, newtype, ierr)

4.1.5 Address and Size Functions

The displacements in a general datatype are relative to some initial buffer address. Abso-
lute addresses can be substituted for these displacements: we treat them as displacements
relative to “address zero,” the start of the address space. This initial address zero is indi-
cated by the constant MPI_BOTTOM. Thus, a datatype can specify the absolute address of
the entries in the communication buffer, in which case the buf argument is passed the value
MPI_BOTTOM.

The address of a location in memory can be found by invoking the function
MPI_GET_ADDRESS.

MPI_GET_ADDRESS(location, address)

IN location location in caller memory (choice)

OUT address address of location (integer)

int MPI_Get_address(void *location, MPI_Aint *address)

MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)
<type> LOCATION(*)
INTEGER IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS

{MPI::Aint MPI::Get_address(void* location) (binding deprecated, see Section 15.2)
}

This function replaces MPI_ADDRESS, whose use is deprecated. See also Chapter 15.
Returns the (byte) address of location.

Advice to users. Current Fortran MPI codes will run unmodified, and will port
to any system. However, they may fail if addresses larger than 232 − 1 are used
in the program. New codes should be written so that they use the new functions.
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This provides compatibility with C/C++ and avoids errors on 64 bit architectures.
However, such newly written codes may need to be (slightly) rewritten to port to old
Fortran 77 environments that do not support KIND declarations. (End of advice to
users.)

Example 4.8 Using MPI_GET_ADDRESS for an array.

REAL A(100,100)
INTEGER(KIND=MPI_ADDRESS_KIND) I1, I2, DIFF
CALL MPI_GET_ADDRESS(A(1,1), I1, IERROR)
CALL MPI_GET_ADDRESS(A(10,10), I2, IERROR)
DIFF = I2 - I1

! The value of DIFF is 909*sizeofreal; the values of I1 and I2 are
! implementation dependent.

Advice to users. C users may be tempted to avoid the usage of
MPI_GET_ADDRESS and rely on the availability of the address operator &. Note,
however, that & cast-expression is a pointer, not an address. ISO C does not require
that the value of a pointer (or the pointer cast to int) be the absolute address of the
object pointed at — although this is commonly the case. Furthermore, referencing
may not have a unique definition on machines with a segmented address space. The
use of MPI_GET_ADDRESS to “reference” C variables guarantees portability to such
machines as well. (End of advice to users.)

Advice to users. To prevent problems with the argument copying and register opti-
mization done by Fortran compilers, please note the hints in subsections “Problems
Due to Data Copying and Sequence Association,” and “A Problem with Register
Optimization” in Section 16.2.2 on pages 482 and 485. (End of advice to users.)

The following auxiliary function provides useful information on derived datatypes.

MPI_TYPE_SIZE(datatype, size)

IN datatype datatype (handle)

OUT size datatype size (integer)

int MPI_Type_size(MPI_Datatype datatype, int *size)

MPI_TYPE_SIZE(DATATYPE, SIZE, IERROR)
INTEGER DATATYPE, SIZE, IERROR

{int MPI::Datatype::Get_size() const (binding deprecated, see Section 15.2) }

MPI_TYPE_SIZE returns the total size, in bytes, of the entries in the type signature
associated with datatype; i.e., the total size of the data in a message that would be created
with this datatype. Entries that occur multiple times in the datatype are counted with
their multiplicity.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



96 CHAPTER 4. DATATYPES

4.1.6 Lower-Bound and Upper-Bound Markers

It is often convenient to define explicitly the lower bound and upper bound of a type map,
and override the definition given on page 96. This allows one to define a datatype that has
“holes” at its beginning or its end, or a datatype with entries that extend above the upper
bound or below the lower bound. Examples of such usage are provided in Section 4.1.14.
Also, the user may want to overide the alignment rules that are used to compute upper
bounds and extents. E.g., a C compiler may allow the user to overide default alignment
rules for some of the structures within a program. The user has to specify explicitly the
bounds of the datatypes that match these structures.

To achieve this, we add two additional “pseudo-datatypes,” MPI_LB and MPI_UB, that
can be used, respectively, to mark the lower bound or the upper bound of a datatype. These
pseudo-datatypes occupy no space (extent(MPI_LB) = extent(MPI_UB) = 0). They do not
affect the size or count of a datatype, and do not affect the content of a message created
with this datatype. However, they do affect the definition of the extent of a datatype and,
therefore, affect the outcome of a replication of this datatype by a datatype constructor.

Example 4.9 Let D = (-3, 0, 6); T = (MPI_LB, MPI_INT, MPI_UB), and B = (1, 1, 1).
Then a call to MPI_TYPE_STRUCT(3, B, D, T, type1) creates a new datatype that has an
extent of 9 (from -3 to 5, 5 included), and contains an integer at displacement 0. This is
the datatype defined by the sequence {(lb, -3), (int, 0), (ub, 6)} . If this type is replicated
twice by a call to MPI_TYPE_CONTIGUOUS(2, type1, type2) then the newly created type
can be described by the sequence {(lb, -3), (int, 0), (int,9), (ub, 15)} . (An entry of type ub
can be deleted if there is another entry of type ub with a higher displacement; an entry of
type lb can be deleted if there is another entry of type lb with a lower displacement.)

In general, if

Typemap = {(type0, disp0), ..., (typen−1, dispn−1)},

then the lower bound of Typemap is defined to be

lb(Typemap) =

{
minj dispj if no entry has basic type lb
minj{dispj such that typej = lb} otherwise

Similarly, the upper bound of Typemap is defined to be

ub(Typemap) =

{
maxj dispj + sizeof(typej) + ε if no entry has basic type ub
maxj{dispj such that typej = ub} otherwise

Then

extent(Typemap) = ub(Typemap)− lb(Typemap)

If typei requires alignment to a byte address that is a multiple of ki, then ε is the least
non-negative increment needed to round extent(Typemap) to the next multiple of maxi ki.

The formal definitions given for the various datatype constructors apply now, with the
amended definition of extent.
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4.1.7 Extent and Bounds of Datatypes

The following function replaces the three functions MPI_TYPE_UB, MPI_TYPE_LB and
MPI_TYPE_EXTENT. It also returns address sized integers, in the Fortran binding. The
use of MPI_TYPE_UB, MPI_TYPE_LB and MPI_TYPE_EXTENT is deprecated.

MPI_TYPE_GET_EXTENT(datatype, lb, extent)

IN datatype datatype to get information on (handle)

OUT lb lower bound of datatype (integer)

OUT extent extent of datatype (integer)

int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint *lb,
MPI_Aint *extent)

MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)
INTEGER DATATYPE, IERROR
INTEGER(KIND = MPI_ADDRESS_KIND) LB, EXTENT

{void MPI::Datatype::Get_extent(MPI::Aint& lb, MPI::Aint& extent) const
(binding deprecated, see Section 15.2) }

Returns the lower bound and the extent of datatype (as defined in Section 4.1.6 on
page 96).

MPI allows one to change the extent of a datatype, using lower bound and upper
bound markers (MPI_LB and MPI_UB). This is useful, as it allows to control the stride of
successive datatypes that are replicated by datatype constructors, or are replicated by the
count argument in a send or receive call. However, the current mechanism for achieving
it is painful; also it is restrictive. MPI_LB and MPI_UB are “sticky”: once present in a
datatype, they cannot be overridden (e.g., the upper bound can be moved up, by adding
a new MPI_UB marker, but cannot be moved down below an existing MPI_UB marker). A
new type constructor is provided to facilitate these changes. The use of MPI_LB and MPI_UB

is deprecated.

MPI_TYPE_CREATE_RESIZED(oldtype, lb, extent, newtype)

IN oldtype input datatype (handle)

IN lb new lower bound of datatype (integer)

IN extent new extent of datatype (integer)

OUT newtype output datatype (handle)

int MPI_Type_create_resized(MPI_Datatype oldtype, MPI_Aint lb, MPI_Aint
extent, MPI_Datatype *newtype)

MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)
INTEGER OLDTYPE, NEWTYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) LB, EXTENT
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{MPI::Datatype MPI::Datatype::Create_resized(const MPI::Aint lb,
const MPI::Aint extent) const (binding deprecated, see Section 15.2)
}

Returns in newtype a handle to a new datatype that is identical to oldtype, except that
the lower bound of this new datatype is set to be lb, and its upper bound is set to be lb
+ extent. Any previous lb and ub markers are erased, and a new pair of lower bound and
upper bound markers are put in the positions indicated by the lb and extent arguments.
This affects the behavior of the datatype when used in communication operations, with
count > 1, and when used in the construction of new derived datatypes.

Advice to users. It is strongly recommended that users use these two new functions,
rather than the old MPI-1 functions to set and access lower bound, upper bound and
extent of datatypes. (End of advice to users.)

4.1.8 True Extent of Datatypes

Suppose we implement gather (see also Section 5.5 on page 139) as a spanning tree imple-
mented on top of point-to-point routines. Since the receive buffer is only valid on the root
process, one will need to allocate some temporary space for receiving data on intermediate
nodes. However, the datatype extent cannot be used as an estimate of the amount of space
that needs to be allocated, if the user has modified the extent using the MPI_UB and MPI_LB

values. A function is provided which returns the true extent of the datatype.

MPI_TYPE_GET_TRUE_EXTENT(datatype, true_lb, true_extent)

IN datatype datatype to get information on (handle)

OUT true_lb true lower bound of datatype (integer)

OUT true_extent true size of datatype (integer)

int MPI_Type_get_true_extent(MPI_Datatype datatype, MPI_Aint *true_lb,
MPI_Aint *true_extent)

MPI_TYPE_GET_TRUE_EXTENT(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)
INTEGER DATATYPE, IERROR
INTEGER(KIND = MPI_ADDRESS_KIND) TRUE_LB, TRUE_EXTENT

{void MPI::Datatype::Get_true_extent(MPI::Aint& true_lb,
MPI::Aint& true_extent) const (binding deprecated, see Section 15.2)
}

true_lb returns the offset of the lowest unit of store which is addressed by the datatype,
i.e., the lower bound of the corresponding typemap, ignoring MPI_LB markers. true_extent
returns the true size of the datatype, i.e., the extent of the corresponding typemap, ignoring
MPI_LB and MPI_UB markers, and performing no rounding for alignment. If the typemap
associated with datatype is

Typemap = {(type0, disp0), . . . , (typen−1, dispn−1)}
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Then

true_lb(Typemap) = minj{dispj : typej 6= lb,ub},

true_ub(Typemap) = maxj{dispj + sizeof(typej) : typej 6= lb,ub},

and

true_extent(Typemap) = true_ub(Typemap)− true_lb(typemap).

(Readers should compare this with the definitions in Section 4.1.6 on page 96 and Sec-
tion 4.1.7 on page 97, which describe the function MPI_TYPE_GET_EXTENT.)

The true_extent is the minimum number of bytes of memory necessary to hold a
datatype, uncompressed.

4.1.9 Commit and Free

A datatype object has to be committed before it can be used in a communication. As
an argument in datatype constructors, uncommitted and also committed datatypes can be
used. There is no need to commit basic datatypes. They are “pre-committed.”

MPI_TYPE_COMMIT(datatype)

INOUT datatype datatype that is committed (handle)

int MPI_Type_commit(MPI_Datatype *datatype)

MPI_TYPE_COMMIT(DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

{void MPI::Datatype::Commit() (binding deprecated, see Section 15.2) }

The commit operation commits the datatype, that is, the formal description of a com-
munication buffer, not the content of that buffer. Thus, after a datatype has been commit-
ted, it can be repeatedly reused to communicate the changing content of a buffer or, indeed,
the content of different buffers, with different starting addresses.

Advice to implementors. The system may “compile” at commit time an internal
representation for the datatype that facilitates communication, e.g. change from a
compacted representation to a flat representation of the datatype, and select the most
convenient transfer mechanism. (End of advice to implementors.)

MPI_TYPE_COMMIT will accept a committed datatype; in this case, it is equivalent
to a no-op.

Example 4.10 The following code fragment gives examples of using MPI_TYPE_COMMIT.

INTEGER type1, type2
CALL MPI_TYPE_CONTIGUOUS(5, MPI_REAL, type1, ierr)

! new type object created
CALL MPI_TYPE_COMMIT(type1, ierr)

! now type1 can be used for communication
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type2 = type1
! type2 can be used for communication
! (it is a handle to same object as type1)

CALL MPI_TYPE_VECTOR(3, 5, 4, MPI_REAL, type1, ierr)
! new uncommitted type object created

CALL MPI_TYPE_COMMIT(type1, ierr)
! now type1 can be used anew for communication

MPI_TYPE_FREE(datatype)

INOUT datatype datatype that is freed (handle)

int MPI_Type_free(MPI_Datatype *datatype)

MPI_TYPE_FREE(DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

{void MPI::Datatype::Free() (binding deprecated, see Section 15.2) }

Marks the datatype object associated with datatype for deallocation and sets datatype
to MPI_DATATYPE_NULL. Any communication that is currently using this datatype will
complete normally. Freeing a datatype does not affect any other datatype that was built
from the freed datatype. The system behaves as if input datatype arguments to derived
datatype constructors are passed by value.

Advice to implementors. The implementation may keep a reference count of active
communications that use the datatype, in order to decide when to free it. Also, one
may implement constructors of derived datatypes so that they keep pointers to their
datatype arguments, rather then copying them. In this case, one needs to keep track
of active datatype definition references in order to know when a datatype object can
be freed. (End of advice to implementors.)

4.1.10 Duplicating a Datatype

MPI_TYPE_DUP(type, newtype)

IN type datatype (handle)

OUT newtype copy of type (handle)

int MPI_Type_dup(MPI_Datatype type, MPI_Datatype *newtype)

MPI_TYPE_DUP(TYPE, NEWTYPE, IERROR)
INTEGER TYPE, NEWTYPE, IERROR

{MPI::Datatype MPI::Datatype::Dup() const (binding deprecated, see Section 15.2) }

MPI_TYPE_DUP is a type constructor which duplicates the existing
type with associated key values. For each key value, the respective copy callback function
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4.1. DERIVED DATATYPES 101

determines the attribute value associated with this key in the new communicator; one
particular action that a copy callback may take is to delete the attribute from the new
datatype. Returns in newtype a new datatype with exactly the same properties as type
and any copied cached information, see Section 6.7.4 on page 233. The new datatype has
identical upper bound and lower bound and yields the same net result when fully decoded
with the functions in Section 4.1.13. The newtype has the same committed state as the old
type.

4.1.11 Use of General Datatypes in Communication

Handles to derived datatypes can be passed to a communication call wherever a datatype
argument is required. A call of the form MPI_SEND(buf, count, datatype , ...), where
count > 1, is interpreted as if the call was passed a new datatype which is the concatenation
of count copies of datatype. Thus, MPI_SEND(buf, count, datatype, dest, tag, comm) is
equivalent to,

MPI_TYPE_CONTIGUOUS(count, datatype, newtype)
MPI_TYPE_COMMIT(newtype)
MPI_SEND(buf, 1, newtype, dest, tag, comm).

Similar statements apply to all other communication functions that have a count and
datatype argument.

Suppose that a send operation MPI_SEND(buf, count, datatype, dest, tag, comm) is
executed, where datatype has type map,

{(type0, disp0), ..., (typen−1, dispn−1)},

and extent extent. (Empty entries of “pseudo-type” MPI_UB and MPI_LB are not listed in
the type map, but they affect the value of extent.) The send operation sends n · count
entries, where entry i · n + j is at location addri,j = buf + extent · i + dispj and has type
typej , for i = 0, ..., count− 1 and j = 0, ..., n− 1. These entries need not be contiguous, nor
distinct; their order can be arbitrary.

The variable stored at address addri,j in the calling program should be of a type that
matches typej , where type matching is defined as in Section 3.3.1. The message sent contains
n · count entries, where entry i · n+ j has type typej .

Similarly, suppose that a receive operation MPI_RECV(buf, count, datatype, source, tag,
comm, status) is executed, where datatype has type map,

{(type0, disp0), ..., (typen−1, dispn−1)},

with extent extent. (Again, empty entries of “pseudo-type” MPI_UB and MPI_LB are not
listed in the type map, but they affect the value of extent.) This receive operation receives
n · count entries, where entry i · n + j is at location buf + extent · i + dispj and has type
typej . If the incoming message consists of k elements, then we must have k ≤ n · count; the
i · n+ j-th element of the message should have a type that matches typej .

Type matching is defined according to the type signature of the corresponding datatypes,
that is, the sequence of basic type components. Type matching does not depend on some
aspects of the datatype definition, such as the displacements (layout in memory) or the
intermediate types used.
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102 CHAPTER 4. DATATYPES

Example 4.11 This example shows that type matching is defined in terms of the basic
types that a derived type consists of.

...
CALL MPI_TYPE_CONTIGUOUS( 2, MPI_REAL, type2, ...)
CALL MPI_TYPE_CONTIGUOUS( 4, MPI_REAL, type4, ...)
CALL MPI_TYPE_CONTIGUOUS( 2, type2, type22, ...)
...
CALL MPI_SEND( a, 4, MPI_REAL, ...)
CALL MPI_SEND( a, 2, type2, ...)
CALL MPI_SEND( a, 1, type22, ...)
CALL MPI_SEND( a, 1, type4, ...)
...
CALL MPI_RECV( a, 4, MPI_REAL, ...)
CALL MPI_RECV( a, 2, type2, ...)
CALL MPI_RECV( a, 1, type22, ...)
CALL MPI_RECV( a, 1, type4, ...)

Each of the sends matches any of the receives.

A datatype may specify overlapping entries. The use of such a datatype in a receive
operation is erroneous. (This is erroneous even if the actual message received is short enough
not to write any entry more than once.)

Suppose that MPI_RECV(buf, count, datatype, dest, tag, comm, status) is executed,
where datatype has type map,

{(type0, disp0), ..., (typen−1, dispn−1)}.

The received message need not fill all the receive buffer, nor does it need to fill a number of
locations which is a multiple of n. Any number, k, of basic elements can be received, where
0 ≤ k ≤ count ·n. The number of basic elements received can be retrieved from status using
the query function MPI_GET_ELEMENTS.

MPI_GET_ELEMENTS( status, datatype, count)

IN status return status of receive operation (Status)

IN datatype datatype used by receive operation (handle)

OUT count number of received basic elements (integer)

int MPI_Get_elements(MPI_Status *status, MPI_Datatype datatype, int *count)

MPI_GET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

{int MPI::Status::Get_elements(const MPI::Datatype& datatype) const (binding
deprecated, see Section 15.2) }

The previously defined function, MPI_GET_COUNT (Section 3.2.5), has a different
behavior. It returns the number of “top-level entries” received, i.e. the number of “copies”
of type datatype. In the previous example, MPI_GET_COUNT may return any integer
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4.1. DERIVED DATATYPES 103

value k, where 0 ≤ k ≤ count. If MPI_GET_COUNT returns k, then the number of basic
elements received (and the value returned by MPI_GET_ELEMENTS) is n ·k. If the number
of basic elements received is not a multiple of n, that is, if the receive operation has not
received an integral number of datatype “copies,” then MPI_GET_COUNT returns the value
MPI_UNDEFINED. The datatype argument should match the argument provided by the
receive call that set the status variable.

Example 4.12 Usage of MPI_GET_COUNT and MPI_GET_ELEMENTS.

...
CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, Type2, ierr)
CALL MPI_TYPE_COMMIT(Type2, ierr)
...
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(a, 2, MPI_REAL, 1, 0, comm, ierr)
CALL MPI_SEND(a, 3, MPI_REAL, 1, 0, comm, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr)
CALL MPI_GET_COUNT(stat, Type2, i, ierr) ! returns i=1
CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns i=2
CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr)
CALL MPI_GET_COUNT(stat, Type2, i, ierr) ! returns i=MPI_UNDEFINED
CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns i=3

END IF

The function MPI_GET_ELEMENTS can also be used after a probe to find the number
of elements in the probed message. Note that the two functions MPI_GET_COUNT and
MPI_GET_ELEMENTS return the same values when they are used with basic datatypes.

Rationale. The extension given to the definition of MPI_GET_COUNT seems natural:
one would expect this function to return the value of the count argument, when the
receive buffer is filled. Sometimes datatype represents a basic unit of data one wants
to transfer, for example, a record in an array of records (structures). One should be
able to find out how many components were received without bothering to divide by
the number of elements in each component. However, on other occasions, datatype
is used to define a complex layout of data in the receiver memory, and does not
represent a basic unit of data for transfers. In such cases, one needs to use the
function MPI_GET_ELEMENTS. (End of rationale.)

Advice to implementors. The definition implies that a receive cannot change the
value of storage outside the entries defined to compose the communication buffer. In
particular, the definition implies that padding space in a structure should not be mod-
ified when such a structure is copied from one process to another. This would prevent
the obvious optimization of copying the structure, together with the padding, as one
contiguous block. The implementation is free to do this optimization when it does not
impact the outcome of the computation. The user can “force” this optimization by
explicitly including padding as part of the message. (End of advice to implementors.)
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104 CHAPTER 4. DATATYPES

4.1.12 Correct Use of Addresses

Successively declared variables in C or Fortran are not necessarily stored at contiguous
locations. Thus, care must be exercised that displacements do not cross from one variable
to another. Also, in machines with a segmented address space, addresses are not unique
and address arithmetic has some peculiar properties. Thus, the use of addresses, that is,
displacements relative to the start address MPI_BOTTOM, has to be restricted.

Variables belong to the same sequential storage if they belong to the same array, to
the same COMMON block in Fortran, or to the same structure in C. Valid addresses are
defined recursively as follows:

1. The function MPI_GET_ADDRESS returns a valid address, when passed as argument
a variable of the calling program.

2. The buf argument of a communication function evaluates to a valid address, when
passed as argument a variable of the calling program.

3. If v is a valid address, and i is an integer, then v+i is a valid address, provided v and
v+i are in the same sequential storage.

4. If v is a valid address then MPI_BOTTOM + v is a valid address.

A correct program uses only valid addresses to identify the locations of entries in
communication buffers. Furthermore, if u and v are two valid addresses, then the (integer)
difference u - v can be computed only if both u and v are in the same sequential storage.
No other arithmetic operations can be meaningfully executed on addresses.

The rules above impose no constraints on the use of derived datatypes, as long as
they are used to define a communication buffer that is wholly contained within the same
sequential storage. However, the construction of a communication buffer that contains
variables that are not within the same sequential storage must obey certain restrictions.
Basically, a communication buffer with variables that are not within the same sequential
storage can be used only by specifying in the communication call buf = MPI_BOTTOM,
count = 1, and using a datatype argument where all displacements are valid (absolute)
addresses.

Advice to users. It is not expected that MPI implementations will be able to detect
erroneous, “out of bound” displacements — unless those overflow the user address
space — since the MPI call may not know the extent of the arrays and records in the
host program. (End of advice to users.)

Advice to implementors. There is no need to distinguish (absolute) addresses and
(relative) displacements on a machine with contiguous address space: MPI_BOTTOM

is zero, and both addresses and displacements are integers. On machines where the
distinction is required, addresses are recognized as expressions that involve
MPI_BOTTOM. (End of advice to implementors.)

4.1.13 Decoding a Datatype

MPI datatype objects allow users to specify an arbitrary layout of data in memory. There
are several cases where accessing the layout information in opaque datatype objects would
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4.1. DERIVED DATATYPES 105

be useful. The opaque datatype object has found a number of uses outside MPI. Further-
more, a number of tools wish to display internal information about a datatype. To achieve
this, datatype decoding functions are provided. The two functions in this section are used
together to decode datatypes to recreate the calling sequence used in their initial defini-
tion. These can be used to allow a user to determine the type map and type signature of a
datatype.

MPI_TYPE_GET_ENVELOPE(datatype, num_integers, num_addresses, num_datatypes, com-
biner)

IN datatype datatype to access (handle)

OUT num_integers number of input integers used in the call constructing
combiner (non-negative integer)

OUT num_addresses number of input addresses used in the call construct-
ing combiner (non-negative integer)

OUT num_datatypes number of input datatypes used in the call construct-
ing combiner (non-negative integer)

OUT combiner combiner (state)

int MPI_Type_get_envelope(MPI_Datatype datatype, int *num_integers,
int *num_addresses, int *num_datatypes, int *combiner)

MPI_TYPE_GET_ENVELOPE(DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES,
COMBINER, IERROR)

INTEGER DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES, COMBINER,
IERROR

{void MPI::Datatype::Get_envelope(int& num_integers, int& num_addresses,
int& num_datatypes, int& combiner) const (binding deprecated, see
Section 15.2) }

For the given datatype, MPI_TYPE_GET_ENVELOPE returns information on the num-
ber and type of input arguments used in the call that created the datatype. The number-of-
arguments values returned can be used to provide sufficiently large arrays in the decoding
routine MPI_TYPE_GET_CONTENTS. This call and the meaning of the returned values is
described below. The combiner reflects the MPI datatype constructor call that was used in
creating datatype.

Rationale. By requiring that the combiner reflect the constructor used in the
creation of the datatype, the decoded information can be used to effectively recre-
ate the calling sequence used in the original creation. One call is effectively the
same as another when the information obtained from MPI_TYPE_GET_CONTENTS
may be used with either to produce the same outcome. C calls MPI_Type_hindexed
and MPI_Type_create_hindexed are always effectively the same while the Fortran call
MPI_TYPE_HINDEXED will be different than either of these in some MPI implemen-
tations. This is the most useful information and was felt to be reasonable even though
it constrains implementations to remember the original constructor sequence even if
the internal representation is different.
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106 CHAPTER 4. DATATYPES

The decoded information keeps track of datatype duplications. This is important as
one needs to distinguish between a predefined datatype and a dup of a predefined
datatype. The former is a constant object that cannot be freed, while the latter is a
derived datatype that can be freed. (End of rationale.)

The list below has the values that can be returned in combiner on the left and the call
associated with them on the right.

MPI_COMBINER_NAMED a named predefined datatype
MPI_COMBINER_DUP MPI_TYPE_DUP
MPI_COMBINER_CONTIGUOUS MPI_TYPE_CONTIGUOUS
MPI_COMBINER_VECTOR MPI_TYPE_VECTOR
MPI_COMBINER_HVECTOR_INTEGER MPI_TYPE_HVECTOR from Fortran
MPI_COMBINER_HVECTOR MPI_TYPE_HVECTOR from C or C++

and in some case Fortran
or MPI_TYPE_CREATE_HVECTOR

MPI_COMBINER_INDEXED MPI_TYPE_INDEXED
MPI_COMBINER_HINDEXED_INTEGER MPI_TYPE_HINDEXED from Fortran
MPI_COMBINER_HINDEXED MPI_TYPE_HINDEXED from C or C++

and in some case Fortran
or MPI_TYPE_CREATE_HINDEXED

MPI_COMBINER_INDEXED_BLOCK MPI_TYPE_CREATE_INDEXED_BLOCK
MPI_COMBINER_STRUCT_INTEGER MPI_TYPE_STRUCT from Fortran
MPI_COMBINER_STRUCT MPI_TYPE_STRUCT from C or C++

and in some case Fortran
or MPI_TYPE_CREATE_STRUCT

MPI_COMBINER_SUBARRAY MPI_TYPE_CREATE_SUBARRAY
MPI_COMBINER_DARRAY MPI_TYPE_CREATE_DARRAY
MPI_COMBINER_F90_REAL MPI_TYPE_CREATE_F90_REAL
MPI_COMBINER_F90_COMPLEX MPI_TYPE_CREATE_F90_COMPLEX
MPI_COMBINER_F90_INTEGER MPI_TYPE_CREATE_F90_INTEGER
MPI_COMBINER_RESIZED MPI_TYPE_CREATE_RESIZED

Table 4.1: combiner values returned from MPI_TYPE_GET_ENVELOPE

If combiner is MPI_COMBINER_NAMED then datatype is a named predefined datatype.
For deprecated calls with address arguments, we sometimes need to differentiate whether

the call used an integer or an address size argument. For example, there are two combin-
ers for hvector: MPI_COMBINER_HVECTOR_INTEGER and MPI_COMBINER_HVECTOR. The
former is used if it was the MPI-1 call from Fortran, and the latter is used if it was the
MPI-1 call from C or C++. However, on systems where MPI_ADDRESS_KIND =
MPI_INTEGER_KIND (i.e., where integer arguments and address size arguments are the same),
the combiner MPI_COMBINER_HVECTOR may be returned for a datatype constructed by a
call to MPI_TYPE_HVECTOR from Fortran. Similarly, MPI_COMBINER_HINDEXED may
be returned for a datatype constructed by a call to MPI_TYPE_HINDEXED from Fortran,
and MPI_COMBINER_STRUCT may be returned for a datatype constructed by a call to
MPI_TYPE_STRUCT from Fortran. On such systems, one need not differentiate construc-
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4.1. DERIVED DATATYPES 107

tors that take address size arguments from constructors that take integer arguments, since
these are the same. The preferred calls all use address sized arguments so two combiners
are not required for them.

Rationale. For recreating the original call, it is important to know if address informa-
tion may have been truncated. The deprecated calls from Fortran for a few routines
could be subject to truncation in the case where the default INTEGER size is smaller
than the size of an address. (End of rationale.)

The actual arguments used in the creation call for a datatype can be obtained from the
call:

MPI_TYPE_GET_CONTENTS(datatype, max_integers, max_addresses, max_datatypes, ar-
ray_of_integers, array_of_addresses, array_of_datatypes)

IN datatype datatype to access (handle)

IN max_integers number of elements in array_of_integers (non-negative
integer)

IN max_addresses number of elements in array_of_addresses (non-negative
integer)

IN max_datatypes number of elements in array_of_datatypes (non-negative
integer)

OUT array_of_integers contains integer arguments used in constructing
datatype (array of integers)

OUT array_of_addresses contains address arguments used in constructing
datatype (array of integers)

OUT array_of_datatypes contains datatype arguments used in constructing
datatype (array of handles)

int MPI_Type_get_contents(MPI_Datatype datatype, int max_integers,
int max_addresses, int max_datatypes, int array_of_integers[],
MPI_Aint array_of_addresses[],
MPI_Datatype array_of_datatypes[])

MPI_TYPE_GET_CONTENTS(DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
ARRAY_OF_INTEGERS, ARRAY_OF_ADDRESSES, ARRAY_OF_DATATYPES,
IERROR)

INTEGER DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
ARRAY_OF_INTEGERS(*), ARRAY_OF_DATATYPES(*), IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_ADDRESSES(*)

{void MPI::Datatype::Get_contents(int max_integers, int max_addresses,
int max_datatypes, int array_of_integers[],
MPI::Aint array_of_addresses[],
MPI::Datatype array_of_datatypes[]) const (binding deprecated, see
Section 15.2) }
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108 CHAPTER 4. DATATYPES

datatype must be a predefined unnamed or a derived datatype; the call is erroneous if
datatype is a predefined named datatype.

The values given for max_integers, max_addresses, and max_datatypes must be at least as
large as the value returned in num_integers, num_addresses, and num_datatypes, respectively,
in the call MPI_TYPE_GET_ENVELOPE for the same datatype argument.

Rationale. The arguments max_integers, max_addresses, and max_datatypes allow for
error checking in the call. (End of rationale.)

The datatypes returned in array_of_datatypes are handles to datatype objects that
are equivalent to the datatypes used in the original construction call. If these were derived
datatypes, then the returned datatypes are new datatype objects, and the user is responsible
for freeing these datatypes with MPI_TYPE_FREE. If these were predefined datatypes, then
the returned datatype is equal to that (constant) predefined datatype and cannot be freed.

The committed state of returned derived datatypes is undefined, i.e., the datatypes may
or may not be committed. Furthermore, the content of attributes of returned datatypes is
undefined.

Note that MPI_TYPE_GET_CONTENTS can be invoked with a
datatype argument that was constructed using MPI_TYPE_CREATE_F90_REAL,
MPI_TYPE_CREATE_F90_INTEGER, or MPI_TYPE_CREATE_F90_COMPLEX (an unnamed
predefined datatype). In such a case, an empty array_of_datatypes is returned.

Rationale. The definition of datatype equivalence implies that equivalent predefined
datatypes are equal. By requiring the same handle for named predefined datatypes,
it is possible to use the == or .EQ. comparison operator to determine the datatype
involved. (End of rationale.)

Advice to implementors. The datatypes returned in array_of_datatypes must appear
to the user as if each is an equivalent copy of the datatype used in the type constructor
call. Whether this is done by creating a new datatype or via another mechanism such
as a reference count mechanism is up to the implementation as long as the semantics
are preserved. (End of advice to implementors.)

Rationale. The committed state and attributes of the returned datatype is delib-
erately left vague. The datatype used in the original construction may have been
modified since its use in the constructor call. Attributes can be added, removed, or
modified as well as having the datatype committed. The semantics given allow for
a reference count implementation without having to track these changes. (End of
rationale.)

In the deprecated datatype constructor calls, the address arguments in Fortran are
of type INTEGER. In the preferred calls, the address arguments are of type
INTEGER(KIND=MPI_ADDRESS_KIND). The call MPI_TYPE_GET_CONTENTS returns all ad-
dresses in an argument of type INTEGER(KIND=MPI_ADDRESS_KIND). This is true even if the
deprecated calls were used. Thus, the location of values returned can be thought of as being
returned by the C bindings. It can also be determined by examining the preferred calls for
datatype constructors for the deprecated calls that involve addresses.
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4.1. DERIVED DATATYPES 109

Rationale. By having all address arguments returned in the
array_of_addresses argument, the result from a C and Fortran decoding of a datatype
gives the result in the same argument. It is assumed that an integer of type
INTEGER(KIND=MPI_ADDRESS_KIND) will be at least as large as the INTEGER argument
used in datatype construction with the old MPI-1 calls so no loss of information will
occur. (End of rationale.)

The following defines what values are placed in each entry of the returned arrays
depending on the datatype constructor used for datatype. It also specifies the size of the
arrays needed which is the values returned by MPI_TYPE_GET_ENVELOPE. In Fortran,
the following calls were made:

PARAMETER (LARGE = 1000)
INTEGER TYPE, NI, NA, ND, COMBINER, I(LARGE), D(LARGE), IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) A(LARGE)

! CONSTRUCT DATATYPE TYPE (NOT SHOWN)
CALL MPI_TYPE_GET_ENVELOPE(TYPE, NI, NA, ND, COMBINER, IERROR)
IF ((NI .GT. LARGE) .OR. (NA .GT. LARGE) .OR. (ND .GT. LARGE)) THEN
WRITE (*, *) "NI, NA, OR ND = ", NI, NA, ND, &
" RETURNED BY MPI_TYPE_GET_ENVELOPE IS LARGER THAN LARGE = ", LARGE
CALL MPI_ABORT(MPI_COMM_WORLD, 99, IERROR)

ENDIF
CALL MPI_TYPE_GET_CONTENTS(TYPE, NI, NA, ND, I, A, D, IERROR)

or in C the analogous calls of:

#define LARGE 1000
int ni, na, nd, combiner, i[LARGE];
MPI_Aint a[LARGE];
MPI_Datatype type, d[LARGE];
/* construct datatype type (not shown) */
MPI_Type_get_envelope(type, &ni, &na, &nd, &combiner);
if ((ni > LARGE) || (na > LARGE) || (nd > LARGE)) {
fprintf(stderr, "ni, na, or nd = %d %d %d returned by ", ni, na, nd);
fprintf(stderr, "MPI_Type_get_envelope is larger than LARGE = %d\n",

LARGE);
MPI_Abort(MPI_COMM_WORLD, 99);

};
MPI_Type_get_contents(type, ni, na, nd, i, a, d);

The C++ code is in analogy to the C code above with the same values returned.
In the descriptions that follow, the lower case name of arguments is used.
If combiner is MPI_COMBINER_NAMED then it is erroneous to call

MPI_TYPE_GET_CONTENTS.
If combiner is MPI_COMBINER_DUP then

Constructor argument C & C++ location Fortran location
oldtype d[0] D(1)

and ni = 0, na = 0, nd = 1.
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If combiner is MPI_COMBINER_CONTIGUOUS then

Constructor argument C & C++ location Fortran location
count i[0] I(1)
oldtype d[0] D(1)

and ni = 1, na = 0, nd = 1.
If combiner is MPI_COMBINER_VECTOR then

Constructor argument C & C++ location Fortran location
count i[0] I(1)
blocklength i[1] I(2)
stride i[2] I(3)
oldtype d[0] D(1)

and ni = 3, na = 0, nd = 1.
If combiner is MPI_COMBINER_HVECTOR_INTEGER or MPI_COMBINER_HVECTOR then

Constructor argument C & C++ location Fortran location
count i[0] I(1)
blocklength i[1] I(2)
stride a[0] A(1)
oldtype d[0] D(1)

and ni = 2, na = 1, nd = 1.
If combiner is MPI_COMBINER_INDEXED then

Constructor argument C & C++ location Fortran location
count i[0] I(1)
array_of_blocklengths i[1] to i[i[0]] I(2) to I(I(1)+1)
array_of_displacements i[i[0]+1] to i[2*i[0]] I(I(1)+2) to I(2*I(1)+1)
oldtype d[0] D(1)

and ni = 2*count+1, na = 0, nd = 1.
If combiner is MPI_COMBINER_HINDEXED_INTEGER or MPI_COMBINER_HINDEXED then

Constructor argument C & C++ location Fortran location
count i[0] I(1)
array_of_blocklengths i[1] to i[i[0]] I(2) to I(I(1)+1)
array_of_displacements a[0] to a[i[0]-1] A(1) to A(I(1))
oldtype d[0] D(1)

and ni = count+1, na = count, nd = 1.
If combiner is MPI_COMBINER_INDEXED_BLOCK then

Constructor argument C & C++ location Fortran location
count i[0] I(1)
blocklength i[1] I(2)
array_of_displacements i[2] to i[i[0]+1] I(3) to I(I(1)+2)
oldtype d[0] D(1)

and ni = count+2, na = 0, nd = 1.
If combiner is MPI_COMBINER_STRUCT_INTEGER or MPI_COMBINER_STRUCT then
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Constructor argument C & C++ location Fortran location
count i[0] I(1)
array_of_blocklengths i[1] to i[i[0]] I(2) to I(I(1)+1)
array_of_displacements a[0] to a[i[0]-1] A(1) to A(I(1))
array_of_types d[0] to d[i[0]-1] D(1) to D(I(1))

and ni = count+1, na = count, nd = count.
If combiner is MPI_COMBINER_SUBARRAY then

Constructor argument C & C++ location Fortran location
ndims i[0] I(1)
array_of_sizes i[1] to i[i[0]] I(2) to I(I(1)+1)
array_of_subsizes i[i[0]+1] to i[2*i[0]] I(I(1)+2) to I(2*I(1)+1)
array_of_starts i[2*i[0]+1] to i[3*i[0]] I(2*I(1)+2) to I(3*I(1)+1)
order i[3*i[0]+1] I(3*I(1)+2]
oldtype d[0] D(1)

and ni = 3*ndims+2, na = 0, nd = 1.
If combiner is MPI_COMBINER_DARRAY then

Constructor argument C & C++ location Fortran location
size i[0] I(1)
rank i[1] I(2)
ndims i[2] I(3)
array_of_gsizes i[3] to i[i[2]+2] I(4) to I(I(3)+3)
array_of_distribs i[i[2]+3] to i[2*i[2]+2] I(I(3)+4) to I(2*I(3)+3)
array_of_dargs i[2*i[2]+3] to i[3*i[2]+2] I(2*I(3)+4) to I(3*I(3)+3)
array_of_psizes i[3*i[2]+3] to i[4*i[2]+2] I(3*I(3)+4) to I(4*I(3)+3)
order i[4*i[2]+3] I(4*I(3)+4)
oldtype d[0] D(1)

and ni = 4*ndims+4, na = 0, nd = 1.
If combiner is MPI_COMBINER_F90_REAL then

Constructor argument C & C++ location Fortran location
p i[0] I(1)
r i[1] I(2)

and ni = 2, na = 0, nd = 0.
If combiner is MPI_COMBINER_F90_COMPLEX then

Constructor argument C & C++ location Fortran location
p i[0] I(1)
r i[1] I(2)

and ni = 2, na = 0, nd = 0.
If combiner is MPI_COMBINER_F90_INTEGER then

Constructor argument C & C++ location Fortran location
r i[0] I(1)

and ni = 1, na = 0, nd = 0.
If combiner is MPI_COMBINER_RESIZED then
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Constructor argument C & C++ location Fortran location
lb a[0] A(1)
extent a[1] A(2)
oldtype d[0] D(1)

and ni = 0, na = 2, nd = 1.

4.1.14 Examples

The following examples illustrate the use of derived datatypes.

Example 4.13 Send and receive a section of a 3D array.

REAL a(100,100,100), e(9,9,9)
INTEGER oneslice, twoslice, threeslice, sizeofreal, myrank, ierr
INTEGER status(MPI_STATUS_SIZE)

C extract the section a(1:17:2, 3:11, 2:10)
C and store it in e(:,:,:).

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

CALL MPI_TYPE_EXTENT( MPI_REAL, sizeofreal, ierr)

C create datatype for a 1D section
CALL MPI_TYPE_VECTOR( 9, 1, 2, MPI_REAL, oneslice, ierr)

C create datatype for a 2D section
CALL MPI_TYPE_HVECTOR(9, 1, 100*sizeofreal, oneslice, twoslice, ierr)

C create datatype for the entire section
CALL MPI_TYPE_HVECTOR( 9, 1, 100*100*sizeofreal, twoslice,

threeslice, ierr)

CALL MPI_TYPE_COMMIT( threeslice, ierr)
CALL MPI_SENDRECV(a(1,3,2), 1, threeslice, myrank, 0, e, 9*9*9,

MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)

Example 4.14 Copy the (strictly) lower triangular part of a matrix.

REAL a(100,100), b(100,100)
INTEGER disp(100), blocklen(100), ltype, myrank, ierr
INTEGER status(MPI_STATUS_SIZE)

C copy lower triangular part of array a
C onto lower triangular part of array b

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

C compute start and size of each column
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DO i=1, 100
disp(i) = 100*(i-1) + i
blocklen(i) = 100-i

END DO

C create datatype for lower triangular part
CALL MPI_TYPE_INDEXED( 100, blocklen, disp, MPI_REAL, ltype, ierr)

CALL MPI_TYPE_COMMIT(ltype, ierr)
CALL MPI_SENDRECV( a, 1, ltype, myrank, 0, b, 1,

ltype, myrank, 0, MPI_COMM_WORLD, status, ierr)

Example 4.15 Transpose a matrix.

REAL a(100,100), b(100,100)
INTEGER row, xpose, sizeofreal, myrank, ierr
INTEGER status(MPI_STATUS_SIZE)

C transpose matrix a onto b

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

CALL MPI_TYPE_EXTENT( MPI_REAL, sizeofreal, ierr)

C create datatype for one row
CALL MPI_TYPE_VECTOR( 100, 1, 100, MPI_REAL, row, ierr)

C create datatype for matrix in row-major order
CALL MPI_TYPE_HVECTOR( 100, 1, sizeofreal, row, xpose, ierr)

CALL MPI_TYPE_COMMIT( xpose, ierr)

C send matrix in row-major order and receive in column major order
CALL MPI_SENDRECV( a, 1, xpose, myrank, 0, b, 100*100,

MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)

Example 4.16 Another approach to the transpose problem:

REAL a(100,100), b(100,100)
INTEGER disp(2), blocklen(2), type(2), row, row1, sizeofreal
INTEGER myrank, ierr
INTEGER status(MPI_STATUS_SIZE)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

C transpose matrix a onto b

CALL MPI_TYPE_EXTENT( MPI_REAL, sizeofreal, ierr)
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C create datatype for one row
CALL MPI_TYPE_VECTOR( 100, 1, 100, MPI_REAL, row, ierr)

C create datatype for one row, with the extent of one real number
disp(1) = 0
disp(2) = sizeofreal
type(1) = row
type(2) = MPI_UB
blocklen(1) = 1
blocklen(2) = 1
CALL MPI_TYPE_STRUCT( 2, blocklen, disp, type, row1, ierr)

CALL MPI_TYPE_COMMIT( row1, ierr)

C send 100 rows and receive in column major order
CALL MPI_SENDRECV( a, 100, row1, myrank, 0, b, 100*100,

MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)

Example 4.17 We manipulate an array of structures.

struct Partstruct
{

int class; /* particle class */
double d[6]; /* particle coordinates */
char b[7]; /* some additional information */

};

struct Partstruct particle[1000];

int i, dest, rank, tag;
MPI_Comm comm;

/* build datatype describing structure */

MPI_Datatype Particletype;
MPI_Datatype type[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};
int blocklen[3] = {1, 6, 7};
MPI_Aint disp[3];
MPI_Aint base;

/* compute displacements of structure components */

MPI_Address( particle, disp);
MPI_Address( particle[0].d, disp+1);
MPI_Address( particle[0].b, disp+2);
base = disp[0];

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48
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for (i=0; i < 3; i++) disp[i] -= base;

MPI_Type_struct( 3, blocklen, disp, type, &Particletype);

/* If compiler does padding in mysterious ways,
the following may be safer */

MPI_Datatype type1[4] = {MPI_INT, MPI_DOUBLE, MPI_CHAR, MPI_UB};
int blocklen1[4] = {1, 6, 7, 1};
MPI_Aint disp1[4];

/* compute displacements of structure components */

MPI_Address( particle, disp1);
MPI_Address( particle[0].d, disp1+1);
MPI_Address( particle[0].b, disp1+2);
MPI_Address( particle+1, disp1+3);
base = disp1[0];
for (i=0; i < 4; i++) disp1[i] -= base;

/* build datatype describing structure */

MPI_Type_struct( 4, blocklen1, disp1, type1, &Particletype);

/* 4.1:
send the entire array */

MPI_Type_commit( &Particletype);
MPI_Send( particle, 1000, Particletype, dest, tag, comm);

/* 4.2:
send only the entries of class zero particles,
preceded by the number of such entries */

MPI_Datatype Zparticles; /* datatype describing all particles
with class zero (needs to be recomputed
if classes change) */

MPI_Datatype Ztype;

MPI_Aint zdisp[1000];
int zblock[1000], j, k;
int zzblock[2] = {1,1};
MPI_Aint zzdisp[2];
MPI_Datatype zztype[2];

/* compute displacements of class zero particles */
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j = 0;
for(i=0; i < 1000; i++)

if (particle[i].class == 0)
{
zdisp[j] = i;
zblock[j] = 1;
j++;

}

/* create datatype for class zero particles */
MPI_Type_indexed( j, zblock, zdisp, Particletype, &Zparticles);

/* prepend particle count */
MPI_Address(&j, zzdisp);
MPI_Address(particle, zzdisp+1);
zztype[0] = MPI_INT;
zztype[1] = Zparticles;
MPI_Type_struct(2, zzblock, zzdisp, zztype, &Ztype);

MPI_Type_commit( &Ztype);
MPI_Send( MPI_BOTTOM, 1, Ztype, dest, tag, comm);

/* A probably more efficient way of defining Zparticles */

/* consecutive particles with index zero are handled as one block */
j=0;
for (i=0; i < 1000; i++)

if (particle[i].index == 0)
{

for (k=i+1; (k < 1000)&&(particle[k].index == 0) ; k++);
zdisp[j] = i;
zblock[j] = k-i;
j++;
i = k;

}
MPI_Type_indexed( j, zblock, zdisp, Particletype, &Zparticles);

/* 4.3:
send the first two coordinates of all entries */

MPI_Datatype Allpairs; /* datatype for all pairs of coordinates */

MPI_Aint sizeofentry;

MPI_Type_extent( Particletype, &sizeofentry);
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/* sizeofentry can also be computed by subtracting the address
of particle[0] from the address of particle[1] */

MPI_Type_hvector( 1000, 2, sizeofentry, MPI_DOUBLE, &Allpairs);
MPI_Type_commit( &Allpairs);
MPI_Send( particle[0].d, 1, Allpairs, dest, tag, comm);

/* an alternative solution to 4.3 */

MPI_Datatype Onepair; /* datatype for one pair of coordinates, with
the extent of one particle entry */

MPI_Aint disp2[3];
MPI_Datatype type2[3] = {MPI_LB, MPI_DOUBLE, MPI_UB};
int blocklen2[3] = {1, 2, 1};

MPI_Address( particle, disp2);
MPI_Address( particle[0].d, disp2+1);
MPI_Address( particle+1, disp2+2);
base = disp2[0];
for (i=0; i<2; i++) disp2[i] -= base;

MPI_Type_struct( 3, blocklen2, disp2, type2, &Onepair);
MPI_Type_commit( &Onepair);
MPI_Send( particle[0].d, 1000, Onepair, dest, tag, comm);

Example 4.18 The same manipulations as in the previous example, but use absolute ad-
dresses in datatypes.

struct Partstruct
{

int class;
double d[6];
char b[7];

};

struct Partstruct particle[1000];

/* build datatype describing first array entry */

MPI_Datatype Particletype;
MPI_Datatype type[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};
int block[3] = {1, 6, 7};
MPI_Aint disp[3];

MPI_Address( particle, disp);
MPI_Address( particle[0].d, disp+1);
MPI_Address( particle[0].b, disp+2);
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MPI_Type_struct( 3, block, disp, type, &Particletype);

/* Particletype describes first array entry -- using absolute
addresses */

/* 5.1:
send the entire array */

MPI_Type_commit( &Particletype);
MPI_Send( MPI_BOTTOM, 1000, Particletype, dest, tag, comm);

/* 5.2:
send the entries of class zero,
preceded by the number of such entries */

MPI_Datatype Zparticles, Ztype;

MPI_Aint zdisp[1000];
int zblock[1000], i, j, k;
int zzblock[2] = {1,1};
MPI_Datatype zztype[2];
MPI_Aint zzdisp[2];

j=0;
for (i=0; i < 1000; i++)

if (particle[i].index == 0)
{

for (k=i+1; (k < 1000)&&(particle[k].index == 0) ; k++);
zdisp[j] = i;
zblock[j] = k-i;
j++;
i = k;

}
MPI_Type_indexed( j, zblock, zdisp, Particletype, &Zparticles);
/* Zparticles describe particles with class zero, using

their absolute addresses*/

/* prepend particle count */
MPI_Address(&j, zzdisp);
zzdisp[1] = MPI_BOTTOM;
zztype[0] = MPI_INT;
zztype[1] = Zparticles;
MPI_Type_struct(2, zzblock, zzdisp, zztype, &Ztype);

MPI_Type_commit( &Ztype);
MPI_Send( MPI_BOTTOM, 1, Ztype, dest, tag, comm);
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Example 4.19 Handling of unions.

union {
int ival;
float fval;

} u[1000];

int utype;

/* All entries of u have identical type; variable
utype keeps track of their current type */

MPI_Datatype type[2];
int blocklen[2] = {1,1};
MPI_Aint disp[2];
MPI_Datatype mpi_utype[2];
MPI_Aint i,j;

/* compute an MPI datatype for each possible union type;
assume values are left-aligned in union storage. */

MPI_Address( u, &i);
MPI_Address( u+1, &j);
disp[0] = 0; disp[1] = j-i;
type[1] = MPI_UB;

type[0] = MPI_INT;
MPI_Type_struct(2, blocklen, disp, type, &mpi_utype[0]);

type[0] = MPI_FLOAT;
MPI_Type_struct(2, blocklen, disp, type, &mpi_utype[1]);

for(i=0; i<2; i++) MPI_Type_commit(&mpi_utype[i]);

/* actual communication */

MPI_Send(u, 1000, mpi_utype[utype], dest, tag, comm);

Example 4.20 This example shows how a datatype can be decoded. The routine
printdatatype prints out the elements of the datatype. Note the use of MPI_Type_free for
datatypes that are not predefined.

/*
Example of decoding a datatype.

Returns 0 if the datatype is predefined, 1 otherwise
*/
#include <stdio.h>
#include <stdlib.h>
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#include "mpi.h"
int printdatatype( MPI_Datatype datatype )
{

int *array_of_ints;
MPI_Aint *array_of_adds;
MPI_Datatype *array_of_dtypes;
int num_ints, num_adds, num_dtypes, combiner;
int i;

MPI_Type_get_envelope( datatype,
&num_ints, &num_adds, &num_dtypes, &combiner );

switch (combiner) {
case MPI_COMBINER_NAMED:

printf( "Datatype is named:" );
/* To print the specific type, we can match against the

predefined forms. We can NOT use a switch statement here
We could also use MPI_TYPE_GET_NAME if we prefered to use
names that the user may have changed.

*/
if (datatype == MPI_INT) printf( "MPI_INT\n" );
else if (datatype == MPI_DOUBLE) printf( "MPI_DOUBLE\n" );
... else test for other types ...
return 0;
break;

case MPI_COMBINER_STRUCT:
case MPI_COMBINER_STRUCT_INTEGER:

printf( "Datatype is struct containing" );
array_of_ints = (int *)malloc( num_ints * sizeof(int) );
array_of_adds =

(MPI_Aint *) malloc( num_adds * sizeof(MPI_Aint) );
array_of_dtypes = (MPI_Datatype *)

malloc( num_dtypes * sizeof(MPI_Datatype) );
MPI_Type_get_contents( datatype, num_ints, num_adds, num_dtypes,

array_of_ints, array_of_adds, array_of_dtypes );
printf( " %d datatypes:\n", array_of_ints[0] );
for (i=0; i<array_of_ints[0]; i++) {

printf( "blocklength %d, displacement %ld, type:\n",
array_of_ints[i+1], array_of_adds[i] );

if (printdatatype( array_of_dtypes[i] )) {
/* Note that we free the type ONLY if it

is not predefined */
MPI_Type_free( &array_of_dtypes[i] );

}
}
free( array_of_ints );
free( array_of_adds );
free( array_of_dtypes );
break;
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... other combiner values ...
default:

printf( "Unrecognized combiner type\n" );
}
return 1;

}

4.2 Pack and Unpack

Some existing communication libraries provide pack/unpack functions for sending noncon-
tiguous data. In these, the user explicitly packs data into a contiguous buffer before sending
it, and unpacks it from a contiguous buffer after receiving it. Derived datatypes, which are
described in Section 4.1, allow one, in most cases, to avoid explicit packing and unpacking.
The user specifies the layout of the data to be sent or received, and the communication
library directly accesses a noncontiguous buffer. The pack/unpack routines are provided
for compatibility with previous libraries. Also, they provide some functionality that is not
otherwise available in MPI. For instance, a message can be received in several parts, where
the receive operation done on a later part may depend on the content of a former part.
Another use is that outgoing messages may be explicitly buffered in user supplied space,
thus overriding the system buffering policy. Finally, the availability of pack and unpack
operations facilitates the development of additional communication libraries layered on top
of MPI.

MPI_PACK(inbuf, incount, datatype, outbuf, outsize, position, comm)

IN inbuf input buffer start (choice)

IN incount number of input data items (non-negative integer)

IN datatype datatype of each input data item (handle)

OUT outbuf output buffer start (choice)

IN outsize output buffer size, in bytes (non-negative integer)

INOUT position current position in buffer, in bytes (integer)

IN comm communicator for packed message (handle)

int MPI_Pack(void* inbuf, int incount, MPI_Datatype datatype, void *outbuf,
int outsize, int *position, MPI_Comm comm)

MPI_PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)
<type> INBUF(*), OUTBUF(*)
INTEGER INCOUNT, DATATYPE, OUTSIZE, POSITION, COMM, IERROR

{void MPI::Datatype::Pack(const void* inbuf, int incount, void *outbuf,
int outsize, int& position, const MPI::Comm &comm) const
(binding deprecated, see Section 15.2) }

Packs the message in the send buffer specified by inbuf, incount, datatype into the buffer
space specified by outbuf and outsize. The input buffer can be any communication buffer
allowed in MPI_SEND. The output buffer is a contiguous storage area containing outsize
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122 CHAPTER 4. DATATYPES

bytes, starting at the address outbuf (length is counted in bytes, not elements, as if it were
a communication buffer for a message of type MPI_PACKED).

The input value of position is the first location in the output buffer to be used for
packing. position is incremented by the size of the packed message, and the output value
of position is the first location in the output buffer following the locations occupied by the
packed message. The comm argument is the communicator that will be subsequently used
for sending the packed message.

MPI_UNPACK(inbuf, insize, position, outbuf, outcount, datatype, comm)

IN inbuf input buffer start (choice)

IN insize size of input buffer, in bytes (non-negative integer)

INOUT position current position in bytes (integer)

OUT outbuf output buffer start (choice)

IN outcount number of items to be unpacked (integer)

IN datatype datatype of each output data item (handle)

IN comm communicator for packed message (handle)

int MPI_Unpack(void* inbuf, int insize, int *position, void *outbuf,
int outcount, MPI_Datatype datatype, MPI_Comm comm)

MPI_UNPACK(INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM,
IERROR)

<type> INBUF(*), OUTBUF(*)
INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR

{void MPI::Datatype::Unpack(const void* inbuf, int insize, void *outbuf,
int outcount, int& position, const MPI::Comm& comm) const
(binding deprecated, see Section 15.2) }

Unpacks a message into the receive buffer specified by outbuf, outcount, datatype from
the buffer space specified by inbuf and insize. The output buffer can be any communication
buffer allowed in MPI_RECV. The input buffer is a contiguous storage area containing insize
bytes, starting at address inbuf. The input value of position is the first location in the input
buffer occupied by the packed message. position is incremented by the size of the packed
message, so that the output value of position is the first location in the input buffer after
the locations occupied by the message that was unpacked. comm is the communicator used
to receive the packed message.

Advice to users. Note the difference between MPI_RECV and MPI_UNPACK: in
MPI_RECV, the count argument specifies the maximum number of items that can
be received. The actual number of items received is determined by the length of
the incoming message. In MPI_UNPACK, the count argument specifies the actual
number of items that are unpacked; the “size” of the corresponding message is the
increment in position. The reason for this change is that the “incoming message size”
is not predetermined since the user decides how much to unpack; nor is it easy to
determine the “message size” from the number of items to be unpacked. In fact, in a
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4.2. PACK AND UNPACK 123

heterogeneous system, this number may not be determined a priori. (End of advice
to users.)

To understand the behavior of pack and unpack, it is convenient to think of the data
part of a message as being the sequence obtained by concatenating the successive values sent
in that message. The pack operation stores this sequence in the buffer space, as if sending
the message to that buffer. The unpack operation retrieves this sequence from buffer space,
as if receiving a message from that buffer. (It is helpful to think of internal Fortran files or
sscanf in C, for a similar function.)

Several messages can be successively packed into one packing unit. This is effected
by several successive related calls to MPI_PACK, where the first call provides position = 0,
and each successive call inputs the value of position that was output by the previous call,
and the same values for outbuf, outcount and comm. This packing unit now contains the
equivalent information that would have been stored in a message by one send call with a
send buffer that is the “concatenation” of the individual send buffers.

A packing unit can be sent using type MPI_PACKED. Any point to point or collective
communication function can be used to move the sequence of bytes that forms the packing
unit from one process to another. This packing unit can now be received using any receive
operation, with any datatype: the type matching rules are relaxed for messages sent with
type MPI_PACKED.

A message sent with any type (including MPI_PACKED) can be received using the type
MPI_PACKED. Such a message can then be unpacked by calls to MPI_UNPACK.

A packing unit (or a message created by a regular, “typed” send) can be unpacked into
several successive messages. This is effected by several successive related calls to
MPI_UNPACK, where the first call provides position = 0, and each successive call inputs the
value of position that was output by the previous call, and the same values for inbuf, insize
and comm.

The concatenation of two packing units is not necessarily a packing unit; nor is a
substring of a packing unit necessarily a packing unit. Thus, one cannot concatenate two
packing units and then unpack the result as one packing unit; nor can one unpack a substring
of a packing unit as a separate packing unit. Each packing unit, that was created by a related
sequence of pack calls, or by a regular send, must be unpacked as a unit, by a sequence of
related unpack calls.

Rationale. The restriction on “atomic” packing and unpacking of packing units
allows the implementation to add at the head of packing units additional information,
such as a description of the sender architecture (to be used for type conversion, in a
heterogeneous environment) (End of rationale.)

The following call allows the user to find out how much space is needed to pack a
message and, thus, manage space allocation for buffers.
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MPI_PACK_SIZE(incount, datatype, comm, size)

IN incount count argument to packing call (non-negative integer)

IN datatype datatype argument to packing call (handle)

IN comm communicator argument to packing call (handle)

OUT size upper bound on size of packed message, in bytes (non-
negative integer)

int MPI_Pack_size(int incount, MPI_Datatype datatype, MPI_Comm comm,
int *size)

MPI_PACK_SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)
INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR

{int MPI::Datatype::Pack_size(int incount, const MPI::Comm& comm) const
(binding deprecated, see Section 15.2) }

A call to MPI_PACK_SIZE(incount, datatype, comm, size) returns in size an upper bound
on the increment in position that is effected by a call to MPI_PACK(inbuf, incount, datatype,
outbuf, outcount, position, comm).

Rationale. The call returns an upper bound, rather than an exact bound, since the
exact amount of space needed to pack the message may depend on the context (e.g.,
first message packed in a packing unit may take more space). (End of rationale.)

Example 4.21 An example using MPI_PACK.

int position, i, j, a[2];
char buff[1000];

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0)
{

/* SENDER CODE */

position = 0;
MPI_Pack(&i, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD);
MPI_Pack(&j, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD);
MPI_Send( buff, position, MPI_PACKED, 1, 0, MPI_COMM_WORLD);

}
else /* RECEIVER CODE */

MPI_Recv( a, 2, MPI_INT, 0, 0, MPI_COMM_WORLD);

Example 4.22 An elaborate example.

int position, i;
float a[1000];
char buff[1000];

MPI_Comm_rank(MPI_Comm_world, &myrank);
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4.2. PACK AND UNPACK 125

if (myrank == 0)
{
/* SENDER CODE */

int len[2];
MPI_Aint disp[2];
MPI_Datatype type[2], newtype;

/* build datatype for i followed by a[0]...a[i-1] */

len[0] = 1;
len[1] = i;
MPI_Address( &i, disp);
MPI_Address( a, disp+1);
type[0] = MPI_INT;
type[1] = MPI_FLOAT;
MPI_Type_struct( 2, len, disp, type, &newtype);
MPI_Type_commit( &newtype);

/* Pack i followed by a[0]...a[i-1]*/

position = 0;
MPI_Pack( MPI_BOTTOM, 1, newtype, buff, 1000, &position, MPI_COMM_WORLD);

/* Send */

MPI_Send( buff, position, MPI_PACKED, 1, 0,
MPI_COMM_WORLD);

/* *****
One can replace the last three lines with
MPI_Send( MPI_BOTTOM, 1, newtype, 1, 0, MPI_COMM_WORLD);
***** */

}
else if (myrank == 1)
{

/* RECEIVER CODE */

MPI_Status status;

/* Receive */

MPI_Recv( buff, 1000, MPI_PACKED, 0, 0, MPI_COMM_WORLD, &status);

/* Unpack i */

position = 0;
MPI_Unpack(buff, 1000, &position, &i, 1, MPI_INT, MPI_COMM_WORLD);
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/* Unpack a[0]...a[i-1] */
MPI_Unpack(buff, 1000, &position, a, i, MPI_FLOAT, MPI_COMM_WORLD);

}

Example 4.23 Each process sends a count, followed by count characters to the root; the
root concatenates all characters into one string.

int count, gsize, counts[64], totalcount, k1, k2, k,
displs[64], position, concat_pos;

char chr[100], *lbuf, *rbuf, *cbuf;

MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);

/* allocate local pack buffer */
MPI_Pack_size(1, MPI_INT, comm, &k1);
MPI_Pack_size(count, MPI_CHAR, comm, &k2);
k = k1+k2;
lbuf = (char *)malloc(k);

/* pack count, followed by count characters */
position = 0;
MPI_Pack(&count, 1, MPI_INT, lbuf, k, &position, comm);
MPI_Pack(chr, count, MPI_CHAR, lbuf, k, &position, comm);

if (myrank != root) {
/* gather at root sizes of all packed messages */

MPI_Gather( &position, 1, MPI_INT, NULL, 0,
MPI_DATATYPE_NULL, root, comm);

/* gather at root packed messages */
MPI_Gatherv( lbuf, position, MPI_PACKED, NULL,

NULL, NULL, NULL, root, comm);

} else { /* root code */
/* gather sizes of all packed messages */

MPI_Gather( &position, 1, MPI_INT, counts, 1,
MPI_INT, root, comm);

/* gather all packed messages */
displs[0] = 0;
for (i=1; i < gsize; i++)
displs[i] = displs[i-1] + counts[i-1];

totalcount = displs[gsize-1] + counts[gsize-1];
rbuf = (char *)malloc(totalcount);
cbuf = (char *)malloc(totalcount);
MPI_Gatherv( lbuf, position, MPI_PACKED, rbuf,

counts, displs, MPI_PACKED, root, comm);
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/* unpack all messages and concatenate strings */
concat_pos = 0;
for (i=0; i < gsize; i++) {

position = 0;
MPI_Unpack( rbuf+displs[i], totalcount-displs[i],

&position, &count, 1, MPI_INT, comm);
MPI_Unpack( rbuf+displs[i], totalcount-displs[i],

&position, cbuf+concat_pos, count, MPI_CHAR, comm);
concat_pos += count;

}
cbuf[concat_pos] = ’\0’;

}

4.3 Canonical MPI_PACK and MPI_UNPACK

These functions read/write data to/from the buffer in the “external32” data format specified
in Section 13.5.2, and calculate the size needed for packing. Their first arguments specify
the data format, for future extensibility, but currently the only valid value of the datarep
argument is “external32.”

Advice to users. These functions could be used, for example, to send typed data in a
portable format from one MPI implementation to another. (End of advice to users.)

The buffer will contain exactly the packed data, without headers. MPI_BYTE should
be used to send and receive data that is packed using MPI_PACK_EXTERNAL.

Rationale. MPI_PACK_EXTERNAL specifies that there is no header on the message
and further specifies the exact format of the data. Since MPI_PACK may (and is
allowed to) use a header, the datatype MPI_PACKED cannot be used for data packed
with MPI_PACK_EXTERNAL. (End of rationale.)

MPI_PACK_EXTERNAL(datarep, inbuf, incount, datatype, outbuf, outsize, position )

IN datarep data representation (string)

IN inbuf input buffer start (choice)

IN incount number of input data items (integer)

IN datatype datatype of each input data item (handle)

OUT outbuf output buffer start (choice)

IN outsize output buffer size, in bytes (integer)

INOUT position current position in buffer, in bytes (integer)

int MPI_Pack_external(char *datarep, void *inbuf, int incount,
MPI_Datatype datatype, void *outbuf, MPI_Aint outsize,
MPI_Aint *position)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



128 CHAPTER 4. DATATYPES

MPI_PACK_EXTERNAL(DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE,
POSITION, IERROR)

INTEGER INCOUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) OUTSIZE, POSITION
CHARACTER*(*) DATAREP
<type> INBUF(*), OUTBUF(*)

{void MPI::Datatype::Pack_external(const char* datarep, const void* inbuf,
int incount, void* outbuf, MPI::Aint outsize,
MPI::Aint& position) const (binding deprecated, see Section 15.2) }

MPI_UNPACK_EXTERNAL(datarep, inbuf, insize, position, outbuf, outsize, position )

IN datarep data representation (string)

IN inbuf input buffer start (choice)

IN insize input buffer size, in bytes (integer)

INOUT position current position in buffer, in bytes (integer)

OUT outbuf output buffer start (choice)

IN outcount number of output data items (integer)

IN datatype datatype of output data item (handle)

int MPI_Unpack_external(char *datarep, void *inbuf, MPI_Aint insize,
MPI_Aint *position, void *outbuf, int outcount,
MPI_Datatype datatype)

MPI_UNPACK_EXTERNAL(DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,
DATATYPE, IERROR)

INTEGER OUTCOUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) INSIZE, POSITION
CHARACTER*(*) DATAREP
<type> INBUF(*), OUTBUF(*)

{void MPI::Datatype::Unpack_external(const char* datarep,
const void* inbuf, MPI::Aint insize, MPI::Aint& position,
void* outbuf, int outcount) const (binding deprecated, see
Section 15.2) }

MPI_PACK_EXTERNAL_SIZE( datarep, incount, datatype, size )

IN datarep data representation (string)

IN incount number of input data items (integer)

IN datatype datatype of each input data item (handle)

OUT size output buffer size, in bytes (integer)
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int MPI_Pack_external_size(char *datarep, int incount,
MPI_Datatype datatype, MPI_Aint *size)

MPI_PACK_EXTERNAL_SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)
INTEGER INCOUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
CHARACTER*(*) DATAREP

{MPI::Aint MPI::Datatype::Pack_external_size(const char* datarep,
int incount) const (binding deprecated, see Section 15.2) }
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Chapter 5

Collective Communication

5.1 Introduction and Overview

Collective communication is defined as communication that involves a group or groups of
processes. The functions of this type provided by MPI are the following:

• MPI_BARRIER: Barrier synchronization across all members of a group (Section 5.3).

• MPI_BCAST: Broadcast from one member to all members of a group (Section 5.4).
This is shown as “broadcast” in Figure 5.1.

• MPI_GATHER, MPI_GATHERV: Gather data from all members of a group to one
member (Section 5.5). This is shown as “gather” in Figure 5.1.

• MPI_SCATTER, MPI_SCATTERV: Scatter data from one member to all members of
a group (Section 5.6). This is shown as “scatter” in Figure 5.1.

• MPI_ALLGATHER, MPI_ALLGATHERV: A variation on Gather where all members of
a group receive the result (Section 5.7). This is shown as “allgather” in Figure 5.1.

• MPI_ALLTOALL, MPI_ALLTOALLV, MPI_ALLTOALLW: Scatter/Gather data from all
members to all members of a group (also called complete exchange) (Section 5.8).
This is shown as “complete exchange” in Figure 5.1.

• MPI_ALLREDUCE, MPI_REDUCE: Global reduction operations such as sum, max,
min, or user-defined functions, where the result is returned to all members of a group
and a variation where the result is returned to only one member (Section 5.9).

• MPI_REDUCE_SCATTER: A combined reduction and scatter operation (Section 5.10).

• MPI_SCAN, MPI_EXSCAN: Scan across all members of a group (also called prefix)
(Section 5.11).

One of the key arguments in a call to a collective routine is a communicator that
defines the group or groups of participating processes and provides a context for the oper-
ation. This is discussed further in Section 5.2. The syntax and semantics of the collective
operations are defined to be consistent with the syntax and semantics of the point-to-point
operations. Thus, general datatypes are allowed and must match between sending and re-
ceiving processes as specified in Chapter 4. Several collective routines such as broadcast
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Figure 5.1: Collective move functions illustrated for a group of six processes. In each case,
each row of boxes represents data locations in one process. Thus, in the broadcast, initially
just the first process contains the data A0, but after the broadcast all processes contain it.
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5.1. INTRODUCTION AND OVERVIEW 133

and gather have a single originating or receiving process. Such a process is called the root.
Some arguments in the collective functions are specified as “significant only at root,” and
are ignored for all participants except the root. The reader is referred to Chapter 4 for
information concerning communication buffers, general datatypes and type matching rules,
and to Chapter 6 for information on how to define groups and create communicators.

The type-matching conditions for the collective operations are more strict than the cor-
responding conditions between sender and receiver in point-to-point. Namely, for collective
operations, the amount of data sent must exactly match the amount of data specified by
the receiver. Different type maps (the layout in memory, see Section 4.1) between sender
and receiver are still allowed.

Collective routine calls can (but are not required to) return as soon as their participa-
tion in the collective communication is complete. The completion of a call indicates that the
caller is now free to modify locations in the communication buffer. It does not indicate that
other processes in the group have completed or even started the operation (unless otherwise
implied by the description of the operation). Thus, a collective communication call may, or
may not, have the effect of synchronizing all calling processes. This statement excludes, of
course, the barrier function.

Collective communication calls may use the same communicators as point-to-point
communication; MPI guarantees that messages generated on behalf of collective communi-
cation calls will not be confused with messages generated by point-to-point communication.
A more detailed discussion of correct use of collective routines is found in Section 5.12.

Rationale. The equal-data restriction (on type matching) was made so as to avoid
the complexity of providing a facility analogous to the status argument of MPI_RECV
for discovering the amount of data sent. Some of the collective routines would require
an array of status values.

The statements about synchronization are made so as to allow a variety of implemen-
tations of the collective functions.

The collective operations do not accept a message tag argument. If future revisions of
MPI define nonblocking collective functions, then tags (or a similar mechanism) might
need to be added so as to allow the dis-ambiguation of multiple, pending, collective
operations. (End of rationale.)

Advice to users. It is dangerous to rely on synchronization side-effects of the col-
lective operations for program correctness. For example, even though a particular
implementation may provide a broadcast routine with a side-effect of synchroniza-
tion, the standard does not require this, and a program that relies on this will not be
portable.

On the other hand, a correct, portable program must allow for the fact that a collective
call may be synchronizing. Though one cannot rely on any synchronization side-effect,
one must program so as to allow it. These issues are discussed further in Section 5.12.
(End of advice to users.)

Advice to implementors. While vendors may write optimized collective routines
matched to their architectures, a complete library of the collective communication
routines can be written entirely using the MPI point-to-point communication func-
tions and a few auxiliary functions. If implementing on top of point-to-point, a hidden,
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134 CHAPTER 5. COLLECTIVE COMMUNICATION

special communicator might be created for the collective operation so as to avoid inter-
ference with any on-going point-to-point communication at the time of the collective
call. This is discussed further in Section 5.12. (End of advice to implementors.)

Many of the descriptions of the collective routines provide illustrations in terms of
blocking MPI point-to-point routines. These are intended solely to indicate what data is
sent or received by what process. Many of these examples are not correct MPI programs;
for purposes of simplicity, they often assume infinite buffering.

5.2 Communicator Argument

The key concept of the collective functions is to have a group or groups of participating
processes. The routines do not have group identifiers as explicit arguments. Instead, there
is a communicator argument. Groups and communicators are discussed in full detail in
Chapter 6. For the purposes of this chapter, it is sufficient to know that there are two types
of communicators: intra-communicators and inter-communicators. An intracommunicator
can be thought of as an indentifier for a single group of processes linked with a context. An
intercommunicator identifies two distinct groups of processes linked with a context.

5.2.1 Specifics for Intracommunicator Collective Operations

All processes in the group identified by the intracommunicator must call the collective
routine.

In many cases, collective communication can occur “in place” for intracommunicators,
with the output buffer being identical to the input buffer. This is specified by providing
a special argument value, MPI_IN_PLACE, instead of the send buffer or the receive buffer
argument, depending on the operation performed.

Rationale. The “in place” operations are provided to reduce unnecessary memory
motion by both the MPI implementation and by the user. Note that while the simple
check of testing whether the send and receive buffers have the same address will
work for some cases (e.g., MPI_ALLREDUCE), they are inadequate in others (e.g.,
MPI_GATHER, with root not equal to zero). Further, Fortran explicitly prohibits
aliasing of arguments; the approach of using a special value to denote “in place”
operation eliminates that difficulty. (End of rationale.)

Advice to users. By allowing the “in place” option, the receive buffer in many of the
collective calls becomes a send-and-receive buffer. For this reason, a Fortran binding
that includes INTENT must mark these as INOUT, not OUT.

Note that MPI_IN_PLACE is a special kind of value; it has the same restrictions on its
use that MPI_BOTTOM has.

Some intracommunicator collective operations do not support the “in place” option
(e.g., MPI_ALLTOALLV). (End of advice to users.)

5.2.2 Applying Collective Operations to Intercommunicators

To understand how collective operations apply to intercommunicators, we can view most
MPI intracommunicator collective operations as fitting one of the following categories (see,
for instance, [43]):
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5.2. COMMUNICATOR ARGUMENT 135

All-To-All All processes contribute to the result. All processes receive the result.

• MPI_ALLGATHER, MPI_ALLGATHERV

• MPI_ALLTOALL, MPI_ALLTOALLV, MPI_ALLTOALLW

• MPI_ALLREDUCE, MPI_REDUCE_SCATTER

• MPI_BARRIER

All-To-One All processes contribute to the result. One process receives the result.

• MPI_GATHER, MPI_GATHERV

• MPI_REDUCE

One-To-All One process contributes to the result. All processes receive the result.

• MPI_BCAST

• MPI_SCATTER, MPI_SCATTERV

Other Collective operations that do not fit into one of the above categories.

• MPI_SCAN, MPI_EXSCAN

The data movement patterns of MPI_SCAN and MPI_EXSCAN do not fit this taxonomy.
The application of collective communication to intercommunicators is best described

in terms of two groups. For example, an all-to-all MPI_ALLGATHER operation can be
described as collecting data from all members of one group with the result appearing in all
members of the other group (see Figure 5.2). As another example, a one-to-all
MPI_BCAST operation sends data from one member of one group to all members of the
other group. Collective computation operations such as MPI_REDUCE_SCATTER have a
similar interpretation (see Figure 5.3). For intracommunicators, these two groups are the
same. For intercommunicators, these two groups are distinct. For the all-to-all operations,
each such operation is described in two phases, so that it has a symmetric, full-duplex
behavior.

The following collective operations also apply to intercommunicators:

• MPI_BARRIER,

• MPI_BCAST,

• MPI_GATHER, MPI_GATHERV,

• MPI_SCATTER, MPI_SCATTERV,

• MPI_ALLGATHER, MPI_ALLGATHERV,

• MPI_ALLTOALL, MPI_ALLTOALLV, MPI_ALLTOALLW,

• MPI_ALLREDUCE, MPI_REDUCE,

• MPI_REDUCE_SCATTER.

In C++, the bindings for these functions are in the MPI::Comm class. However, since
the collective operations do not make sense on a C++ MPI::Comm (as it is neither an
intercommunicator nor an intracommunicator), the functions are all pure virtual.
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Figure 5.2: Intercommunicator allgather. The focus of data to one process is represented,
not mandated by the semantics. The two phases do allgathers in both directions.

0

1

2

1

2

0

3

Lcomm Rcomm

0

1

2

1

2

0

3

Lcomm Rcomm

Figure 5.3: Intercommunicator reduce-scatter. The focus of data to one process is rep-
resented, not mandated by the semantics. The two phases do reduce-scatters in both
directions.
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5.3. BARRIER SYNCHRONIZATION 137

5.2.3 Specifics for Intercommunicator Collective Operations

All processes in both groups identified by the intercommunicator must call the collective
routine.

Note that the “in place” option for intracommunicators does not apply to intercom-
municators since in the intercommunicator case there is no communication from a process
to itself.

For intercommunicator collective communication, if the operation is in the All-To-One
or One-To-All categories, then the transfer is unidirectional. The direction of the transfer is
indicated by a special value of the root argument. In this case, for the group containing the
root process, all processes in the group must call the routine using a special argument for
the root. For this, the root process uses the special root value MPI_ROOT; all other processes
in the same group as the root use MPI_PROC_NULL. All processes in the other group (the
group that is the remote group relative to the root process) must call the collective routine
and provide the rank of the root. If the operation is in the All-To-All category, then the
transfer is bidirectional.

Rationale. Operations in the All-To-One and One-To-All categories are unidirectional
by nature, and there is a clear way of specifying direction. Operations in the All-
To-All category will often occur as part of an exchange, where it makes sense to
communicate in both directions at once. (End of rationale.)

5.3 Barrier Synchronization

MPI_BARRIER( comm )

IN comm communicator (handle)

int MPI_Barrier(MPI_Comm comm)

MPI_BARRIER(COMM, IERROR)
INTEGER COMM, IERROR

{void MPI::Comm::Barrier() const = 0 (binding deprecated, see Section 15.2) }

If comm is an intracommunicator, MPI_BARRIER blocks the caller until all group mem-
bers have called it. The call returns at any process only after all group members have entered
the call.

If comm is an intercommunicator, MPI_BARRIER involves two groups. The call returns
at processes in one group (group A) of the intercommunicator only after all members of the
other group (group B) have entered the call (and vice versa). A process may return from
the call before all processes in its own group have entered the call.
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138 CHAPTER 5. COLLECTIVE COMMUNICATION

5.4 Broadcast

MPI_BCAST( buffer, count, datatype, root, comm )

INOUT buffer starting address of buffer (choice)

IN count number of entries in buffer (non-negative integer)

IN datatype data type of buffer (handle)

IN root rank of broadcast root (integer)

IN comm communicator (handle)

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm )

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

{void MPI::Comm::Bcast(void* buffer, int count,
const MPI::Datatype& datatype, int root) const = 0 (binding
deprecated, see Section 15.2) }

If comm is an intracommunicator, MPI_BCAST broadcasts a message from the process
with rank root to all processes of the group, itself included. It is called by all members of
the group using the same arguments for comm and root. On return, the content of root’s
buffer is copied to all other processes.

General, derived datatypes are allowed for datatype. The type signature of count,
datatype on any process must be equal to the type signature of count, datatype at the root.
This implies that the amount of data sent must be equal to the amount received, pairwise
between each process and the root. MPI_BCAST and all other data-movement collective
routines make this restriction. Distinct type maps between sender and receiver are still
allowed.

The “in place” option is not meaningful here.
If comm is an intercommunicator, then the call involves all processes in the intercom-

municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is broadcast from the root to all processes
in group B. The buffer arguments of the processes in group B must be consistent with the
buffer argument of the root.

5.4.1 Example using MPI_BCAST

The examples in this section use intracommunicators.

Example 5.1 Broadcast 100 ints from process 0 to every process in the group.

MPI_Comm comm;
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5.5. GATHER 139

int array[100];
int root=0;
...
MPI_Bcast( array, 100, MPI_INT, root, comm);

As in many of our example code fragments, we assume that some of the variables (such as
comm in the above) have been assigned appropriate values.

5.5 Gather

MPI_GATHER( sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice, significant only at
root)

IN recvcount number of elements for any single receive (non-negative
integer, significant only at root)

IN recvtype data type of recv buffer elements (significant only at
root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

int MPI_Gather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

{void MPI::Comm::Gather(const void* sendbuf, int sendcount, const
MPI::Datatype& sendtype, void* recvbuf, int recvcount,
const MPI::Datatype& recvtype, int root) const = 0 (binding
deprecated, see Section 15.2) }

If comm is an intracommunicator, each process (root process included) sends the con-
tents of its send buffer to the root process. The root process receives the messages and stores
them in rank order. The outcome is as if each of the n processes in the group (including
the root process) had executed a call to

MPI_Send(sendbuf, sendcount, sendtype, root, ...),
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140 CHAPTER 5. COLLECTIVE COMMUNICATION

and the root had executed n calls to

MPI_Recv(recvbuf + i · recvcount · extent(recvtype), recvcount, recvtype, i, ...),

where extent(recvtype) is the type extent obtained from a call to MPI_Type_get_extent().
An alternative description is that the n messages sent by the processes in the group

are concatenated in rank order, and the resulting message is received by the root as if by a
call to MPI_RECV(recvbuf, recvcount·n, recvtype, ...).

The receive buffer is ignored for all non-root processes.
General, derived datatypes are allowed for both sendtype and recvtype. The type signa-

ture of sendcount, sendtype on each process must be equal to the type signature of recvcount,
recvtype at the root. This implies that the amount of data sent must be equal to the amount
of data received, pairwise between each process and the root. Distinct type maps between
sender and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes,
only arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts and types should not cause any location on the root to be
written more than once. Such a call is erroneous.

Note that the recvcount argument at the root indicates the number of items it receives
from each process, not the total number of items it receives.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and
the contribution of the root to the gathered vector is assumed to be already in the correct
place in the receive buffer.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is gathered from all processes in group B to
the root. The send buffer arguments of the processes in group B must be consistent with
the receive buffer argument of the root.
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5.5. GATHER 141

MPI_GATHERV( sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root,
comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice, significant only at
root)

IN recvcounts non-negative integer array (of length group size) con-
taining the number of elements that are received from
each process (significant only at root)

IN displs integer array (of length group size). Entry i specifies
the displacement relative to recvbuf at which to place
the incoming data from process i (significant only at
root)

IN recvtype data type of recv buffer elements (significant only at
root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

int MPI_Gatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int *recvcounts, int *displs,
MPI_Datatype recvtype, int root, MPI_Comm comm)

MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,
COMM, IERROR

{void MPI::Comm::Gatherv(const void* sendbuf, int sendcount, const
MPI::Datatype& sendtype, void* recvbuf,
const int recvcounts[], const int displs[],
const MPI::Datatype& recvtype, int root) const = 0 (binding
deprecated, see Section 15.2) }

MPI_GATHERV extends the functionality of MPI_GATHER by allowing a varying count
of data from each process, since recvcounts is now an array. It also allows more flexibility
as to where the data is placed on the root, by providing the new argument, displs.

If comm is an intracommunicator, the outcome is as if each process, including the root
process, sends a message to the root,

MPI_Send(sendbuf, sendcount, sendtype, root, ...),

and the root executes n receives,

MPI_Recv(recvbuf + displs[j] · extent(recvtype), recvcounts[j], recvtype, i, ...).
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142 CHAPTER 5. COLLECTIVE COMMUNICATION

The data received from process j is placed into recvbuf of the root process beginning at
offset displs[j] elements (in terms of the recvtype).

The receive buffer is ignored for all non-root processes.
The type signature implied by sendcount, sendtype on process i must be equal to the

type signature implied by recvcounts[i], recvtype at the root. This implies that the amount
of data sent must be equal to the amount of data received, pairwise between each process
and the root. Distinct type maps between sender and receiver are still allowed, as illustrated
in Example 5.6.

All arguments to the function are significant on process root, while on other processes,
only arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts, types, and displacements should not cause any location on
the root to be written more than once. Such a call is erroneous.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and
the contribution of the root to the gathered vector is assumed to be already in the correct
place in the receive buffer

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is gathered from all processes in group B to
the root. The send buffer arguments of the processes in group B must be consistent with
the receive buffer argument of the root.

5.5.1 Examples using MPI_GATHER, MPI_GATHERV

The examples in this section use intracommunicators.

Example 5.2 Gather 100 ints from every process in group to root. See figure 5.4.

MPI_Comm comm;
int gsize,sendarray[100];
int root, *rbuf;
...
MPI_Comm_size( comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_Gather( sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

Example 5.3 Previous example modified – only the root allocates memory for the receive
buffer.

MPI_Comm comm;
int gsize,sendarray[100];
int root, myrank, *rbuf;
...
MPI_Comm_rank( comm, &myrank);
if ( myrank == root) {

MPI_Comm_size( comm, &gsize);
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100 100 100

100 100

all processes

100

rbuf

at root

Figure 5.4: The root process gathers 100 ints from each process in the group.

rbuf = (int *)malloc(gsize*100*sizeof(int));
}
MPI_Gather( sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

Example 5.4 Do the same as the previous example, but use a derived datatype. Note
that the type cannot be the entire set of gsize*100 ints since type matching is defined
pairwise between the root and each process in the gather.

MPI_Comm comm;
int gsize,sendarray[100];
int root, *rbuf;
MPI_Datatype rtype;
...
MPI_Comm_size( comm, &gsize);
MPI_Type_contiguous( 100, MPI_INT, &rtype );
MPI_Type_commit( &rtype );
rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_Gather( sendarray, 100, MPI_INT, rbuf, 1, rtype, root, comm);

Example 5.5 Now have each process send 100 ints to root, but place each set (of 100)
stride ints apart at receiving end. Use MPI_GATHERV and the displs argument to achieve
this effect. Assume stride ≥ 100. See Figure 5.5.

MPI_Comm comm;
int gsize,sendarray[100];
int root, *rbuf, stride;
int *displs,i,*rcounts;

...

MPI_Comm_size( comm, &gsize);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {

displs[i] = i*stride;
rcounts[i] = 100;
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100 100 100

100 100 100

stride
rbuf

at root

all processes

Figure 5.5: The root process gathers 100 ints from each process in the group, each set is
placed stride ints apart.

}
MPI_Gatherv( sendarray, 100, MPI_INT, rbuf, rcounts, displs, MPI_INT,

root, comm);

Note that the program is erroneous if stride < 100.

Example 5.6 Same as Example 5.5 on the receiving side, but send the 100 ints from the
0th column of a 100×150 int array, in C. See Figure 5.6.

MPI_Comm comm;
int gsize,sendarray[100][150];
int root, *rbuf, stride;
MPI_Datatype stype;
int *displs,i,*rcounts;

...

MPI_Comm_size( comm, &gsize);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {

displs[i] = i*stride;
rcounts[i] = 100;

}
/* Create datatype for 1 column of array
*/
MPI_Type_vector( 100, 1, 150, MPI_INT, &stype);
MPI_Type_commit( &stype );
MPI_Gatherv( sendarray, 1, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);

Example 5.7 Process i sends (100-i) ints from the i-th column of a 100 × 150 int
array, in C. It is received into a buffer with stride, as in the previous two examples. See
Figure 5.7.
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Figure 5.6: The root process gathers column 0 of a 100×150 C array, and each set is placed
stride ints apart.

MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, stride, myrank;
MPI_Datatype stype;
int *displs,i,*rcounts;

...

MPI_Comm_size( comm, &gsize);
MPI_Comm_rank( comm, &myrank );
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {

displs[i] = i*stride;
rcounts[i] = 100-i; /* note change from previous example */

}
/* Create datatype for the column we are sending
*/
MPI_Type_vector( 100-myrank, 1, 150, MPI_INT, &stype);
MPI_Type_commit( &stype );
/* sptr is the address of start of "myrank" column
*/
sptr = &sendarray[0][myrank];
MPI_Gatherv( sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);

Note that a different amount of data is received from each process.

Example 5.8 Same as Example 5.7, but done in a different way at the sending end. We
create a datatype that causes the correct striding at the sending end so that we read a
column of a C array. A similar thing was done in Example 4.16, Section 4.1.14.

MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
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Figure 5.7: The root process gathers 100-i ints from column i of a 100×150 C array, and
each set is placed stride ints apart.

int root, *rbuf, stride, myrank, disp[2], blocklen[2];
MPI_Datatype stype,type[2];
int *displs,i,*rcounts;

...

MPI_Comm_size( comm, &gsize);
MPI_Comm_rank( comm, &myrank );
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {

displs[i] = i*stride;
rcounts[i] = 100-i;

}
/* Create datatype for one int, with extent of entire row
*/
disp[0] = 0; disp[1] = 150*sizeof(int);
type[0] = MPI_INT; type[1] = MPI_UB;
blocklen[0] = 1; blocklen[1] = 1;
MPI_Type_create_struct( 2, blocklen, disp, type, &stype );
MPI_Type_commit( &stype );
sptr = &sendarray[0][myrank];
MPI_Gatherv( sptr, 100-myrank, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);

Example 5.9 Same as Example 5.7 at sending side, but at receiving side we make the
stride between received blocks vary from block to block. See Figure 5.8.

MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, *stride, myrank, bufsize;
MPI_Datatype stype;
int *displs,i,*rcounts,offset;
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Figure 5.8: The root process gathers 100-i ints from column i of a 100×150 C array, and
each set is placed stride[i] ints apart (a varying stride).

...

MPI_Comm_size( comm, &gsize);
MPI_Comm_rank( comm, &myrank );

stride = (int *)malloc(gsize*sizeof(int));
...
/* stride[i] for i = 0 to gsize-1 is set somehow
*/

/* set up displs and rcounts vectors first
*/
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
offset = 0;
for (i=0; i<gsize; ++i) {

displs[i] = offset;
offset += stride[i];
rcounts[i] = 100-i;

}
/* the required buffer size for rbuf is now easily obtained
*/
bufsize = displs[gsize-1]+rcounts[gsize-1];
rbuf = (int *)malloc(bufsize*sizeof(int));
/* Create datatype for the column we are sending
*/
MPI_Type_vector( 100-myrank, 1, 150, MPI_INT, &stype);
MPI_Type_commit( &stype );
sptr = &sendarray[0][myrank];
MPI_Gatherv( sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);

Example 5.10 Process i sends num ints from the i-th column of a 100 × 150 int array,
in C. The complicating factor is that the various values of num are not known to root, so a
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separate gather must first be run to find these out. The data is placed contiguously at the
receiving end.

MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, myrank, disp[2], blocklen[2];
MPI_Datatype stype,type[2];
int *displs,i,*rcounts,num;

...

MPI_Comm_size( comm, &gsize);
MPI_Comm_rank( comm, &myrank );

/* First, gather nums to root
*/
rcounts = (int *)malloc(gsize*sizeof(int));
MPI_Gather( &num, 1, MPI_INT, rcounts, 1, MPI_INT, root, comm);
/* root now has correct rcounts, using these we set displs[] so
* that data is placed contiguously (or concatenated) at receive end
*/
displs = (int *)malloc(gsize*sizeof(int));
displs[0] = 0;
for (i=1; i<gsize; ++i) {

displs[i] = displs[i-1]+rcounts[i-1];
}
/* And, create receive buffer
*/
rbuf = (int *)malloc(gsize*(displs[gsize-1]+rcounts[gsize-1])

*sizeof(int));
/* Create datatype for one int, with extent of entire row
*/
disp[0] = 0; disp[1] = 150*sizeof(int);
type[0] = MPI_INT; type[1] = MPI_UB;
blocklen[0] = 1; blocklen[1] = 1;
MPI_Type_create_struct( 2, blocklen, disp, type, &stype );
MPI_Type_commit( &stype );
sptr = &sendarray[0][myrank];
MPI_Gatherv( sptr, num, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);
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5.6 Scatter

MPI_SCATTER( sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcount number of elements sent to each process (non-negative
integer, significant only at root)

IN sendtype data type of send buffer elements (significant only at
root) (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-
teger)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

int MPI_Scatter(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

{void MPI::Comm::Scatter(const void* sendbuf, int sendcount, const
MPI::Datatype& sendtype, void* recvbuf, int recvcount,
const MPI::Datatype& recvtype, int root) const = 0 (binding
deprecated, see Section 15.2) }

MPI_SCATTER is the inverse operation to MPI_GATHER.
If comm is an intracommunicator, the outcome is as if the root executed n send oper-

ations,

MPI_Send(sendbuf + i · sendcount · extent(sendtype), sendcount, sendtype, i, ...),

and each process executed a receive,

MPI_Recv(recvbuf, recvcount, recvtype, i, ...).

An alternative description is that the root sends a message with MPI_Send(sendbuf,
sendcount·n, sendtype, ...). This message is split into n equal segments, the i-th segment is
sent to the i-th process in the group, and each process receives this message as above.

The send buffer is ignored for all non-root processes.
The type signature associated with sendcount, sendtype at the root must be equal to

the type signature associated with recvcount, recvtype at all processes (however, the type
maps may be different). This implies that the amount of data sent must be equal to the
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amount of data received, pairwise between each process and the root. Distinct type maps
between sender and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes,
only arguments recvbuf, recvcount, recvtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts and types should not cause any location on the root to be
read more than once.

Rationale. Though not needed, the last restriction is imposed so as to achieve
symmetry with MPI_GATHER, where the corresponding restriction (a multiple-write
restriction) is necessary. (End of rationale.)

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of recvbuf at the root. In such a case, recvcount and recvtype are ignored, and
root “sends” no data to itself. The scattered vector is still assumed to contain n segments,
where n is the group size; the root-th segment, which root should “send to itself,” is not
moved.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is scattered from the root to all processes in
group B. The receive buffer arguments of the processes in group B must be consistent with
the send buffer argument of the root.

MPI_SCATTERV( sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root,
comm)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcounts non-negative integer array (of length group size) speci-
fying the number of elements to send to each processor

IN displs integer array (of length group size). Entry i specifies
the displacement (relative to sendbuf from which to
take the outgoing data to process i

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-
teger)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

int MPI_Scatterv(void* sendbuf, int *sendcounts, int *displs,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



5.6. SCATTER 151

MPI_SCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,
COMM, IERROR

{void MPI::Comm::Scatterv(const void* sendbuf, const int sendcounts[],
const int displs[], const MPI::Datatype& sendtype,
void* recvbuf, int recvcount, const MPI::Datatype& recvtype,
int root) const = 0 (binding deprecated, see Section 15.2) }

MPI_SCATTERV is the inverse operation to MPI_GATHERV.
MPI_SCATTERV extends the functionality of MPI_SCATTER by allowing a varying

count of data to be sent to each process, since sendcounts is now an array. It also allows
more flexibility as to where the data is taken from on the root, by providing an additional
argument, displs.

If comm is an intracommunicator, the outcome is as if the root executed n send oper-
ations,

MPI_Send(sendbuf + displs[i] · extent(sendtype), sendcounts[i], sendtype, i, ...),

and each process executed a receive,

MPI_Recv(recvbuf, recvcount, recvtype, i, ...).

The send buffer is ignored for all non-root processes.
The type signature implied by sendcount[i], sendtype at the root must be equal to the

type signature implied by recvcount, recvtype at process i (however, the type maps may be
different). This implies that the amount of data sent must be equal to the amount of data
received, pairwise between each process and the root. Distinct type maps between sender
and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes,
only arguments recvbuf, recvcount, recvtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts, types, and displacements should not cause any location on
the root to be read more than once.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of recvbuf at the root. In such a case, recvcount and recvtype are ignored, and
root “sends” no data to itself. The scattered vector is still assumed to contain n segments,
where n is the group size; the root-th segment, which root should “send to itself,” is not
moved.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is scattered from the root to all processes in
group B. The receive buffer arguments of the processes in group B must be consistent with
the send buffer argument of the root.
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100 100 100

100 100

sendbuf

100

at root

all processes

Figure 5.9: The root process scatters sets of 100 ints to each process in the group.

5.6.1 Examples using MPI_SCATTER, MPI_SCATTERV

The examples in this section use intracommunicators.

Example 5.11 The reverse of Example 5.2. Scatter sets of 100 ints from the root to each
process in the group. See Figure 5.9.

MPI_Comm comm;
int gsize,*sendbuf;
int root, rbuf[100];
...
MPI_Comm_size( comm, &gsize);
sendbuf = (int *)malloc(gsize*100*sizeof(int));
...
MPI_Scatter( sendbuf, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

Example 5.12 The reverse of Example 5.5. The root process scatters sets of 100 ints to
the other processes, but the sets of 100 are stride ints apart in the sending buffer. Requires
use of MPI_SCATTERV. Assume stride ≥ 100. See Figure 5.10.

MPI_Comm comm;
int gsize,*sendbuf;
int root, rbuf[100], i, *displs, *scounts;

...

MPI_Comm_size( comm, &gsize);
sendbuf = (int *)malloc(gsize*stride*sizeof(int));
...
displs = (int *)malloc(gsize*sizeof(int));
scounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {

displs[i] = i*stride;
scounts[i] = 100;

}
MPI_Scatterv( sendbuf, scounts, displs, MPI_INT, rbuf, 100, MPI_INT,

root, comm);
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100 100 100

100 100 100

sendbuf

at root

all processes

stride

Figure 5.10: The root process scatters sets of 100 ints, moving by stride ints from send
to send in the scatter.

Example 5.13 The reverse of Example 5.9. We have a varying stride between blocks at
sending (root) side, at the receiving side we receive into the i-th column of a 100×150 C
array. See Figure 5.11.

MPI_Comm comm;
int gsize,recvarray[100][150],*rptr;
int root, *sendbuf, myrank, *stride;
MPI_Datatype rtype;
int i, *displs, *scounts, offset;
...
MPI_Comm_size( comm, &gsize);
MPI_Comm_rank( comm, &myrank );

stride = (int *)malloc(gsize*sizeof(int));
...
/* stride[i] for i = 0 to gsize-1 is set somehow
* sendbuf comes from elsewhere
*/
...
displs = (int *)malloc(gsize*sizeof(int));
scounts = (int *)malloc(gsize*sizeof(int));
offset = 0;
for (i=0; i<gsize; ++i) {

displs[i] = offset;
offset += stride[i];
scounts[i] = 100 - i;

}
/* Create datatype for the column we are receiving
*/
MPI_Type_vector( 100-myrank, 1, 150, MPI_INT, &rtype);
MPI_Type_commit( &rtype );
rptr = &recvarray[0][myrank];
MPI_Scatterv( sendbuf, scounts, displs, MPI_INT, rptr, 1, rtype,

root, comm);
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100
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all processes100
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stride[1]

Figure 5.11: The root scatters blocks of 100-i ints into column i of a 100×150 C array.
At the sending side, the blocks are stride[i] ints apart.

5.7 Gather-to-all

MPI_ALLGATHER( sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-
negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI_Allgather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

MPI_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

{void MPI::Comm::Allgather(const void* sendbuf, int sendcount, const
MPI::Datatype& sendtype, void* recvbuf, int recvcount,
const MPI::Datatype& recvtype) const = 0 (binding deprecated, see
Section 15.2) }

MPI_ALLGATHER can be thought of as MPI_GATHER, but where all processes receive
the result, instead of just the root. The block of data sent from the j-th process is received
by every process and placed in the j-th block of the buffer recvbuf.

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at any other process.
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If comm is an intracommunicator, the outcome of a call to MPI_ALLGATHER(...) is as
if all processes executed n calls to

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
recvtype,root,comm)

for root = 0 , ..., n-1. The rules for correct usage of MPI_ALLGATHER are easily found
from the corresponding rules for MPI_GATHER.

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at all processes. sendcount and sendtype are ignored.
Then the input data of each process is assumed to be in the area where that process would
receive its own contribution to the receive buffer.

If comm is an intercommunicator, then each process of one group (group A) contributes
sendcount data items; these data are concatenated and the result is stored at each process
in the other group (group B). Conversely the concatenation of the contributions of the
processes in group B is stored at each process in group A. The send buffer arguments in
group A must be consistent with the receive buffer arguments in group B, and vice versa.

Advice to users. The communication pattern of MPI_ALLGATHER executed on an
intercommunication domain need not be symmetric. The number of items sent by
processes in group A (as specified by the arguments sendcount, sendtype in group A
and the arguments recvcount, recvtype in group B), need not equal the number of
items sent by processes in group B (as specified by the arguments sendcount, sendtype
in group B and the arguments recvcount, recvtype in group A). In particular, one can
move data in only one direction by specifying sendcount = 0 for the communication
in the reverse direction.

(End of advice to users.)

MPI_ALLGATHERV( sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcounts non-negative integer array (of length group size) con-
taining the number of elements that are received from
each process

IN displs integer array (of length group size). Entry i specifies
the displacement (relative to recvbuf) at which to place
the incoming data from process i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI_Allgatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int *recvcounts, int *displs,
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MPI_Datatype recvtype, MPI_Comm comm)

MPI_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,
IERROR

{void MPI::Comm::Allgatherv(const void* sendbuf, int sendcount, const
MPI::Datatype& sendtype, void* recvbuf,
const int recvcounts[], const int displs[],
const MPI::Datatype& recvtype) const = 0 (binding deprecated, see
Section 15.2) }

MPI_ALLGATHERV can be thought of as MPI_GATHERV, but where all processes re-
ceive the result, instead of just the root. The block of data sent from the j-th process is
received by every process and placed in the j-th block of the buffer recvbuf. These blocks
need not all be the same size.

The type signature associated with sendcount, sendtype, at process j must be equal to
the type signature associated with recvcounts[j], recvtype at any other process.

If comm is an intracommunicator, the outcome is as if all processes executed calls to

MPI_GATHERV(sendbuf,sendcount,sendtype,recvbuf,recvcounts,displs,
recvtype,root,comm),

for root = 0 , ..., n-1. The rules for correct usage of MPI_ALLGATHERV are easily
found from the corresponding rules for MPI_GATHERV.

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at all processes. In such a case, sendcount and
sendtype are ignored, and the input data of each process is assumed to be in the area where
that process would receive its own contribution to the receive buffer.

If comm is an intercommunicator, then each process of one group (group A) contributes
sendcount data items; these data are concatenated and the result is stored at each process
in the other group (group B). Conversely the concatenation of the contributions of the
processes in group B is stored at each process in group A. The send buffer arguments in
group A must be consistent with the receive buffer arguments in group B, and vice versa.

5.7.1 Example using MPI_ALLGATHER

The example in this section uses intracommunicators.

Example 5.14 The all-gather version of Example 5.2. Using MPI_ALLGATHER, we will
gather 100 ints from every process in the group to every process.

MPI_Comm comm;
int gsize,sendarray[100];
int *rbuf;
...
MPI_Comm_size( comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_Allgather( sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, comm);
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After the call, every process has the group-wide concatenation of the sets of data.

5.8 All-to-All Scatter/Gather

MPI_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each process (non-negative
integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-
negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI_Alltoall(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

MPI_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

{void MPI::Comm::Alltoall(const void* sendbuf, int sendcount, const
MPI::Datatype& sendtype, void* recvbuf, int recvcount,
const MPI::Datatype& recvtype) const = 0 (binding deprecated, see
Section 15.2) }

MPI_ALLTOALL is an extension of MPI_ALLGATHER to the case where each process
sends distinct data to each of the receivers. The j-th block sent from process i is received
by process j and is placed in the i-th block of recvbuf.

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at any other process. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. As usual, however, the type maps may be different.

If comm is an intracommunicator, the outcome is as if each process executed a send to
each process (itself included) with a call to,

MPI_Send(sendbuf + i · sendcount · extent(sendtype), sendcount, sendtype, i, ...),

and a receive from every other process with a call to,

MPI_Recv(recvbuf + i · recvcount · extent(recvtype), recvcount, recvtype, i, ...).

All arguments on all processes are significant. The argument comm must have identical
values on all processes.
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158 CHAPTER 5. COLLECTIVE COMMUNICATION

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE to
the argument sendbuf at all processes. In such a case, sendcount and sendtype are ignored.
The data to be sent is taken from the recvbuf and replaced by the received data. Data sent
and received must have the same type map as specified by recvcount and recvtype.

Rationale. For large MPI_ALLTOALL instances, allocating both send and receive
buffers may consume too much memory. The “in place” option effectively halves the
application memory consumption and is useful in situations where the data to be sent
will not be used by the sending process after the MPI_ALLTOALL exchange (e.g., in
parallel Fast Fourier Transforms). (End of rationale.)

Advice to implementors. Users may opt to use the “in place” option in order to con-
serve memory. Quality MPI implementations should thus strive to minimize system
buffering. (End of advice to implementors.)

If comm is an intercommunicator, then the outcome is as if each process in group A
sends a message to each process in group B, and vice versa. The j-th send buffer of process
i in group A should be consistent with the i-th receive buffer of process j in group B, and
vice versa.

Advice to users. When a complete exchange is executed on an intercommunication
domain, then the number of data items sent from processes in group A to processes
in group B need not equal the number of items sent in the reverse direction. In
particular, one can have unidirectional communication by specifying sendcount = 0 in
the reverse direction.

(End of advice to users.)
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MPI_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recv-
type, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length group size) speci-
fying the number of elements to send to each processor

IN sdispls integer array (of length group size). Entry j specifies
the displacement (relative to sendbuf from which to
take the outgoing data destined for process j

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcounts non-negative integer array (of length group size) spec-
ifying the number of elements that can be received
from each processor

IN rdispls integer array (of length group size). Entry i specifies
the displacement (relative to recvbuf at which to place
the incoming data from process i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI_Alltoallv(void* sendbuf, int *sendcounts, int *sdispls,
MPI_Datatype sendtype, void* recvbuf, int *recvcounts,
int *rdispls, MPI_Datatype recvtype, MPI_Comm comm)

MPI_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,
RDISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),
RECVTYPE, COMM, IERROR

{void MPI::Comm::Alltoallv(const void* sendbuf, const int sendcounts[],
const int sdispls[], const MPI::Datatype& sendtype,
void* recvbuf, const int recvcounts[], const int rdispls[],
const MPI::Datatype& recvtype) const = 0 (binding deprecated, see
Section 15.2) }

MPI_ALLTOALLV adds flexibility to MPI_ALLTOALL in that the location of data for
the send is specified by sdispls and the location of the placement of the data on the receive
side is specified by rdispls.

If comm is an intracommunicator, then the j-th block sent from process i is received
by process j and is placed in the i-th block of recvbuf. These blocks need not all have the
same size.

The type signature associated with sendcounts[j], sendtype at process i must be equal
to the type signature associated with recvcounts[i], recvtype at process j. This implies that
the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. Distinct type maps between sender and receiver are still allowed.
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160 CHAPTER 5. COLLECTIVE COMMUNICATION

The outcome is as if each process sent a message to every other process with,

MPI_Send(sendbuf + sdispls[i] · extent(sendtype), sendcounts[i], sendtype, i, ...),

and received a message from every other process with a call to

MPI_Recv(recvbuf + rdispls[i] · extent(recvtype), recvcounts[i], recvtype, i, ...).

All arguments on all processes are significant. The argument comm must have identical
values on all processes.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE to
the argument sendbuf at all processes. In such a case, sendcounts, sdispls and sendtype are
ignored. The data to be sent is taken from the recvbuf and replaced by the received data.
Data sent and received must have the same type map as specified by the recvcounts array
and the recvtype, and is taken from the locations of the receive buffer specified by rdispls.

Advice to users. Specifying the “in place” option (which must be given on all
processes) implies that the same amount and type of data is sent and received between
any two processes in the group of the communicator. Different pairs of processes can
exchange different amounts of data. Users must ensure that recvcounts[j] and recvtype
on process i match recvcounts[i] and recvtype on process j. This symmetric exchange
can be useful in applications where the data to be sent will not be used by the sending
process after the MPI_ALLTOALLV exchange. (End of advice to users.)

If comm is an intercommunicator, then the outcome is as if each process in group A
sends a message to each process in group B, and vice versa. The j-th send buffer of process
i in group A should be consistent with the i-th receive buffer of process j in group B, and
vice versa.

Rationale. The definitions of MPI_ALLTOALL and MPI_ALLTOALLV give as much
flexibility as one would achieve by specifying n independent, point-to-point communi-
cations, with two exceptions: all messages use the same datatype, and messages are
scattered from (or gathered to) sequential storage. (End of rationale.)

Advice to implementors. Although the discussion of collective communication in
terms of point-to-point operation implies that each message is transferred directly
from sender to receiver, implementations may use a tree communication pattern.
Messages can be forwarded by intermediate nodes where they are split (for scatter) or
concatenated (for gather), if this is more efficient. (End of advice to implementors.)

MPI_ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recv-
types, comm)

IN sendbuf starting address of send buffer (choice)
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5.8. ALL-TO-ALL SCATTER/GATHER 161

IN sendcounts non-negative integer array (of length group size) speci-
fying the number of elements to send to each processor

IN sdispls integer array (of length group size). Entry j specifies
the displacement in bytes (relative to sendbuf) from
which to take the outgoing data destined for process
j (array of integers)

IN sendtypes array of datatypes (of length group size). Entry j

specifies the type of data to send to process j (array
of handles)

OUT recvbuf address of receive buffer (choice)

IN recvcounts non-negative integer array (of length group size) spec-
ifying the number of elements that can be received
from each processor

IN rdispls integer array (of length group size). Entry i specifies
the displacement in bytes (relative to recvbuf) at which
to place the incoming data from process i (array of
integers)

IN recvtypes array of datatypes (of length group size). Entry i

specifies the type of data received from process i (ar-
ray of handles)

IN comm communicator (handle)

int MPI_Alltoallw(void *sendbuf, int sendcounts[], int sdispls[],
MPI_Datatype sendtypes[], void *recvbuf, int recvcounts[],
int rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm)

MPI_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,
RDISPLS, RECVTYPES, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),
RDISPLS(*), RECVTYPES(*), COMM, IERROR

{void MPI::Comm::Alltoallw(const void* sendbuf, const int sendcounts[],
const int sdispls[], const MPI::Datatype sendtypes[], void*
recvbuf, const int recvcounts[], const int rdispls[], const
MPI::Datatype recvtypes[]) const = 0 (binding deprecated, see
Section 15.2) }

MPI_ALLTOALLW is the most general form of complete exchange. Like
MPI_TYPE_CREATE_STRUCT, the most general type constructor, MPI_ALLTOALLW al-
lows separate specification of count, displacement and datatype. In addition, to allow max-
imum flexibility, the displacement of blocks within the send and receive buffers is specified
in bytes.

If comm is an intracommunicator, then the j-th block sent from process i is received
by process j and is placed in the i-th block of recvbuf. These blocks need not all have the
same size.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



162 CHAPTER 5. COLLECTIVE COMMUNICATION

The type signature associated with sendcounts[j], sendtypes[j] at process i must be equal
to the type signature associated with recvcounts[i], recvtypes[i] at process j. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. Distinct type maps between sender and receiver are still allowed.

The outcome is as if each process sent a message to every other process with

MPI_Send(sendbuf + sdispls[i], sendcounts[i], sendtypes[i], i, ...),

and received a message from every other process with a call to

MPI_Recv(recvbuf + rdispls[i], recvcounts[i], recvtypes[i], i, ...).

All arguments on all processes are significant. The argument comm must describe the
same communicator on all processes.

Like for MPI_ALLTOALLV, the “in place” option for intracommunicators is specified by
passing MPI_IN_PLACE to the argument sendbuf at all processes. In such a case, sendcounts,
sdispls and sendtypes are ignored. The data to be sent is taken from the recvbuf and replaced
by the received data. Data sent and received must have the same type map as specified
by the recvcounts and recvtypes arrays, and is taken from the locations of the receive buffer
specified by rdispls.

If comm is an intercommunicator, then the outcome is as if each process in group A
sends a message to each process in group B, and vice versa. The j-th send buffer of process
i in group A should be consistent with the i-th receive buffer of process j in group B, and
vice versa.

Rationale. The MPI_ALLTOALLW function generalizes several MPI functions by care-
fully selecting the input arguments. For example, by making all but one process have
sendcounts[i] = 0, this achieves an MPI_SCATTERW function. (End of rationale.)

5.9 Global Reduction Operations

The functions in this section perform a global reduce operation (for example sum, maximum,
and logical and) across all members of a group. The reduction operation can be either one of
a predefined list of operations, or a user-defined operation. The global reduction functions
come in several flavors: a reduce that returns the result of the reduction to one member of a
group, an all-reduce that returns this result to all members of a group, and two scan (parallel
prefix) operations. In addition, a reduce-scatter operation combines the functionality of a
reduce and of a scatter operation.
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5.9.1 Reduce

MPI_REDUCE( sendbuf, recvbuf, count, datatype, op, root, comm)

IN sendbuf address of send buffer (choice)

OUT recvbuf address of receive buffer (choice, significant only at
root)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype data type of elements of send buffer (handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

int MPI_Reduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

{void MPI::Comm::Reduce(const void* sendbuf, void* recvbuf, int count,
const MPI::Datatype& datatype, const MPI::Op& op, int root)
const = 0 (binding deprecated, see Section 15.2) }

If comm is an intracommunicator, MPI_REDUCE combines the elements provided in the
input buffer of each process in the group, using the operation op, and returns the combined
value in the output buffer of the process with rank root. The input buffer is defined by
the arguments sendbuf, count and datatype; the output buffer is defined by the arguments
recvbuf, count and datatype; both have the same number of elements, with the same type.
The routine is called by all group members using the same arguments for count, datatype,
op, root and comm. Thus, all processes provide input buffers and output buffers of the same
length, with elements of the same type. Each process can provide one element, or a sequence
of elements, in which case the combine operation is executed element-wise on each entry of
the sequence. For example, if the operation is MPI_MAX and the send buffer contains two
elements that are floating point numbers (count = 2 and datatype = MPI_FLOAT), then
recvbuf(1) = global max(sendbuf(1)) and recvbuf(2) = global max(sendbuf(2)).

Section 5.9.2, lists the set of predefined operations provided by MPI. That section also
enumerates the datatypes to which each operation can be applied. In addition, users may
define their own operations that can be overloaded to operate on several datatypes, either
basic or derived. This is further explained in Section 5.9.5.

The operation op is always assumed to be associative. All predefined operations are also
assumed to be commutative. Users may define operations that are assumed to be associative,
but not commutative. The “canonical” evaluation order of a reduction is determined by the
ranks of the processes in the group. However, the implementation can take advantage of
associativity, or associativity and commutativity in order to change the order of evaluation.
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164 CHAPTER 5. COLLECTIVE COMMUNICATION

This may change the result of the reduction for operations that are not strictly associative
and commutative, such as floating point addition.

Advice to implementors. It is strongly recommended that MPI_REDUCE be imple-
mented so that the same result be obtained whenever the function is applied on the
same arguments, appearing in the same order. Note that this may prevent optimiza-
tions that take advantage of the physical location of processors. (End of advice to
implementors.)

Advice to users. Some applications may not be able to ignore the non-associative na-
ture of floating-point operations or may use user-defined operations (see Section 5.9.5)
that require a special reduction order and cannot be treated as associative. Such
applications should enforce the order of evaluation explicitly. For example, in the
case of operations that require a strict left-to-right (or right-to-left) evaluation or-
der, this could be done by gathering all operands at a single process (e.g., with
MPI_GATHER), applying the reduction operation in the desired order (e.g., with
MPI_REDUCE_LOCAL), and if needed, broadcast or scatter the result to the other
processes (e.g., with MPI_BCAST). (End of advice to users.)

The datatype argument of MPI_REDUCE must be compatible with op. Predefined op-
erators work only with the MPI types listed in Section 5.9.2 and Section 5.9.4. Furthermore,
the datatype and op given for predefined operators must be the same on all processes.

Note that it is possible for users to supply different user-defined operations to
MPI_REDUCE in each process. MPI does not define which operations are used on which
operands in this case. User-defined operators may operate on general, derived datatypes.
In this case, each argument that the reduce operation is applied to is one element described
by such a datatype, which may contain several basic values. This is further explained in
Section 5.9.5.

Advice to users. Users should make no assumptions about how MPI_REDUCE is
implemented. It is safest to ensure that the same function is passed to MPI_REDUCE
by each process. (End of advice to users.)

Overlapping datatypes are permitted in “send” buffers. Overlapping datatypes in “re-
ceive” buffers are erroneous and may give unpredictable results.

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at the root. In such a case, the input data is taken
at the root from the receive buffer, where it will be replaced by the output data.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Only send buffer arguments are significant in group
B and only receive buffer arguments are significant at the root.

5.9.2 Predefined Reduction Operations

The following predefined operations are supplied for MPI_REDUCE and related functions
MPI_ALLREDUCE, MPI_REDUCE_SCATTER, MPI_SCAN, and MPI_EXSCAN. These oper-
ations are invoked by placing the following in op.
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Name Meaning

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bit-wise and
MPI_LOR logical or
MPI_BOR bit-wise or
MPI_LXOR logical exclusive or (xor)
MPI_BXOR bit-wise exclusive or (xor)
MPI_MAXLOC max value and location
MPI_MINLOC min value and location

The two operations MPI_MINLOC and MPI_MAXLOC are discussed separately in Sec-
tion 5.9.4. For the other predefined operations, we enumerate below the allowed combi-
nations of op and datatype arguments. First, define groups of MPI basic datatypes in the
following way.

C integer: MPI_INT, MPI_LONG, MPI_SHORT,
MPI_UNSIGNED_SHORT, MPI_UNSIGNED,
MPI_UNSIGNED_LONG,
MPI_LONG_LONG_INT,
MPI_LONG_LONG (as synonym),
MPI_UNSIGNED_LONG_LONG,
MPI_SIGNED_CHAR,
MPI_UNSIGNED_CHAR,
MPI_INT8_T, MPI_INT16_T,
MPI_INT32_T, MPI_INT64_T,
MPI_UINT8_T, MPI_UINT16_T,
MPI_UINT32_T, MPI_UINT64_T

Fortran integer: MPI_INTEGER, MPI_AINT, MPI_OFFSET,
and handles returned from
MPI_TYPE_CREATE_F90_INTEGER,
and if available: MPI_INTEGER1,
MPI_INTEGER2, MPI_INTEGER4,
MPI_INTEGER8, MPI_INTEGER16

Floating point: MPI_FLOAT, MPI_DOUBLE, MPI_REAL,
MPI_DOUBLE_PRECISION
MPI_LONG_DOUBLE
and handles returned from
MPI_TYPE_CREATE_F90_REAL,
and if available: MPI_REAL2,
MPI_REAL4, MPI_REAL8, MPI_REAL16

Logical: MPI_LOGICAL, MPI_C_BOOL
Complex: MPI_COMPLEX,

MPI_C_FLOAT_COMPLEX,
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MPI_C_DOUBLE_COMPLEX,
MPI_C_LONG_DOUBLE_COMPLEX,
and handles returned from
MPI_TYPE_CREATE_F90_COMPLEX,
and if available: MPI_DOUBLE_COMPLEX,
MPI_COMPLEX4, MPI_COMPLEX8,
MPI_COMPLEX16, MPI_COMPLEX32

Byte: MPI_BYTE

Now, the valid datatypes for each option is specified below.

Op Allowed Types

MPI_MAX, MPI_MIN C integer, Fortran integer, Floating point

MPI_SUM, MPI_PROD C integer, Fortran integer, Floating point, Complex

MPI_LAND, MPI_LOR, MPI_LXOR C integer, Logical

MPI_BAND, MPI_BOR, MPI_BXOR C integer, Fortran integer, Byte

The following examples use intracommunicators.

Example 5.15 A routine that computes the dot product of two vectors that are distributed
across a group of processes and returns the answer at node zero.

SUBROUTINE PAR_BLAS1(m, a, b, c, comm)
REAL a(m), b(m) ! local slice of array
REAL c ! result (at node zero)
REAL sum
INTEGER m, comm, i, ierr

! local sum
sum = 0.0
DO i = 1, m

sum = sum + a(i)*b(i)
END DO

! global sum
CALL MPI_REDUCE(sum, c, 1, MPI_REAL, MPI_SUM, 0, comm, ierr)
RETURN

Example 5.16 A routine that computes the product of a vector and an array that are
distributed across a group of processes and returns the answer at node zero.

SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)
REAL a(m), b(m,n) ! local slice of array
REAL c(n) ! result
REAL sum(n)
INTEGER n, comm, i, j, ierr

! local sum
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DO j= 1, n
sum(j) = 0.0
DO i = 1, m

sum(j) = sum(j) + a(i)*b(i,j)
END DO

END DO

! global sum
CALL MPI_REDUCE(sum, c, n, MPI_REAL, MPI_SUM, 0, comm, ierr)

! return result at node zero (and garbage at the other nodes)
RETURN

5.9.3 Signed Characters and Reductions

The types MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR can be used in reduction opera-
tions. MPI_CHAR, MPI_WCHAR, and MPI_CHARACTER (which represent printable charac-
ters) cannot be used in reduction operations. In a heterogeneous environment, MPI_CHAR,
MPI_WCHAR, and MPI_CHARACTER will be translated so as to preserve the printable
character, whereas MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR will be translated so
as to preserve the integer value.

Advice to users. The types MPI_CHAR, MPI_WCHAR, and MPI_CHARACTER are
intended for characters, and so will be translated to preserve the printable representa-
tion, rather than the integer value, if sent between machines with different character
codes. The types MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR should be used in
C if the integer value should be preserved. (End of advice to users.)

5.9.4 MINLOC and MAXLOC

The operator MPI_MINLOC is used to compute a global minimum and also an index attached
to the minimum value. MPI_MAXLOC similarly computes a global maximum and index. One
application of these is to compute a global minimum (maximum) and the rank of the process
containing this value.

The operation that defines MPI_MAXLOC is:(
u
i

)
◦
(
v
j

)
=

(
w
k

)

where

w = max(u, v)

and

k =


i if u > v
min(i, j) if u = v
j if u < v
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MPI_MINLOC is defined similarly:(
u
i

)
◦
(
v
j

)
=

(
w
k

)

where

w = min(u, v)

and

k =


i if u < v
min(i, j) if u = v
j if u > v

Both operations are associative and commutative. Note that if MPI_MAXLOC is applied
to reduce a sequence of pairs (u0, 0), (u1, 1), . . . , (un−1, n − 1), then the value returned is
(u, r), where u = maxi ui and r is the index of the first global maximum in the sequence.
Thus, if each process supplies a value and its rank within the group, then a reduce operation
with op = MPI_MAXLOC will return the maximum value and the rank of the first process with
that value. Similarly, MPI_MINLOC can be used to return a minimum and its index. More
generally, MPI_MINLOC computes a lexicographic minimum, where elements are ordered
according to the first component of each pair, and ties are resolved according to the second
component.

The reduce operation is defined to operate on arguments that consist of a pair: value
and index. For both Fortran and C, types are provided to describe the pair. The potentially
mixed-type nature of such arguments is a problem in Fortran. The problem is circumvented,
for Fortran, by having the MPI-provided type consist of a pair of the same type as value,
and coercing the index to this type also. In C, the MPI-provided pair type has distinct
types and the index is an int.

In order to use MPI_MINLOC and MPI_MAXLOC in a reduce operation, one must provide
a datatype argument that represents a pair (value and index). MPI provides nine such
predefined datatypes. The operations MPI_MAXLOC and MPI_MINLOC can be used with
each of the following datatypes.

Fortran:

Name Description
MPI_2REAL pair of REALs
MPI_2DOUBLE_PRECISION pair of DOUBLE PRECISION variables
MPI_2INTEGER pair of INTEGERs

C:

Name Description
MPI_FLOAT_INT float and int
MPI_DOUBLE_INT double and int
MPI_LONG_INT long and int
MPI_2INT pair of int
MPI_SHORT_INT short and int
MPI_LONG_DOUBLE_INT long double and int
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5.9. GLOBAL REDUCTION OPERATIONS 169

The datatype MPI_2REAL is as if defined by the following (see Section 4.1).

MPI_TYPE_CONTIGUOUS(2, MPI_REAL, MPI_2REAL)

Similar statements apply for MPI_2INTEGER, MPI_2DOUBLE_PRECISION, and MPI_2INT.
The datatype MPI_FLOAT_INT is as if defined by the following sequence of instructions.

type[0] = MPI_FLOAT
type[1] = MPI_INT
disp[0] = 0
disp[1] = sizeof(float)
block[0] = 1
block[1] = 1
MPI_TYPE_CREATE_STRUCT(2, block, disp, type, MPI_FLOAT_INT)

Similar statements apply for MPI_LONG_INT and MPI_DOUBLE_INT.
The following examples use intracommunicators.

Example 5.17 Each process has an array of 30 doubles, in C. For each of the 30 locations,
compute the value and rank of the process containing the largest value.

...
/* each process has an array of 30 double: ain[30]
*/
double ain[30], aout[30];
int ind[30];
struct {

double val;
int rank;

} in[30], out[30];
int i, myrank, root;

MPI_Comm_rank(comm, &myrank);
for (i=0; i<30; ++i) {

in[i].val = ain[i];
in[i].rank = myrank;

}
MPI_Reduce( in, out, 30, MPI_DOUBLE_INT, MPI_MAXLOC, root, comm );
/* At this point, the answer resides on process root
*/
if (myrank == root) {

/* read ranks out
*/
for (i=0; i<30; ++i) {

aout[i] = out[i].val;
ind[i] = out[i].rank;

}
}

Example 5.18 Same example, in Fortran.
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...
! each process has an array of 30 double: ain(30)

DOUBLE PRECISION ain(30), aout(30)
INTEGER ind(30)
DOUBLE PRECISION in(2,30), out(2,30)
INTEGER i, myrank, root, ierr

CALL MPI_COMM_RANK(comm, myrank, ierr)
DO I=1, 30

in(1,i) = ain(i)
in(2,i) = myrank ! myrank is coerced to a double

END DO

CALL MPI_REDUCE( in, out, 30, MPI_2DOUBLE_PRECISION, MPI_MAXLOC, root,
comm, ierr )

! At this point, the answer resides on process root

IF (myrank .EQ. root) THEN
! read ranks out
DO I= 1, 30

aout(i) = out(1,i)
ind(i) = out(2,i) ! rank is coerced back to an integer

END DO
END IF

Example 5.19 Each process has a non-empty array of values. Find the minimum global
value, the rank of the process that holds it and its index on this process.

#define LEN 1000

float val[LEN]; /* local array of values */
int count; /* local number of values */
int myrank, minrank, minindex;
float minval;

struct {
float value;
int index;

} in, out;

/* local minloc */
in.value = val[0];
in.index = 0;
for (i=1; i < count; i++)

if (in.value > val[i]) {
in.value = val[i];
in.index = i;
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}

/* global minloc */
MPI_Comm_rank(comm, &myrank);
in.index = myrank*LEN + in.index;
MPI_Reduce( &in, &out, 1, MPI_FLOAT_INT, MPI_MINLOC, root, comm );

/* At this point, the answer resides on process root
*/

if (myrank == root) {
/* read answer out
*/
minval = out.value;
minrank = out.index / LEN;
minindex = out.index % LEN;

}

Rationale. The definition of MPI_MINLOC and MPI_MAXLOC given here has the
advantage that it does not require any special-case handling of these two operations:
they are handled like any other reduce operation. A programmer can provide his or
her own definition of MPI_MAXLOC and MPI_MINLOC, if so desired. The disadvantage
is that values and indices have to be first interleaved, and that indices and values have
to be coerced to the same type, in Fortran. (End of rationale.)

5.9.5 User-Defined Reduction Operations

MPI_OP_CREATE(function, commute, op)

IN function user defined function (function)

IN commute true if commutative; false otherwise.

OUT op operation (handle)

int MPI_Op_create(MPI_User_function *function, int commute, MPI_Op *op)

MPI_OP_CREATE( FUNCTION, COMMUTE, OP, IERROR)
EXTERNAL FUNCTION
LOGICAL COMMUTE
INTEGER OP, IERROR

{void MPI::Op::Init(MPI::User_function* function, bool commute) (binding
deprecated, see Section 15.2) }

MPI_OP_CREATE binds a user-defined reduction operation to an op handle that can
subsequently be used in MPI_REDUCE, MPI_ALLREDUCE, MPI_REDUCE_SCATTER,
MPI_SCAN, and MPI_EXSCAN. The user-defined operation is assumed to be associative.
If commute = true, then the operation should be both commutative and associative. If
commute = false, then the order of operands is fixed and is defined to be in ascending,
process rank order, beginning with process zero. The order of evaluation can be changed,
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talking advantage of the associativity of the operation. If commute = true then the order
of evaluation can be changed, taking advantage of commutativity and associativity.

The argument function is the user-defined function, which must have the following four
arguments: invec, inoutvec, len and datatype.

The ISO C prototype for the function is the following.
typedef void MPI_User_function(void *invec, void *inoutvec, int *len,

MPI_Datatype *datatype);

The Fortran declaration of the user-defined function appears below.
SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, TYPE)

<type> INVEC(LEN), INOUTVEC(LEN)
INTEGER LEN, TYPE

The C++ declaration of the user-defined function appears below.
{typedef void MPI::User_function(const void* invec, void *inoutvec, int

len, const Datatype& datatype); (binding deprecated, see
Section 15.2) }

The datatype argument is a handle to the data type that was passed into the call to
MPI_REDUCE. The user reduce function should be written such that the following holds:
Let u[0], ... , u[len-1] be the len elements in the communication buffer described by the
arguments invec, len and datatype when the function is invoked; let v[0], ... , v[len-1] be len
elements in the communication buffer described by the arguments inoutvec, len and datatype
when the function is invoked; let w[0], ... , w[len-1] be len elements in the communication
buffer described by the arguments inoutvec, len and datatype when the function returns;
then w[i] = u[i]◦v[i], for i=0 , ... , len-1, where ◦ is the reduce operation that the function
computes.

Informally, we can think of invec and inoutvec as arrays of len elements that function
is combining. The result of the reduction over-writes values in inoutvec, hence the name.
Each invocation of the function results in the pointwise evaluation of the reduce operator
on len elements: i.e., the function returns in inoutvec[i] the value invec[i] ◦ inoutvec[i], for
i = 0, . . . , count− 1, where ◦ is the combining operation computed by the function.

Rationale. The len argument allows MPI_REDUCE to avoid calling the function for
each element in the input buffer. Rather, the system can choose to apply the function
to chunks of input. In C, it is passed in as a reference for reasons of compatibility
with Fortran.

By internally comparing the value of the datatype argument to known, global handles,
it is possible to overload the use of a single user-defined function for several, different
data types. (End of rationale.)

General datatypes may be passed to the user function. However, use of datatypes that
are not contiguous is likely to lead to inefficiencies.

No MPI communication function may be called inside the user function. MPI_ABORT
may be called inside the function in case of an error.

Advice to users. Suppose one defines a library of user-defined reduce functions that
are overloaded: the datatype argument is used to select the right execution path at each
invocation, according to the types of the operands. The user-defined reduce function
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5.9. GLOBAL REDUCTION OPERATIONS 173

cannot “decode” the datatype argument that it is passed, and cannot identify, by itself,
the correspondence between the datatype handles and the datatype they represent.
This correspondence was established when the datatypes were created. Before the
library is used, a library initialization preamble must be executed. This preamble
code will define the datatypes that are used by the library, and store handles to these
datatypes in global, static variables that are shared by the user code and the library
code.

The Fortran version of MPI_REDUCE will invoke a user-defined reduce function using
the Fortran calling conventions and will pass a Fortran-type datatype argument; the
C version will use C calling convention and the C representation of a datatype handle.
Users who plan to mix languages should define their reduction functions accordingly.
(End of advice to users.)

Advice to implementors. We outline below a naive and inefficient implementation of
MPI_REDUCE not supporting the “in place” option.

MPI_Comm_size(comm, &groupsize);
MPI_Comm_rank(comm, &rank);
if (rank > 0) {

MPI_Recv(tempbuf, count, datatype, rank-1,...);
User_reduce(tempbuf, sendbuf, count, datatype);

}
if (rank < groupsize-1) {

MPI_Send(sendbuf, count, datatype, rank+1, ...);
}
/* answer now resides in process groupsize-1 ... now send to root
*/
if (rank == root) {

MPI_Irecv(recvbuf, count, datatype, groupsize-1,..., &req);
}
if (rank == groupsize-1) {

MPI_Send(sendbuf, count, datatype, root, ...);
}
if (rank == root) {

MPI_Wait(&req, &status);
}

The reduction computation proceeds, sequentially, from process 0 to process
groupsize-1. This order is chosen so as to respect the order of a possibly non-
commutative operator defined by the function User_reduce(). A more efficient im-
plementation is achieved by taking advantage of associativity and using a logarithmic
tree reduction. Commutativity can be used to advantage, for those cases in which
the commute argument to MPI_OP_CREATE is true. Also, the amount of temporary
buffer required can be reduced, and communication can be pipelined with computa-
tion, by transferring and reducing the elements in chunks of size len <count.

The predefined reduce operations can be implemented as a library of user-defined
operations. However, better performance might be achieved if MPI_REDUCE handles
these functions as a special case. (End of advice to implementors.)
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MPI_OP_FREE( op)

INOUT op operation (handle)

int MPI_op_free( MPI_Op *op)

MPI_OP_FREE( OP, IERROR)
INTEGER OP, IERROR

{void MPI::Op::Free() (binding deprecated, see Section 15.2) }

Marks a user-defined reduction operation for deallocation and sets op to MPI_OP_NULL.

Example of User-defined Reduce

It is time for an example of user-defined reduction. The example in this section uses an
intracommunicator.

Example 5.20 Compute the product of an array of complex numbers, in C.

typedef struct {
double real,imag;

} Complex;

/* the user-defined function
*/
void myProd( Complex *in, Complex *inout, int *len, MPI_Datatype *dptr )
{

int i;
Complex c;

for (i=0; i< *len; ++i) {
c.real = inout->real*in->real -

inout->imag*in->imag;
c.imag = inout->real*in->imag +

inout->imag*in->real;
*inout = c;
in++; inout++;

}
}

/* and, to call it...
*/
...

/* each process has an array of 100 Complexes
*/
Complex a[100], answer[100];
MPI_Op myOp;
MPI_Datatype ctype;
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/* explain to MPI how type Complex is defined
*/
MPI_Type_contiguous( 2, MPI_DOUBLE, &ctype );
MPI_Type_commit( &ctype );
/* create the complex-product user-op
*/
MPI_Op_create( myProd, 1, &myOp );

MPI_Reduce( a, answer, 100, ctype, myOp, root, comm );

/* At this point, the answer, which consists of 100 Complexes,
* resides on process root
*/

5.9.6 All-Reduce

MPI includes a variant of the reduce operations where the result is returned to all processes
in a group. MPI requires that all processes from the same group participating in these
operations receive identical results.

MPI_ALLREDUCE( sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype data type of elements of send buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

int MPI_Allreduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

{void MPI::Comm::Allreduce(const void* sendbuf, void* recvbuf, int count,
const MPI::Datatype& datatype, const MPI::Op& op) const = 0
(binding deprecated, see Section 15.2) }

If comm is an intracommunicator, MPI_ALLREDUCE behaves the same as
MPI_REDUCE except that the result appears in the receive buffer of all the group members.

Advice to implementors. The all-reduce operations can be implemented as a re-
duce, followed by a broadcast. However, a direct implementation can lead to better
performance. (End of advice to implementors.)
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The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at all processes. In this case, the input data is
taken at each process from the receive buffer, where it will be replaced by the output data.

If comm is an intercommunicator, then the result of the reduction of the data provided
by processes in group A is stored at each process in group B, and vice versa. Both groups
should provide count and datatype arguments that specify the same type signature.

The following example uses an intracommunicator.

Example 5.21 A routine that computes the product of a vector and an array that are
distributed across a group of processes and returns the answer at all nodes (see also Example
5.16).

SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)
REAL a(m), b(m,n) ! local slice of array
REAL c(n) ! result
REAL sum(n)
INTEGER n, comm, i, j, ierr

! local sum
DO j= 1, n
sum(j) = 0.0
DO i = 1, m

sum(j) = sum(j) + a(i)*b(i,j)
END DO

END DO

! global sum
CALL MPI_ALLREDUCE(sum, c, n, MPI_REAL, MPI_SUM, comm, ierr)

! return result at all nodes
RETURN

5.9.7 Process-local reduction

The functions in this section are of importance to library implementors who may want to
implement special reduction patterns that are otherwise not easily covered by the standard
MPI operations.

The following function applies a reduction operator to local arguments.
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MPI_REDUCE_LOCAL( inbuf, inoutbuf, count, datatype, op)

IN inbuf input buffer (choice)

INOUT inoutbuf combined input and output buffer (choice)

IN count number of elements in inbuf and inoutbuf buffers (non-
negative integer)

IN datatype data type of elements of inbuf and inoutbuf buffers
(handle)

IN op operation (handle)

int MPI_Reduce_local(void* inbuf, void* inoutbuf, int count,
MPI_Datatype datatype, MPI_Op op)

MPI_REDUCE_LOCAL(INBUF, INOUBUF, COUNT, DATATYPE, OP, IERROR)
<type> INBUF(*), INOUTBUF(*)
INTEGER COUNT, DATATYPE, OP, IERROR

{void MPI::Op::Reduce_local(const void* inbuf, void* inoutbuf, int count,
const MPI::Datatype& datatype) const (binding deprecated, see
Section 15.2) }

The function applies the operation given by op element-wise to the elements of inbuf
and inoutbuf with the result stored element-wise in inoutbuf, as explained for user-defined
operations in Section 5.9.5. Both inbuf and inoutbuf (input as well as result) have the
same number of elements given by count and the same datatype given by datatype. The
MPI_IN_PLACE option is not allowed.

Reduction operations can be queried for their commutativity.

MPI_OP_COMMUTATIVE( op, commute)

IN op operation (handle)

OUT commute true if op is commutative, false otherwise (logical)

int MPI_Op_commutative(MPI_Op op, int *commute)

MPI_OP_COMMUTATIVE(OP, COMMUTE, IERROR)
LOGICAL COMMUTE
INTEGER OP, IERROR

{bool MPI::Op::Is_commutative() const (binding deprecated, see Section 15.2) }

5.10 Reduce-Scatter

MPI includes variants of the reduce operations where the result is scattered to all processes
in a group on return. One variant scatters equal-sized blocks to all processes, while another
variant scatters blocks that may vary in size for each process.
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5.10.1 MPI_REDUCE_SCATTER_BLOCK

MPI_REDUCE_SCATTER_BLOCK( sendbuf, recvbuf, recvcount, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount element count per block (non-negative integer)

IN datatype data type of elements of send and receive buffers (han-
dle)

IN op operation (handle)

IN comm communicator (handle)

int MPI_Reduce_scatter_block(void* sendbuf, void* recvbuf, int recvcount,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

MPI_REDUCE_SCATTER_BLOCK(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP, COMM,
IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER RECVCOUNT, DATATYPE, OP, COMM, IERROR

{void MPI::Comm::Reduce_scatter_block(const void* sendbuf, void* recvbuf,
int recvcount, const MPI::Datatype& datatype,
const MPI::Op& op) const = 0 (binding deprecated, see Section 15.2) }

If comm is an intracommunicator, MPI_REDUCE_SCATTER_BLOCK first performs a
global, element-wise reduction on vectors of count = n*recvcount elements in the send buffers
defined by sendbuf, count and datatype, using the operation op, where n is the number of
processes in the group of comm. The routine is called by all group members using the
same arguments for recvcount, datatype, op and comm. The resulting vector is treated as
n consecutive blocks of recvcount elements that are scattered to the processes of the group.
The i-th block is sent to process i and stored in the receive buffer defined by recvbuf,
recvcount, and datatype.

Advice to implementors. The MPI_REDUCE_SCATTER_BLOCK routine is func-
tionally equivalent to: an MPI_REDUCE collective operation with count equal to
recvcount*n, followed by an MPI_SCATTER with sendcount equal to recvcount. How-
ever, a direct implementation may run faster. (End of advice to implementors.)

The “in place” option for intracommunictors is specified by passing MPI_IN_PLACE in
the sendbuf argument on all processes. In this case, the input data is taken from the receive
buffer.

If comm is an intercommunicator, then the result of the reduction of the data provided
by processes in one group (group A) is scattered among processes in the other group (group
B) and vice versa. Within each group, all processes provide the same value for the recvcount
argument, and provide input vectors of count = n*recvcount elements stored in the send
buffers, where n is the size of the group. The number of elements count must be the same
for the two groups. The resulting vector from the other group is scattered in blocks of
recvcount elements among the processes in the group.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



5.10. REDUCE-SCATTER 179

Rationale. The last restriction is needed so that the length of the send buffer of
one group can be determined by the local recvcount argument of the other group.
Otherwise, a communication is needed to figure out how many elements are reduced.
(End of rationale.)

5.10.2 MPI_REDUCE_SCATTER

MPI_REDUCE_SCATTER extends the functionality of MPI_REDUCE_SCATTER_BLOCK
such that the scattered blocks can vary in size. Block sizes are determined by the recvcounts
array, such that the i-th block contains recvcounts[i] elements.

MPI_REDUCE_SCATTER( sendbuf, recvbuf, recvcounts, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length group size) spec-
ifying the number of elements of the result distributed
to each process.

IN datatype data type of elements of send and receive buffers (han-
dle)

IN op operation (handle)

IN comm communicator (handle)

int MPI_Reduce_scatter(void* sendbuf, void* recvbuf, int *recvcounts,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

MPI_REDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,
IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR

{void MPI::Comm::Reduce_scatter(const void* sendbuf, void* recvbuf,
int recvcounts[], const MPI::Datatype& datatype,
const MPI::Op& op) const = 0 (binding deprecated, see Section 15.2) }

If comm is an intracommunicator, MPI_REDUCE_SCATTER first performs a global,
element-wise reduction on vectors of count =

∑n−1
i=0 recvcounts[i] elements in the send buffers

defined by sendbuf, count and datatype, using the operation op, where n is the number of
processes in the group of comm. The routine is called by all group members using the
same arguments for recvcounts, datatype, op and comm. The resulting vector is treated as
n consecutive blocks where the number of elements of the i-th block is recvcounts[i]. The
blocks are scattered to the processes of the group. The i-th block is sent to process i and
stored in the receive buffer defined by recvbuf, recvcounts[i] and datatype.

Advice to implementors. The MPI_REDUCE_SCATTER routine is functionally equiv-
alent to: an MPI_REDUCE collective operation with count equal to the sum of
recvcounts[i] followed by MPI_SCATTERV with sendcounts equal to recvcounts. How-
ever, a direct implementation may run faster. (End of advice to implementors.)
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180 CHAPTER 5. COLLECTIVE COMMUNICATION

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE in
the sendbuf argument. In this case, the input data is taken from the receive buffer. It is
not required to specify the “in place” option on all processes, since the processes for which
recvcounts[i]==0 may not have allocated a receive buffer.

If comm is an intercommunicator, then the result of the reduction of the data provided
by processes in one group (group A) is scattered among processes in the other group (group
B), and vice versa. Within each group, all processes provide the same recvcounts argument,
and provide input vectors of count =

∑n−1
i=0 recvcounts[i] elements stored in the send buffers,

where n is the size of the group. The resulting vector from the other group is scattered in
blocks of recvcounts[i] elements among the processes in the group. The number of elements
count must be the same for the two groups.

Rationale. The last restriction is needed so that the length of the send buffer can be
determined by the sum of the local recvcounts entries. Otherwise, a communication
is needed to figure out how many elements are reduced. (End of rationale.)

5.11 Scan

5.11.1 Inclusive Scan

MPI_SCAN( sendbuf, recvbuf, count, datatype, op, comm )

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN count number of elements in input buffer (non-negative in-
teger)

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

int MPI_Scan(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm )

MPI_SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

{void MPI::Intracomm::Scan(const void* sendbuf, void* recvbuf, int count,
const MPI::Datatype& datatype, const MPI::Op& op) const
(binding deprecated, see Section 15.2) }

If comm is an intracommunicator, MPI_SCAN is used to perform a prefix reduction
on data distributed across the group. The operation returns, in the receive buffer of the
process with rank i, the reduction of the values in the send buffers of processes with ranks
0,...,i (inclusive). The type of operations supported, their semantics, and the constraints
on send and receive buffers are as for MPI_REDUCE.
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5.11. SCAN 181

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE in
the sendbuf argument. In this case, the input data is taken from the receive buffer, and
replaced by the output data.

This operation is invalid for intercommunicators.

5.11.2 Exclusive Scan

MPI_EXSCAN(sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN count number of elements in input buffer (non-negative in-
teger)

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm intracommunicator (handle)

int MPI_Exscan(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

MPI_EXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

{void MPI::Intracomm::Exscan(const void* sendbuf, void* recvbuf, int count,
const MPI::Datatype& datatype, const MPI::Op& op) const
(binding deprecated, see Section 15.2) }

If comm is an intracommunicator, MPI_EXSCAN is used to perform a prefix reduction
on data distributed across the group. The value in recvbuf on the process with rank 0 is
undefined, and recvbuf is not signficant on process 0. The value in recvbuf on the process
with rank 1 is defined as the value in sendbuf on the process with rank 0. For processes
with rank i > 1, the operation returns, in the receive buffer of the process with rank i, the
reduction of the values in the send buffers of processes with ranks 0, . . . , i − 1 (inclusive).
The type of operations supported, their semantics, and the constraints on send and receive
buffers, are as for MPI_REDUCE.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE in
the sendbuf argument. In this case, the input data is taken from the receive buffer, and
replaced by the output data. The receive buffer on rank 0 is not changed by this operation.

This operation is invalid for intercommunicators.

Rationale. The exclusive scan is more general than the inclusive scan. Any inclusive
scan operation can be achieved by using the exclusive scan and then locally combining
the local contribution. Note that for non-invertable operations such as MPI_MAX, the
exclusive scan cannot be computed with the inclusive scan. (End of rationale.)
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182 CHAPTER 5. COLLECTIVE COMMUNICATION

5.11.3 Example using MPI_SCAN

The example in this section uses an intracommunicator.

Example 5.22 This example uses a user-defined operation to produce a segmented scan.
A segmented scan takes, as input, a set of values and a set of logicals, and the logicals
delineate the various segments of the scan. For example:

values v1 v2 v3 v4 v5 v6 v7 v8
logicals 0 0 1 1 1 0 0 1
result v1 v1 + v2 v3 v3 + v4 v3 + v4 + v5 v6 v6 + v7 v8

The operator that produces this effect is,(
u
i

)
◦
(
v
j

)
=

(
w
j

)
,

where,

w =

{
u+ v if i = j
v if i 6= j

.

Note that this is a non-commutative operator. C code that implements it is given
below.

typedef struct {
double val;
int log;

} SegScanPair;

/* the user-defined function
*/
void segScan( SegScanPair *in, SegScanPair *inout, int *len,

MPI_Datatype *dptr )
{

int i;
SegScanPair c;

for (i=0; i< *len; ++i) {
if ( in->log == inout->log )

c.val = in->val + inout->val;
else

c.val = inout->val;
c.log = inout->log;
*inout = c;
in++; inout++;

}
}

Note that the inout argument to the user-defined function corresponds to the right-
hand operand of the operator. When using this operator, we must be careful to specify that
it is non-commutative, as in the following.
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int i,base;
SegScanPair a, answer;
MPI_Op myOp;
MPI_Datatype type[2] = {MPI_DOUBLE, MPI_INT};
MPI_Aint disp[2];
int blocklen[2] = { 1, 1};
MPI_Datatype sspair;

/* explain to MPI how type SegScanPair is defined
*/
MPI_Get_address( a, disp);
MPI_Get_address( a.log, disp+1);
base = disp[0];
for (i=0; i<2; ++i) disp[i] -= base;
MPI_Type_create_struct( 2, blocklen, disp, type, &sspair );
MPI_Type_commit( &sspair );
/* create the segmented-scan user-op
*/
MPI_Op_create( segScan, 0, &myOp );
...
MPI_Scan( &a, &answer, 1, sspair, myOp, comm );

5.12 Correctness

A correct, portable program must invoke collective communications so that deadlock will not
occur, whether collective communications are synchronizing or not. The following examples
illustrate dangerous use of collective routines on intracommunicators.

Example 5.23 The following is erroneous.

switch(rank) {
case 0:

MPI_Bcast(buf1, count, type, 0, comm);
MPI_Bcast(buf2, count, type, 1, comm);
break;

case 1:
MPI_Bcast(buf2, count, type, 1, comm);
MPI_Bcast(buf1, count, type, 0, comm);
break;

}

We assume that the group of comm is {0,1}. Two processes execute two broadcast
operations in reverse order. If the operation is synchronizing then a deadlock will occur.

Collective operations must be executed in the same order at all members of the com-
munication group.

Example 5.24 The following is erroneous.
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184 CHAPTER 5. COLLECTIVE COMMUNICATION

switch(rank) {
case 0:

MPI_Bcast(buf1, count, type, 0, comm0);
MPI_Bcast(buf2, count, type, 2, comm2);
break;

case 1:
MPI_Bcast(buf1, count, type, 1, comm1);
MPI_Bcast(buf2, count, type, 0, comm0);
break;

case 2:
MPI_Bcast(buf1, count, type, 2, comm2);
MPI_Bcast(buf2, count, type, 1, comm1);
break;

}

Assume that the group of comm0 is {0,1}, of comm1 is {1, 2} and of comm2 is {2,0}. If
the broadcast is a synchronizing operation, then there is a cyclic dependency: the broadcast
in comm2 completes only after the broadcast in comm0; the broadcast in comm0 completes
only after the broadcast in comm1; and the broadcast in comm1 completes only after the
broadcast in comm2. Thus, the code will deadlock.

Collective operations must be executed in an order so that no cyclic dependences occur.

Example 5.25 The following is erroneous.

switch(rank) {
case 0:

MPI_Bcast(buf1, count, type, 0, comm);
MPI_Send(buf2, count, type, 1, tag, comm);
break;

case 1:
MPI_Recv(buf2, count, type, 0, tag, comm, status);
MPI_Bcast(buf1, count, type, 0, comm);
break;

}

Process zero executes a broadcast, followed by a blocking send operation. Process one
first executes a blocking receive that matches the send, followed by broadcast call that
matches the broadcast of process zero. This program may deadlock. The broadcast call on
process zero may block until process one executes the matching broadcast call, so that the
send is not executed. Process one will definitely block on the receive and so, in this case,
never executes the broadcast.

The relative order of execution of collective operations and point-to-point operations
should be such, so that even if the collective operations and the point-to-point operations
are synchronizing, no deadlock will occur.

Example 5.26 An unsafe, non-deterministic program.

switch(rank) {
case 0:
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First Execution

Second Execution

0 1 2

recv

broadcast broadcast broadcast

send

recv

process:

send

match

match

broadcast

recv

recv send

broadcast

send

broadcast
match

match

Figure 5.12: A race condition causes non-deterministic matching of sends and receives. One
cannot rely on synchronization from a broadcast to make the program deterministic.

MPI_Bcast(buf1, count, type, 0, comm);
MPI_Send(buf2, count, type, 1, tag, comm);
break;

case 1:
MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);
MPI_Bcast(buf1, count, type, 0, comm);
MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);
break;

case 2:
MPI_Send(buf2, count, type, 1, tag, comm);
MPI_Bcast(buf1, count, type, 0, comm);
break;

}

All three processes participate in a broadcast. Process 0 sends a message to process
1 after the broadcast, and process 2 sends a message to process 1 before the broadcast.
Process 1 receives before and after the broadcast, with a wildcard source argument.

Two possible executions of this program, with different matchings of sends and receives,
are illustrated in Figure 5.12. Note that the second execution has the peculiar effect that
a send executed after the broadcast is received at another node before the broadcast. This
example illustrates the fact that one should not rely on collective communication functions
to have particular synchronization effects. A program that works correctly only when the
first execution occurs (only when broadcast is synchronizing) is erroneous.

Finally, in multithreaded implementations, one can have more than one, concurrently
executing, collective communication call at a process. In these situations, it is the user’s re-
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186 CHAPTER 5. COLLECTIVE COMMUNICATION

sponsibility to ensure that the same communicator is not used concurrently by two different
collective communication calls at the same process.

Advice to implementors. Assume that broadcast is implemented using point-to-point
MPI communication. Suppose the following two rules are followed.

1. All receives specify their source explicitly (no wildcards).

2. Each process sends all messages that pertain to one collective call before sending
any message that pertain to a subsequent collective call.

Then, messages belonging to successive broadcasts cannot be confused, as the order
of point-to-point messages is preserved.

It is the implementor’s responsibility to ensure that point-to-point messages are not
confused with collective messages. One way to accomplish this is, whenever a commu-
nicator is created, to also create a “hidden communicator” for collective communica-
tion. One could achieve a similar effect more cheaply, for example, by using a hidden
tag or context bit to indicate whether the communicator is used for point-to-point or
collective communication. (End of advice to implementors.)
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Chapter 6

Groups, Contexts, Communicators,
and Caching

6.1 Introduction

This chapter introduces MPI features that support the development of parallel libraries.
Parallel libraries are needed to encapsulate the distracting complications inherent in paral-
lel implementations of key algorithms. They help to ensure consistent correctness of such
procedures, and provide a “higher level” of portability than MPI itself can provide. As
such, libraries prevent each programmer from repeating the work of defining consistent
data structures, data layouts, and methods that implement key algorithms (such as matrix
operations). Since the best libraries come with several variations on parallel systems (dif-
ferent data layouts, different strategies depending on the size of the system or problem, or
type of floating point), this too needs to be hidden from the user.

We refer the reader to [42] and [3] for further information on writing libraries in MPI,
using the features described in this chapter.

6.1.1 Features Needed to Support Libraries

The key features needed to support the creation of robust parallel libraries are as follows:

• Safe communication space, that guarantees that libraries can communicate as they
need to, without conflicting with communication extraneous to the library,

• Group scope for collective operations, that allow libraries to avoid unnecessarily syn-
chronizing uninvolved processes (potentially running unrelated code),

• Abstract process naming to allow libraries to describe their communication in terms
suitable to their own data structures and algorithms,

• The ability to “adorn” a set of communicating processes with additional user-defined
attributes, such as extra collective operations. This mechanism should provide a
means for the user or library writer effectively to extend a message-passing notation.

In addition, a unified mechanism or object is needed for conveniently denoting communica-
tion context, the group of communicating processes, to house abstract process naming, and
to store adornments.
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6.1.2 MPI’s Support for Libraries

The corresponding concepts that MPI provides, specifically to support robust libraries, are
as follows:

• Contexts of communication,

• Groups of processes,

• Virtual topologies,

• Attribute caching,

• Communicators.

Communicators (see [19, 40, 45]) encapsulate all of these ideas in order to provide the
appropriate scope for all communication operations in MPI. Communicators are divided
into two kinds: intra-communicators for operations within a single group of processes and
inter-communicators for operations between two groups of processes.

Caching. Communicators (see below) provide a “caching” mechanism that allows one to
associate new attributes with communicators, on a par with MPI built-in features. This
can be used by advanced users to adorn communicators further, and by MPI to implement
some communicator functions. For example, the virtual-topology functions described in
Chapter 7 are likely to be supported this way.

Groups. Groups define an ordered collection of processes, each with a rank, and it is this
group that defines the low-level names for inter-process communication (ranks are used for
sending and receiving). Thus, groups define a scope for process names in point-to-point
communication. In addition, groups define the scope of collective operations. Groups may
be manipulated separately from communicators in MPI, but only communicators can be
used in communication operations.

Intra-communicators. The most commonly used means for message passing in MPI is via
intra-communicators. Intra-communicators contain an instance of a group, contexts of
communication for both point-to-point and collective communication, and the ability to
include virtual topology and other attributes. These features work as follows:

• Contexts provide the ability to have separate safe “universes” of message-passing in
MPI. A context is akin to an additional tag that differentiates messages. The system
manages this differentiation process. The use of separate communication contexts
by distinct libraries (or distinct library invocations) insulates communication internal
to the library execution from external communication. This allows the invocation of
the library even if there are pending communications on “other” communicators, and
avoids the need to synchronize entry or exit into library code. Pending point-to-point
communications are also guaranteed not to interfere with collective communications
within a single communicator.

• Groups define the participants in the communication (see above) of a communicator.
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6.1. INTRODUCTION 189

• A virtual topology defines a special mapping of the ranks in a group to and from a
topology. Special constructors for communicators are defined in Chapter 7 to provide
this feature. Intra-communicators as described in this chapter do not have topologies.

• Attributes define the local information that the user or library has added to a com-
municator for later reference.

Advice to users. The practice in many communication libraries is that there is a
unique, predefined communication universe that includes all processes available when
the parallel program is initiated; the processes are assigned consecutive ranks. Par-
ticipants in a point-to-point communication are identified by their rank; a collective
communication (such as broadcast) always involves all processes. This practice can be
followed in MPI by using the predefined communicator MPI_COMM_WORLD. Users
who are satisfied with this practice can plug in MPI_COMM_WORLD wherever a com-
municator argument is required, and can consequently disregard the rest of this chapter.
(End of advice to users.)

Inter-communicators. The discussion has dealt so far with intra-communication: com-
munication within a group. MPI also supports inter-communication: communication
between two non-overlapping groups. When an application is built by composing several
parallel modules, it is convenient to allow one module to communicate with another using
local ranks for addressing within the second module. This is especially convenient in a
client-server computing paradigm, where either client or server are parallel. The support
of inter-communication also provides a mechanism for the extension of MPI to a dynamic
model where not all processes are preallocated at initialization time. In such a situation,
it becomes necessary to support communication across “universes.” Inter-communication
is supported by objects called inter-communicators. These objects bind two groups to-
gether with communication contexts shared by both groups. For inter-communicators, these
features work as follows:

• Contexts provide the ability to have a separate safe “universe” of message-passing
between the two groups. A send in the local group is always a receive in the re-
mote group, and vice versa. The system manages this differentiation process. The
use of separate communication contexts by distinct libraries (or distinct library in-
vocations) insulates communication internal to the library execution from external
communication. This allows the invocation of the library even if there are pending
communications on “other” communicators, and avoids the need to synchronize entry
or exit into library code.

• A local and remote group specify the recipients and destinations for an inter-com-
municator.

• Virtual topology is undefined for an inter-communicator.

• As before, attributes cache defines the local information that the user or library has
added to a communicator for later reference.

MPI provides mechanisms for creating and manipulating inter-communicators. They
are used for point-to-point and collective communication in an related manner to intra-
communicators. Users who do not need inter-communication in their applications can safely
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190 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

ignore this extension. Users who require inter-communication between overlapping groups
must layer this capability on top of MPI.

6.2 Basic Concepts

In this section, we turn to a more formal definition of the concepts introduced above.

6.2.1 Groups

A group is an ordered set of process identifiers (henceforth processes); processes are
implementation-dependent objects. Each process in a group is associated with an inte-
ger rank. Ranks are contiguous and start from zero. Groups are represented by opaque
group objects, and hence cannot be directly transferred from one process to another. A
group is used within a communicator to describe the participants in a communication “uni-
verse” and to rank such participants (thus giving them unique names within that “universe”
of communication).

There is a special pre-defined group: MPI_GROUP_EMPTY, which is a group with no
members. The predefined constant MPI_GROUP_NULL is the value used for invalid group
handles.

Advice to users. MPI_GROUP_EMPTY, which is a valid handle to an empty group,
should not be confused with MPI_GROUP_NULL, which in turn is an invalid handle.
The former may be used as an argument to group operations; the latter, which is
returned when a group is freed, is not a valid argument. (End of advice to users.)

Advice to implementors. A group may be represented by a virtual-to-real process-
address-translation table. Each communicator object (see below) would have a pointer
to such a table.

Simple implementations of MPI will enumerate groups, such as in a table. However,
more advanced data structures make sense in order to improve scalability and memory
usage with large numbers of processes. Such implementations are possible with MPI.
(End of advice to implementors.)

6.2.2 Contexts

A context is a property of communicators (defined next) that allows partitioning of the
communication space. A message sent in one context cannot be received in another context.
Furthermore, where permitted, collective operations are independent of pending point-to-
point operations. Contexts are not explicit MPI objects; they appear only as part of the
realization of communicators (below).

Advice to implementors. Distinct communicators in the same process have distinct
contexts. A context is essentially a system-managed tag (or tags) needed to make
a communicator safe for point-to-point and MPI-defined collective communication.
Safety means that collective and point-to-point communication within one commu-
nicator do not interfere, and that communication over distinct communicators don’t
interfere.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



6.2. BASIC CONCEPTS 191

A possible implementation for a context is as a supplemental tag attached to messages
on send and matched on receive. Each intra-communicator stores the value of its two
tags (one for point-to-point and one for collective communication). Communicator-
generating functions use a collective communication to agree on a new group-wide
unique context.

Analogously, in inter-communication, two context tags are stored per communicator,
one used by group A to send and group B to receive, and a second used by group B
to send and for group A to receive.

Since contexts are not explicit objects, other implementations are also possible. (End
of advice to implementors.)

6.2.3 Intra-Communicators

Intra-communicators bring together the concepts of group and context. To support
implementation-specific optimizations, and application topologies (defined in the next chap-
ter, Chapter 7), communicators may also “cache” additional information (see Section 6.7).
MPI communication operations reference communicators to determine the scope and the
“communication universe” in which a point-to-point or collective operation is to operate.

Each communicator contains a group of valid participants; this group always includes
the local process. The source and destination of a message is identified by process rank
within that group.

For collective communication, the intra-communicator specifies the set of processes that
participate in the collective operation (and their order, when significant). Thus, the commu-
nicator restricts the “spatial” scope of communication, and provides machine-independent
process addressing through ranks.

Intra-communicators are represented by opaque intra-communicator objects, and
hence cannot be directly transferred from one process to another.

6.2.4 Predefined Intra-Communicators

An initial intra-communicator MPI_COMM_WORLD of all processes the local process can
communicate with after initialization (itself included) is defined once MPI_INIT or
MPI_INIT_THREAD has been called. In addition, the communicator MPI_COMM_SELF is
provided, which includes only the process itself.

The predefined constant MPI_COMM_NULL is the value used for invalid communicator
handles.

In a static-process-model implementation of MPI, all processes that participate in the
computation are available after MPI is initialized. For this case, MPI_COMM_WORLD is a
communicator of all processes available for the computation; this communicator has the
same value in all processes. In an implementation of MPI where processes can dynami-
cally join an MPI execution, it may be the case that a process starts an MPI computation
without having access to all other processes. In such situations, MPI_COMM_WORLD is a
communicator incorporating all processes with which the joining process can immediately
communicate. Therefore, MPI_COMM_WORLD may simultaneously represent disjoint groups
in different processes.

All MPI implementations are required to provide the MPI_COMM_WORLD communi-
cator. It cannot be deallocated during the life of a process. The group corresponding to
this communicator does not appear as a pre-defined constant, but it may be accessed using
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192 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_COMM_GROUP (see below). MPI does not specify the correspondence between the
process rank in MPI_COMM_WORLD and its (machine-dependent) absolute address. Neither
does MPI specify the function of the host process, if any. Other implementation-dependent,
predefined communicators may also be provided.

6.3 Group Management

This section describes the manipulation of process groups in MPI. These operations are
local and their execution does not require interprocess communication.

6.3.1 Group Accessors

MPI_GROUP_SIZE(group, size)

IN group group (handle)

OUT size number of processes in the group (integer)

int MPI_Group_size(MPI_Group group, int *size)

MPI_GROUP_SIZE(GROUP, SIZE, IERROR)
INTEGER GROUP, SIZE, IERROR

{int MPI::Group::Get_size() const (binding deprecated, see Section 15.2) }

MPI_GROUP_RANK(group, rank)

IN group group (handle)

OUT rank rank of the calling process in group, or
MPI_UNDEFINED if the process is not a member (in-
teger)

int MPI_Group_rank(MPI_Group group, int *rank)

MPI_GROUP_RANK(GROUP, RANK, IERROR)
INTEGER GROUP, RANK, IERROR

{int MPI::Group::Get_rank() const (binding deprecated, see Section 15.2) }
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6.3. GROUP MANAGEMENT 193

MPI_GROUP_TRANSLATE_RANKS (group1, n, ranks1, group2, ranks2)

IN group1 group1 (handle)

IN n number of ranks in ranks1 and ranks2 arrays (integer)

IN ranks1 array of zero or more valid ranks in group1

IN group2 group2 (handle)

OUT ranks2 array of corresponding ranks in group2,
MPI_UNDEFINED when no correspondence exists.

int MPI_Group_translate_ranks (MPI_Group group1, int n, int *ranks1,
MPI_Group group2, int *ranks2)

MPI_GROUP_TRANSLATE_RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)
INTEGER GROUP1, N, RANKS1(*), GROUP2, RANKS2(*), IERROR

{static void MPI::Group::Translate_ranks (const MPI::Group& group1, int n,
const int ranks1[], const MPI::Group& group2, int ranks2[])
(binding deprecated, see Section 15.2) }

This function is important for determining the relative numbering of the same processes
in two different groups. For instance, if one knows the ranks of certain processes in the group
of MPI_COMM_WORLD, one might want to know their ranks in a subset of that group.

MPI_PROC_NULL is a valid rank for input to MPI_GROUP_TRANSLATE_RANKS, which
returns MPI_PROC_NULL as the translated rank.

MPI_GROUP_COMPARE(group1, group2, result)

IN group1 first group (handle)

IN group2 second group (handle)

OUT result result (integer)

int MPI_Group_compare(MPI_Group group1,MPI_Group group2, int *result)

MPI_GROUP_COMPARE(GROUP1, GROUP2, RESULT, IERROR)
INTEGER GROUP1, GROUP2, RESULT, IERROR

{static int MPI::Group::Compare(const MPI::Group& group1,
const MPI::Group& group2) (binding deprecated, see Section 15.2) }

MPI_IDENT results if the group members and group order is exactly the same in both groups.
This happens for instance if group1 and group2 are the same handle. MPI_SIMILAR results if
the group members are the same but the order is different. MPI_UNEQUAL results otherwise.

6.3.2 Group Constructors

Group constructors are used to subset and superset existing groups. These constructors
construct new groups from existing groups. These are local operations, and distinct groups
may be defined on different processes; a process may also define a group that does not
include itself. Consistent definitions are required when groups are used as arguments in
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194 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

communicator-building functions. MPI does not provide a mechanism to build a group
from scratch, but only from other, previously defined groups. The base group, upon which
all other groups are defined, is the group associated with the initial communicator
MPI_COMM_WORLD (accessible through the function MPI_COMM_GROUP).

Rationale. In what follows, there is no group duplication function analogous to
MPI_COMM_DUP, defined later in this chapter. There is no need for a group dupli-
cator. A group, once created, can have several references to it by making copies of
the handle. The following constructors address the need for subsets and supersets of
existing groups. (End of rationale.)

Advice to implementors. Each group constructor behaves as if it returned a new
group object. When this new group is a copy of an existing group, then one can
avoid creating such new objects, using a reference-count mechanism. (End of advice
to implementors.)

MPI_COMM_GROUP(comm, group)

IN comm communicator (handle)

OUT group group corresponding to comm (handle)

int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

MPI_COMM_GROUP(COMM, GROUP, IERROR)
INTEGER COMM, GROUP, IERROR

{MPI::Group MPI::Comm::Get_group() const (binding deprecated, see Section 15.2) }

MPI_COMM_GROUP returns in group a handle to the group of comm.

MPI_GROUP_UNION(group1, group2, newgroup)

IN group1 first group (handle)

IN group2 second group (handle)

OUT newgroup union group (handle)

int MPI_Group_union(MPI_Group group1, MPI_Group group2,
MPI_Group *newgroup)

MPI_GROUP_UNION(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

{static MPI::Group MPI::Group::Union(const MPI::Group& group1,
const MPI::Group& group2) (binding deprecated, see Section 15.2) }
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6.3. GROUP MANAGEMENT 195

MPI_GROUP_INTERSECTION(group1, group2, newgroup)

IN group1 first group (handle)

IN group2 second group (handle)

OUT newgroup intersection group (handle)

int MPI_Group_intersection(MPI_Group group1, MPI_Group group2,
MPI_Group *newgroup)

MPI_GROUP_INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

{static MPI::Group MPI::Group::Intersect(const MPI::Group& group1,
const MPI::Group& group2) (binding deprecated, see Section 15.2) }

MPI_GROUP_DIFFERENCE(group1, group2, newgroup)

IN group1 first group (handle)

IN group2 second group (handle)

OUT newgroup difference group (handle)

int MPI_Group_difference(MPI_Group group1, MPI_Group group2,
MPI_Group *newgroup)

MPI_GROUP_DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

{static MPI::Group MPI::Group::Difference(const MPI::Group& group1,
const MPI::Group& group2) (binding deprecated, see Section 15.2) }

The set-like operations are defined as follows:

union All elements of the first group (group1), followed by all elements of second group
(group2) not in first.

intersect all elements of the first group that are also in the second group, ordered as in
first group.

difference all elements of the first group that are not in the second group, ordered as in
the first group.

Note that for these operations the order of processes in the output group is determined
primarily by order in the first group (if possible) and then, if necessary, by order in the
second group. Neither union nor intersection are commutative, but both are associative.

The new group can be empty, that is, equal to MPI_GROUP_EMPTY.
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196 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_GROUP_INCL(group, n, ranks, newgroup)

IN group group (handle)

IN n number of elements in array ranks (and size of
newgroup) (integer)

IN ranks ranks of processes in group to appear in
newgroup (array of integers)

OUT newgroup new group derived from above, in the order defined by
ranks (handle)

int MPI_Group_incl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)

MPI_GROUP_INCL(GROUP, N, RANKS, NEWGROUP, IERROR)
INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

{MPI::Group MPI::Group::Incl(int n, const int ranks[]) const (binding
deprecated, see Section 15.2) }

The function MPI_GROUP_INCL creates a group newgroup that consists of the
n processes in group with ranks rank[0],. . ., rank[n-1]; the process with rank i in newgroup
is the process with rank ranks[i] in group. Each of the n elements of ranks must be a valid
rank in group and all elements must be distinct, or else the program is erroneous. If n = 0,
then newgroup is MPI_GROUP_EMPTY. This function can, for instance, be used to reorder
the elements of a group. See also MPI_GROUP_COMPARE.

MPI_GROUP_EXCL(group, n, ranks, newgroup)

IN group group (handle)

IN n number of elements in array ranks (integer)

IN ranks array of integer ranks in group not to appear in
newgroup

OUT newgroup new group derived from above, preserving the order
defined by group (handle)

int MPI_Group_excl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)

MPI_GROUP_EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)
INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

{MPI::Group MPI::Group::Excl(int n, const int ranks[]) const (binding
deprecated, see Section 15.2) }

The function MPI_GROUP_EXCL creates a group of processes newgroup that is obtained
by deleting from group those processes with ranks ranks[0] ,. . . ranks[n-1]. The ordering of
processes in newgroup is identical to the ordering in group. Each of the n elements of ranks
must be a valid rank in group and all elements must be distinct; otherwise, the program is
erroneous. If n = 0, then newgroup is identical to group.
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6.3. GROUP MANAGEMENT 197

MPI_GROUP_RANGE_INCL(group, n, ranges, newgroup)

IN group group (handle)

IN n number of triplets in array ranges (integer)

IN ranges a one-dimensional array of integer triplets, of the form
(first rank, last rank, stride) indicating ranks in group

of processes to be included in newgroup

OUT newgroup new group derived from above, in the order defined by
ranges (handle)

int MPI_Group_range_incl(MPI_Group group, int n, int ranges[][3],
MPI_Group *newgroup)

MPI_GROUP_RANGE_INCL(GROUP, N, RANGES, NEWGROUP, IERROR)
INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

{MPI::Group MPI::Group::Range_incl(int n, const int ranges[][3]) const
(binding deprecated, see Section 15.2) }

If ranges consist of the triplets

(first1, last1, stride1), ..., (firstn, lastn, striden)

then newgroup consists of the sequence of processes in group with ranks

first1, first1 + stride1, ..., first1 +
⌊
last1 − first1

stride1

⌋
stride1, ...

firstn, firstn + striden, ..., firstn +
⌊
lastn − firstn

striden

⌋
striden.

Each computed rank must be a valid rank in group and all computed ranks must be
distinct, or else the program is erroneous. Note that we may have firsti > lasti, and stridei
may be negative, but cannot be zero.

The functionality of this routine is specified to be equivalent to expanding the array
of ranges to an array of the included ranks and passing the resulting array of ranks and
other arguments to MPI_GROUP_INCL. A call to MPI_GROUP_INCL is equivalent to a call
to MPI_GROUP_RANGE_INCL with each rank i in ranks replaced by the triplet (i,i,1) in
the argument ranges.

MPI_GROUP_RANGE_EXCL(group, n, ranges, newgroup)

IN group group (handle)

IN n number of elements in array ranges (integer)

IN ranges a one-dimensional array of integer triplets of the form
(first rank, last rank, stride), indicating the ranks in
group of processes to be excluded from the output
group newgroup.

OUT newgroup new group derived from above, preserving the order
in group (handle)
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int MPI_Group_range_excl(MPI_Group group, int n, int ranges[][3],
MPI_Group *newgroup)

MPI_GROUP_RANGE_EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)
INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

{MPI::Group MPI::Group::Range_excl(int n, const int ranges[][3]) const
(binding deprecated, see Section 15.2) }

Each computed rank must be a valid rank in group and all computed ranks must be distinct,
or else the program is erroneous.

The functionality of this routine is specified to be equivalent to expanding the array of
ranges to an array of the excluded ranks and passing the resulting array of ranks and other
arguments to MPI_GROUP_EXCL. A call to MPI_GROUP_EXCL is equivalent to a call to
MPI_GROUP_RANGE_EXCL with each rank i in ranks replaced by the triplet (i,i,1) in
the argument ranges.

Advice to users. The range operations do not explicitly enumerate ranks, and
therefore are more scalable if implemented efficiently. Hence, we recommend MPI
programmers to use them whenenever possible, as high-quality implementations will
take advantage of this fact. (End of advice to users.)

Advice to implementors. The range operations should be implemented, if possible,
without enumerating the group members, in order to obtain better scalability (time
and space). (End of advice to implementors.)

6.3.3 Group Destructors

MPI_GROUP_FREE(group)

INOUT group group (handle)

int MPI_Group_free(MPI_Group *group)

MPI_GROUP_FREE(GROUP, IERROR)
INTEGER GROUP, IERROR

{void MPI::Group::Free() (binding deprecated, see Section 15.2) }

This operation marks a group object for deallocation. The handle group is set to
MPI_GROUP_NULL by the call. Any on-going operation using this group will complete
normally.

Advice to implementors. One can keep a reference count that is incremented for
each call to MPI_COMM_GROUP, MPI_COMM_CREATE and MPI_COMM_DUP, and
decremented for each call to MPI_GROUP_FREE or MPI_COMM_FREE; the group
object is ultimately deallocated when the reference count drops to zero. (End of
advice to implementors.)
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6.4 Communicator Management

This section describes the manipulation of communicators in MPI. Operations that access
communicators are local and their execution does not require interprocess communication.
Operations that create communicators are collective and may require interprocess commu-
nication.

Advice to implementors. High-quality implementations should amortize the over-
heads associated with the creation of communicators (for the same group, or subsets
thereof) over several calls, by allocating multiple contexts with one collective commu-
nication. (End of advice to implementors.)

6.4.1 Communicator Accessors

The following are all local operations.

MPI_COMM_SIZE(comm, size)

IN comm communicator (handle)

OUT size number of processes in the group of comm (integer)

int MPI_Comm_size(MPI_Comm comm, int *size)

MPI_COMM_SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

{int MPI::Comm::Get_size() const (binding deprecated, see Section 15.2) }

Rationale. This function is equivalent to accessing the communicator’s group with
MPI_COMM_GROUP (see above), computing the size using MPI_GROUP_SIZE, and
then freeing the temporary group via MPI_GROUP_FREE. However, this function is
so commonly used, that this shortcut was introduced. (End of rationale.)

Advice to users. This function indicates the number of processes involved in a
communicator. For MPI_COMM_WORLD, it indicates the total number of processes
available (for this version of MPI, there is no standard way to change the number of
processes once initialization has taken place).

This call is often used with the next call to determine the amount of concurrency
available for a specific library or program. The following call, MPI_COMM_RANK
indicates the rank of the process that calls it in the range from 0 . . .size−1, where size
is the return value of MPI_COMM_SIZE.(End of advice to users.)

MPI_COMM_RANK(comm, rank)

IN comm communicator (handle)

OUT rank rank of the calling process in group of comm (integer)
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int MPI_Comm_rank(MPI_Comm comm, int *rank)

MPI_COMM_RANK(COMM, RANK, IERROR)
INTEGER COMM, RANK, IERROR

{int MPI::Comm::Get_rank() const (binding deprecated, see Section 15.2) }

Rationale. This function is equivalent to accessing the communicator’s group with
MPI_COMM_GROUP (see above), computing the rank using MPI_GROUP_RANK,
and then freeing the temporary group via MPI_GROUP_FREE. However, this function
is so commonly used, that this shortcut was introduced. (End of rationale.)

Advice to users. This function gives the rank of the process in the particular commu-
nicator’s group. It is useful, as noted above, in conjunction with MPI_COMM_SIZE.

Many programs will be written with the master-slave model, where one process (such
as the rank-zero process) will play a supervisory role, and the other processes will
serve as compute nodes. In this framework, the two preceding calls are useful for
determining the roles of the various processes of a communicator. (End of advice to
users.)

MPI_COMM_COMPARE(comm1, comm2, result)

IN comm1 first communicator (handle)

IN comm2 second communicator (handle)

OUT result result (integer)

int MPI_Comm_compare(MPI_Comm comm1,MPI_Comm comm2, int *result)

MPI_COMM_COMPARE(COMM1, COMM2, RESULT, IERROR)
INTEGER COMM1, COMM2, RESULT, IERROR

{static int MPI::Comm::Compare(const MPI::Comm& comm1,
const MPI::Comm& comm2) (binding deprecated, see Section 15.2) }

MPI_IDENT results if and only if comm1 and comm2 are handles for the same object (identical
groups and same contexts). MPI_CONGRUENT results if the underlying groups are identical
in constituents and rank order; these communicators differ only by context. MPI_SIMILAR

results if the group members of both communicators are the same but the rank order differs.
MPI_UNEQUAL results otherwise.

6.4.2 Communicator Constructors

The following are collective functions that are invoked by all processes in the group or
groups associated with comm.

Rationale. Note that there is a chicken-and-egg aspect to MPI in that a communicator
is needed to create a new communicator. The base communicator for all MPI com-
municators is predefined outside of MPI, and is MPI_COMM_WORLD. This model was
arrived at after considerable debate, and was chosen to increase “safety” of programs
written in MPI. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



6.4. COMMUNICATOR MANAGEMENT 201

The MPI interface provides four communicator construction routines that apply to
both intracommunicators and intercommunicators. The construction routine
MPI_INTERCOMM_CREATE (discussed later) applies only to intercommunicators.

An intracommunicator involves a single group while an intercommunicator involves
two groups. Where the following discussions address intercommunicator semantics, the
two groups in an intercommunicator are called the left and right groups. A process in an
intercommunicator is a member of either the left or the right group. From the point of view
of that process, the group that the process is a member of is called the local group; the
other group (relative to that process) is the remote group. The left and right group labels
give us a way to describe the two groups in an intercommunicator that is not relative to
any particular process (as the local and remote groups are).

MPI_COMM_DUP(comm, newcomm)

IN comm communicator (handle)

OUT newcomm copy of comm (handle)

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

MPI_COMM_DUP(COMM, NEWCOMM, IERROR)
INTEGER COMM, NEWCOMM, IERROR

{MPI::Intracomm MPI::Intracomm::Dup() const (binding deprecated, see Section 15.2)
}

{MPI::Intercomm MPI::Intercomm::Dup() const (binding deprecated, see Section 15.2)
}

{MPI::Cartcomm MPI::Cartcomm::Dup() const (binding deprecated, see Section 15.2) }

{MPI::Graphcomm MPI::Graphcomm::Dup() const (binding deprecated, see Section 15.2)
}

{MPI::Distgraphcomm MPI::Distgraphcomm::Dup() const (binding deprecated, see
Section 15.2) }

{MPI::Comm& MPI::Comm::Clone() const = 0 (binding deprecated, see Section 15.2) }

{MPI::Intracomm& MPI::Intracomm::Clone() const (binding deprecated, see
Section 15.2) }

{MPI::Intercomm& MPI::Intercomm::Clone() const (binding deprecated, see
Section 15.2) }

{MPI::Cartcomm& MPI::Cartcomm::Clone() const (binding deprecated, see
Section 15.2) }

{MPI::Graphcomm& MPI::Graphcomm::Clone() const (binding deprecated, see
Section 15.2) }

{MPI::Distgraphcomm& MPI::Distgraphcomm::Clone() const (binding deprecated, see
Section 15.2) }
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202 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_COMM_DUP Duplicates the existing communicator comm with associated key val-
ues. For each key value, the respective copy callback function determines the attribute value
associated with this key in the new communicator; one particular action that a copy call-
back may take is to delete the attribute from the new communicator. Returns in newcomm
a new communicator with the same group or groups, any copied cached information, but a
new context (see Section 6.7.1). Please see Section 16.1.7 on page 474 for further discussion
about the C++ bindings for Dup() and Clone().

Advice to users. This operation is used to provide a parallel library call with a dupli-
cate communication space that has the same properties as the original communicator.
This includes any attributes (see below), and topologies (see Chapter 7). This call is
valid even if there are pending point-to-point communications involving the commu-
nicator comm. A typical call might involve a MPI_COMM_DUP at the beginning of
the parallel call, and an MPI_COMM_FREE of that duplicated communicator at the
end of the call. Other models of communicator management are also possible.

This call applies to both intra- and inter-communicators. (End of advice to users.)

Advice to implementors. One need not actually copy the group information, but only
add a new reference and increment the reference count. Copy on write can be used
for the cached information.(End of advice to implementors.)

MPI_COMM_CREATE(comm, group, newcomm)

IN comm communicator (handle)

IN group Group, which is a subset of the group of
comm (handle)

OUT newcomm new communicator (handle)

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)

MPI_COMM_CREATE(COMM, GROUP, NEWCOMM, IERROR)
INTEGER COMM, GROUP, NEWCOMM, IERROR

{MPI::Intercomm MPI::Intercomm::Create(const MPI::Group& group) const
(binding deprecated, see Section 15.2) }

{MPI::Intracomm MPI::Intracomm::Create(const MPI::Group& group) const
(binding deprecated, see Section 15.2) }

If comm is an intracommunicator, this function returns a new communicator newcomm with
communication group defined by the group argument. No cached information propagates
from comm to newcomm. Each process must call with a group argument that is a subgroup
of the group associated with comm; this could be MPI_GROUP_EMPTY. The processes may
specify different values for the group argument. If a process calls with a non-empty group
then all processes in that group must call the function with the same group as argument,
that is the same processes in the same order. Otherwise the call is erroneous. This implies
that the set of groups specified across the processes must be disjoint. If the calling process
is a member of the group given as group argument, then newcomm is a communicator with
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6.4. COMMUNICATOR MANAGEMENT 203

group as its associated group. In the case that a process calls with a group to which it does
not belong, e.g., MPI_GROUP_EMPTY, then MPI_COMM_NULL is returned as newcomm. The
function is collective and must be called by all processes in the group of comm.

Rationale. The interface supports the original mechanism from MPI-1.1, which re-
quired the same group in all processes of comm. It was extended in MPI-2.2 to allow
the use of disjoint subgroups in order to allow implementations to eliminate unnec-
essary communication that MPI_COMM_SPLIT would incur when the user already
knows the membership of the disjoint subgroups. (End of rationale.)

Rationale. The requirement that the entire group of comm participate in the call
stems from the following considerations:

• It allows the implementation to layer MPI_COMM_CREATE on top of regular
collective communications.
• It provides additional safety, in particular in the case where partially overlapping

groups are used to create new communicators.
• It permits implementations sometimes to avoid communication related to context

creation.

(End of rationale.)

Advice to users. MPI_COMM_CREATE provides a means to subset a group of pro-
cesses for the purpose of separate MIMD computation, with separate communication
space. newcomm, which emerges from MPI_COMM_CREATE can be used in subse-
quent calls to MPI_COMM_CREATE (or other communicator constructors) further to
subdivide a computation into parallel sub-computations. A more general service is
provided by MPI_COMM_SPLIT, below. (End of advice to users.)

Advice to implementors. When calling MPI_COMM_DUP, all processes call with the
same group (the group associated with the communicator). When calling
MPI_COMM_CREATE, the processes provide the same group or disjoint subgroups.
For both calls, it is theoretically possible to agree on a group-wide unique context
with no communication. However, local execution of these functions requires use
of a larger context name space and reduces error checking. Implementations may
strike various compromises between these conflicting goals, such as bulk allocation of
multiple contexts in one collective operation.

Important: If new communicators are created without synchronizing the processes
involved then the communication system should be able to cope with messages arriving
in a context that has not yet been allocated at the receiving process. (End of advice
to implementors.)

If comm is an intercommunicator, then the output communicator is also an intercommun-
icator where the local group consists only of those processes contained in group (see Fig-
ure 6.1). The group argument should only contain those processes in the local group of
the input intercommunicator that are to be a part of newcomm. All processes in the same
local group of comm must specify the same value for group, i.e., the same members in the
same order. If either group does not specify at least one process in the local group of the
intercommunicator, or if the calling process is not included in the group, MPI_COMM_NULL

is returned.
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Rationale. In the case where either the left or right group is empty, a null communi-
cator is returned instead of an intercommunicator with MPI_GROUP_EMPTY because
the side with the empty group must return MPI_COMM_NULL. (End of rationale.)
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Figure 6.1: Intercommunicator create using MPI_COMM_CREATE extended to intercom-
municators. The input groups are those in the grey circle.

Example 6.1 The following example illustrates how the first node in the left side of an
intercommunicator could be joined with all members on the right side of an intercommun-
icator to form a new intercommunicator.

MPI_Comm inter_comm, new_inter_comm;
MPI_Group local_group, group;
int rank = 0; /* rank on left side to include in

new inter-comm */

/* Construct the original intercommunicator: "inter_comm" */
...

/* Construct the group of processes to be in new
intercommunicator */

if (/* I’m on the left side of the intercommunicator */) {
MPI_Comm_group ( inter_comm, &local_group );
MPI_Group_incl ( local_group, 1, &rank, &group );
MPI_Group_free ( &local_group );

}
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6.4. COMMUNICATOR MANAGEMENT 205

else
MPI_Comm_group ( inter_comm, &group );

MPI_Comm_create ( inter_comm, group, &new_inter_comm );
MPI_Group_free( &group );

MPI_COMM_SPLIT(comm, color, key, newcomm)

IN comm communicator (handle)

IN color control of subset assignment (integer)

IN key control of rank assigment (integer)

OUT newcomm new communicator (handle)

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)

MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)
INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR

{MPI::Intercomm MPI::Intercomm::Split(int color, int key) const (binding
deprecated, see Section 15.2) }

{MPI::Intracomm MPI::Intracomm::Split(int color, int key) const (binding
deprecated, see Section 15.2) }

This function partitions the group associated with comm into disjoint subgroups, one for
each value of color. Each subgroup contains all processes of the same color. Within each
subgroup, the processes are ranked in the order defined by the value of the argument
key, with ties broken according to their rank in the old group. A new communicator is
created for each subgroup and returned in newcomm. A process may supply the color value
MPI_UNDEFINED, in which case newcomm returns MPI_COMM_NULL. This is a collective
call, but each process is permitted to provide different values for color and key.

With an intracommunicator comm, a call to MPI_COMM_CREATE(comm, group, new-
comm) is equivalent to a call to MPI_COMM_SPLIT(comm, color, key, newcomm), where
processes that are members of their group argument provide color = number of the group
(based on a unique numbering of all disjoint groups) and key = rank in group, and all pro-
cesses that are not members of their group argument provide color = MPI_UNDEFINED.

The value of color must be non-negative.

Advice to users. This is an extremely powerful mechanism for dividing a single
communicating group of processes into k subgroups, with k chosen implicitly by the
user (by the number of colors asserted over all the processes). Each resulting com-
municator will be non-overlapping. Such a division could be useful for defining a
hierarchy of computations, such as for multigrid, or linear algebra. For intracom-
municators, MPI_COMM_SPLIT provides similar capability as MPI_COMM_CREATE
to split a communicating group into disjoint subgroups. MPI_COMM_SPLIT is useful
when some processes do not have complete information of the other members in their
group, but all processes know (the color of) the group to which they belong. In this
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case, the MPI implementation discovers the other group members via communica-
tion. MPI_COMM_CREATE is useful when all processes have complete information
of the members of their group. In this case, MPI can avoid the extra communication
required to discover group membership.

Multiple calls to MPI_COMM_SPLIT can be used to overcome the requirement that
any call have no overlap of the resulting communicators (each process is of only one
color per call). In this way, multiple overlapping communication structures can be
created. Creative use of the color and key in such splitting operations is encouraged.

Note that, for a fixed color, the keys need not be unique. It is MPI_COMM_SPLIT’s
responsibility to sort processes in ascending order according to this key, and to break
ties in a consistent way. If all the keys are specified in the same way, then all the
processes in a given color will have the relative rank order as they did in their parent
group.

Essentially, making the key value zero for all processes of a given color means that one
doesn’t really care about the rank-order of the processes in the new communicator.
(End of advice to users.)

Rationale. color is restricted to be non-negative, so as not to confict with the value
assigned to MPI_UNDEFINED. (End of rationale.)

The result of MPI_COMM_SPLIT on an intercommunicator is that those processes on the
left with the same color as those processes on the right combine to create a new intercom-
municator. The key argument describes the relative rank of processes on each side of the
intercommunicator (see Figure 6.2). For those colors that are specified only on one side of
the intercommunicator, MPI_COMM_NULL is returned. MPI_COMM_NULL is also returned
to those processes that specify MPI_UNDEFINED as the color.

Advice to users. For intercommunicators, MPI_COMM_SPLIT is more general than
MPI_COMM_CREATE. A single call to MPI_COMM_SPLIT can create a set of disjoint
intercommunicators, while a call to MPI_COMM_CREATE creates only one. (End of
advice to users.)

Example 6.2 (Parallel client-server model). The following client code illustrates how
clients on the left side of an intercommunicator could be assigned to a single server from a
pool of servers on the right side of an intercommunicator.

/* Client code */
MPI_Comm multiple_server_comm;
MPI_Comm single_server_comm;
int color, rank, num_servers;

/* Create intercommunicator with clients and servers:
multiple_server_comm */

...

/* Find out the number of servers available */
MPI_Comm_remote_size ( multiple_server_comm, &num_servers );
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1(1,0)

0(0)

1(3)
0(1)

1(0)

Rank in the original group

Color = 0

Color = 1

Color = 2

0(4) 0(1)

0(2)1(3)
0(2)

0(0,0)

3(0,1)
2(2,0)

Color

Key

0(0,1)

4(1,0)

1(0,0)

3(2,1)

2(2,0)

Input Intercommunicator (comm)

Disjoint output communicators (newcomm)
(one per color)

Figure 6.2: Intercommunicator construction achieved by splitting an existing intercommun-
icator with MPI_COMM_SPLIT extended to intercommunicators.
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/* Determine my color */
MPI_Comm_rank ( multiple_server_comm, &rank );
color = rank % num_servers;

/* Split the intercommunicator */
MPI_Comm_split ( multiple_server_comm, color, rank,

&single_server_comm );

The following is the corresponding server code:

/* Server code */
MPI_Comm multiple_client_comm;
MPI_Comm single_server_comm;
int rank;

/* Create intercommunicator with clients and servers:
multiple_client_comm */

...

/* Split the intercommunicator for a single server per group
of clients */

MPI_Comm_rank ( multiple_client_comm, &rank );
MPI_Comm_split ( multiple_client_comm, rank, 0,

&single_server_comm );

6.4.3 Communicator Destructors

MPI_COMM_FREE(comm)

INOUT comm communicator to be destroyed (handle)

int MPI_Comm_free(MPI_Comm *comm)

MPI_COMM_FREE(COMM, IERROR)
INTEGER COMM, IERROR

{void MPI::Comm::Free() (binding deprecated, see Section 15.2) }

This collective operation marks the communication object for deallocation. The handle
is set to MPI_COMM_NULL. Any pending operations that use this communicator will com-
plete normally; the object is actually deallocated only if there are no other active references
to it. This call applies to intra- and inter-communicators. The delete callback functions for
all cached attributes (see Section 6.7) are called in arbitrary order.

Advice to implementors. A reference-count mechanism may be used: the reference
count is incremented by each call to MPI_COMM_DUP, and decremented by each call
to MPI_COMM_FREE. The object is ultimately deallocated when the count reaches
zero.
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Though collective, it is anticipated that this operation will normally be implemented
to be local, though a debugging version of an MPI library might choose to synchronize.
(End of advice to implementors.)

6.5 Motivating Examples

6.5.1 Current Practice #1

Example #1a:

int main(int argc, char **argv)
{
int me, size;
...
MPI_Init ( &argc, &argv );
MPI_Comm_rank (MPI_COMM_WORLD, &me);
MPI_Comm_size (MPI_COMM_WORLD, &size);

(void)printf ("Process %d size %d\n", me, size);
...
MPI_Finalize();

}

Example #1a is a do-nothing program that initializes itself legally, and refers to the “all”
communicator, and prints a message. It terminates itself legally too. This example does
not imply that MPI supports printf-like communication itself.
Example #1b (supposing that size is even):

int main(int argc, char **argv)
{

int me, size;
int SOME_TAG = 0;
...
MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &me); /* local */
MPI_Comm_size(MPI_COMM_WORLD, &size); /* local */

if((me % 2) == 0)
{

/* send unless highest-numbered process */
if((me + 1) < size)

MPI_Send(..., me + 1, SOME_TAG, MPI_COMM_WORLD);
}
else

MPI_Recv(..., me - 1, SOME_TAG, MPI_COMM_WORLD, &status);

...
MPI_Finalize();

}
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Example #1b schematically illustrates message exchanges between “even” and “odd” pro-
cesses in the “all” communicator.

6.5.2 Current Practice #2

int main(int argc, char **argv)
{
int me, count;
void *data;
...

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

if(me == 0)
{

/* get input, create buffer ‘‘data’’ */
...

}

MPI_Bcast(data, count, MPI_BYTE, 0, MPI_COMM_WORLD);

...

MPI_Finalize();
}

This example illustrates the use of a collective communication.

6.5.3 (Approximate) Current Practice #3

int main(int argc, char **argv)
{

int me, count, count2;
void *send_buf, *recv_buf, *send_buf2, *recv_buf2;
MPI_Group MPI_GROUP_WORLD, grprem;
MPI_Comm commslave;
static int ranks[] = {0};
...
MPI_Init(&argc, &argv);
MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);
MPI_Comm_rank(MPI_COMM_WORLD, &me); /* local */

MPI_Group_excl(MPI_GROUP_WORLD, 1, ranks, &grprem); /* local */
MPI_Comm_create(MPI_COMM_WORLD, grprem, &commslave);

if(me != 0)
{
/* compute on slave */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



6.5. MOTIVATING EXAMPLES 211

...
MPI_Reduce(send_buf,recv_buff,count, MPI_INT, MPI_SUM, 1, commslave);
...
MPI_Comm_free(&commslave);

}
/* zero falls through immediately to this reduce, others do later... */
MPI_Reduce(send_buf2, recv_buff2, count2,

MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Group_free(&MPI_GROUP_WORLD);
MPI_Group_free(&grprem);
MPI_Finalize();

}

This example illustrates how a group consisting of all but the zeroth process of the “all”
group is created, and then how a communicator is formed (commslave) for that new group.
The new communicator is used in a collective call, and all processes execute a collective call
in the MPI_COMM_WORLD context. This example illustrates how the two communicators
(that inherently possess distinct contexts) protect communication. That is, communication
in MPI_COMM_WORLD is insulated from communication in commslave, and vice versa.

In summary, “group safety” is achieved via communicators because distinct contexts
within communicators are enforced to be unique on any process.

6.5.4 Example #4

The following example is meant to illustrate “safety” between point-to-point and collective
communication. MPI guarantees that a single communicator can do safe point-to-point and
collective communication.

#define TAG_ARBITRARY 12345
#define SOME_COUNT 50

int main(int argc, char **argv)
{
int me;
MPI_Request request[2];
MPI_Status status[2];
MPI_Group MPI_GROUP_WORLD, subgroup;
int ranks[] = {2, 4, 6, 8};
MPI_Comm the_comm;
...
MPI_Init(&argc, &argv);
MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);

MPI_Group_incl(MPI_GROUP_WORLD, 4, ranks, &subgroup); /* local */
MPI_Group_rank(subgroup, &me); /* local */

MPI_Comm_create(MPI_COMM_WORLD, subgroup, &the_comm);
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if(me != MPI_UNDEFINED)
{

MPI_Irecv(buff1, count, MPI_DOUBLE, MPI_ANY_SOURCE, TAG_ARBITRARY,
the_comm, request);

MPI_Isend(buff2, count, MPI_DOUBLE, (me+1)%4, TAG_ARBITRARY,
the_comm, request+1);

for(i = 0; i < SOME_COUNT, i++)
MPI_Reduce(..., the_comm);

MPI_Waitall(2, request, status);

MPI_Comm_free(&the_comm);
}

MPI_Group_free(&MPI_GROUP_WORLD);
MPI_Group_free(&subgroup);
MPI_Finalize();

}

6.5.5 Library Example #1

The main program:

int main(int argc, char **argv)
{
int done = 0;
user_lib_t *libh_a, *libh_b;
void *dataset1, *dataset2;
...
MPI_Init(&argc, &argv);
...
init_user_lib(MPI_COMM_WORLD, &libh_a);
init_user_lib(MPI_COMM_WORLD, &libh_b);
...
user_start_op(libh_a, dataset1);
user_start_op(libh_b, dataset2);
...
while(!done)
{

/* work */
...
MPI_Reduce(..., MPI_COMM_WORLD);
...
/* see if done */
...

}
user_end_op(libh_a);
user_end_op(libh_b);
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uninit_user_lib(libh_a);
uninit_user_lib(libh_b);
MPI_Finalize();

}

The user library initialization code:

void init_user_lib(MPI_Comm comm, user_lib_t **handle)
{
user_lib_t *save;

user_lib_initsave(&save); /* local */
MPI_Comm_dup(comm, &(save -> comm));

/* other inits */
...

*handle = save;
}

User start-up code:

void user_start_op(user_lib_t *handle, void *data)
{
MPI_Irecv( ..., handle->comm, &(handle -> irecv_handle) );
MPI_Isend( ..., handle->comm, &(handle -> isend_handle) );

}

User communication clean-up code:

void user_end_op(user_lib_t *handle)
{
MPI_Status status;
MPI_Wait(handle -> isend_handle, &status);
MPI_Wait(handle -> irecv_handle, &status);

}

User object clean-up code:

void uninit_user_lib(user_lib_t *handle)
{
MPI_Comm_free(&(handle -> comm));
free(handle);

}

6.5.6 Library Example #2

The main program:

int main(int argc, char **argv)
{
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int ma, mb;
MPI_Group MPI_GROUP_WORLD, group_a, group_b;
MPI_Comm comm_a, comm_b;

static int list_a[] = {0, 1};
#if defined(EXAMPLE_2B) | defined(EXAMPLE_2C)

static int list_b[] = {0, 2 ,3};
#else/* EXAMPLE_2A */

static int list_b[] = {0, 2};
#endif

int size_list_a = sizeof(list_a)/sizeof(int);
int size_list_b = sizeof(list_b)/sizeof(int);

...
MPI_Init(&argc, &argv);
MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);

MPI_Group_incl(MPI_GROUP_WORLD, size_list_a, list_a, &group_a);
MPI_Group_incl(MPI_GROUP_WORLD, size_list_b, list_b, &group_b);

MPI_Comm_create(MPI_COMM_WORLD, group_a, &comm_a);
MPI_Comm_create(MPI_COMM_WORLD, group_b, &comm_b);

if(comm_a != MPI_COMM_NULL)
MPI_Comm_rank(comm_a, &ma);

if(comm_b != MPI_COMM_NULL)
MPI_Comm_rank(comm_b, &mb);

if(comm_a != MPI_COMM_NULL)
lib_call(comm_a);

if(comm_b != MPI_COMM_NULL)
{
lib_call(comm_b);
lib_call(comm_b);

}

if(comm_a != MPI_COMM_NULL)
MPI_Comm_free(&comm_a);

if(comm_b != MPI_COMM_NULL)
MPI_Comm_free(&comm_b);

MPI_Group_free(&group_a);
MPI_Group_free(&group_b);
MPI_Group_free(&MPI_GROUP_WORLD);
MPI_Finalize();

}

The library:
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void lib_call(MPI_Comm comm)
{
int me, done = 0;
MPI_Status status;
MPI_Comm_rank(comm, &me);
if(me == 0)

while(!done)
{

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);
...

}
else
{
/* work */
MPI_Send(..., 0, ARBITRARY_TAG, comm);
....

}
#ifdef EXAMPLE_2C

/* include (resp, exclude) for safety (resp, no safety): */
MPI_Barrier(comm);

#endif
}

The above example is really three examples, depending on whether or not one includes rank
3 in list_b, and whether or not a synchronize is included in lib_call. This example illustrates
that, despite contexts, subsequent calls to lib_call with the same context need not be safe
from one another (colloquially, “back-masking”). Safety is realized if the MPI_Barrier is
added. What this demonstrates is that libraries have to be written carefully, even with
contexts. When rank 3 is excluded, then the synchronize is not needed to get safety from
back masking.

Algorithms like “reduce” and “allreduce” have strong enough source selectivity prop-
erties so that they are inherently okay (no backmasking), provided that MPI provides basic
guarantees. So are multiple calls to a typical tree-broadcast algorithm with the same root
or different roots (see [45]). Here we rely on two guarantees of MPI: pairwise ordering of
messages between processes in the same context, and source selectivity — deleting either
feature removes the guarantee that backmasking cannot be required.

Algorithms that try to do non-deterministic broadcasts or other calls that include wild-
card operations will not generally have the good properties of the deterministic implemen-
tations of “reduce,” “allreduce,” and “broadcast.” Such algorithms would have to utilize
the monotonically increasing tags (within a communicator scope) to keep things straight.

All of the foregoing is a supposition of “collective calls” implemented with point-to-
point operations. MPI implementations may or may not implement collective calls using
point-to-point operations. These algorithms are used to illustrate the issues of correctness
and safety, independent of how MPI implements its collective calls. See also Section 6.9.
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6.6 Inter-Communication

This section introduces the concept of inter-communication and describes the portions of
MPI that support it. It describes support for writing programs that contain user-level
servers.

All communication described thus far has involved communication between processes
that are members of the same group. This type of communication is called “intra-commun-
ication” and the communicator used is called an “intra-communicator,” as we have noted
earlier in the chapter.

In modular and multi-disciplinary applications, different process groups execute distinct
modules and processes within different modules communicate with one another in a pipeline
or a more general module graph. In these applications, the most natural way for a process
to specify a target process is by the rank of the target process within the target group. In
applications that contain internal user-level servers, each server may be a process group that
provides services to one or more clients, and each client may be a process group that uses
the services of one or more servers. It is again most natural to specify the target process
by rank within the target group in these applications. This type of communication is called
“inter-communication” and the communicator used is called an “inter-communicator,” as
introduced earlier.

An inter-communication is a point-to-point communication between processes in differ-
ent groups. The group containing a process that initiates an inter-communication operation
is called the “local group,” that is, the sender in a send and the receiver in a receive. The
group containing the target process is called the “remote group,” that is, the receiver in a
send and the sender in a receive. As in intra-communication, the target process is specified
using a (communicator, rank) pair. Unlike intra-communication, the rank is relative to a
second, remote group.

All inter-communicator constructors are blocking and require that the local and remote
groups be disjoint.

Advice to users. The groups must be disjoint for several reasons. Primarily, this
is the intent of the intercommunicators — to provide a communicator for commu-
nication between disjoint groups. This is reflected in the definition of
MPI_INTERCOMM_MERGE, which allows the user to control the ranking of the pro-
cesses in the created intracommunicator; this ranking makes little sense if the groups
are not disjoint. In addition, the natural extension of collective operations to inter-
communicators makes the most sense when the groups are disjoint. (End of advice to
users.)

Here is a summary of the properties of inter-communication and inter-communicators:

• The syntax of point-to-point and collective communication is the same for both inter-
and intra-communication. The same communicator can be used both for send and for
receive operations.

• A target process is addressed by its rank in the remote group, both for sends and for
receives.

• Communications using an inter-communicator are guaranteed not to conflict with any
communications that use a different communicator.

• A communicator will provide either intra- or inter-communication, never both.
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The routine MPI_COMM_TEST_INTER may be used to determine if a communicator is an
inter- or intra-communicator. Inter-communicators can be used as arguments to some of the
other communicator access routines. Inter-communicators cannot be used as input to some
of the constructor routines for intra-communicators (for instance, MPI_CART_CREATE).

Advice to implementors. For the purpose of point-to-point communication, commu-
nicators can be represented in each process by a tuple consisting of:

group
send_context
receive_context
source

For inter-communicators, group describes the remote group, and source is the rank of
the process in the local group. For intra-communicators, group is the communicator
group (remote=local), source is the rank of the process in this group, and send
context and receive context are identical. A group can be represented by a rank-
to-absolute-address translation table.

The inter-communicator cannot be discussed sensibly without considering processes in
both the local and remote groups. Imagine a process P in group P, which has an inter-
communicator CP , and a process Q in group Q, which has an inter-communicator
CQ. Then

• CP .group describes the group Q and CQ.group describes the group P.
• CP .send_context = CQ.receive_context and the context is unique in Q;

CP .receive_context = CQ.send_context and this context is unique in P.
• CP .source is rank of P in P and CQ.source is rank of Q in Q.

Assume that P sends a message to Q using the inter-communicator. Then P uses
the group table to find the absolute address of Q; source and send_context are
appended to the message.

Assume that Q posts a receive with an explicit source argument using the inter-
communicator. Then Q matches receive_context to the message context and source
argument to the message source.

The same algorithm is appropriate for intra-communicators as well.

In order to support inter-communicator accessors and constructors, it is necessary to
supplement this model with additional structures, that store information about the
local communication group, and additional safe contexts. (End of advice to imple-
mentors.)

6.6.1 Inter-communicator Accessors

MPI_COMM_TEST_INTER(comm, flag)

IN comm communicator (handle)

OUT flag (logical)
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int MPI_Comm_test_inter(MPI_Comm comm, int *flag)

MPI_COMM_TEST_INTER(COMM, FLAG, IERROR)
INTEGER COMM, IERROR
LOGICAL FLAG

{bool MPI::Comm::Is_inter() const (binding deprecated, see Section 15.2) }

This local routine allows the calling process to determine if a communicator is an inter-
communicator or an intra-communicator. It returns true if it is an inter-communicator,
otherwise false.

When an inter-communicator is used as an input argument to the communicator ac-
cessors described above under intra-communication, the following table describes behavior.

MPI_COMM_SIZE returns the size of the local group.
MPI_COMM_GROUP returns the local group.
MPI_COMM_RANK returns the rank in the local group

Table 6.1: MPI_COMM_* Function Behavior (in Inter-Communication Mode)

Furthermore, the operation MPI_COMM_COMPARE is valid for inter-communicators. Both
communicators must be either intra- or inter-communicators, or else MPI_UNEQUAL results.
Both corresponding local and remote groups must compare correctly to get the results
MPI_CONGRUENT and MPI_SIMILAR. In particular, it is possible for MPI_SIMILAR to result
because either the local or remote groups were similar but not identical.

The following accessors provide consistent access to the remote group of an inter-
communicator:

The following are all local operations.

MPI_COMM_REMOTE_SIZE(comm, size)

IN comm inter-communicator (handle)

OUT size number of processes in the remote group of comm

(integer)

int MPI_Comm_remote_size(MPI_Comm comm, int *size)

MPI_COMM_REMOTE_SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

{int MPI::Intercomm::Get_remote_size() const (binding deprecated, see
Section 15.2) }

MPI_COMM_REMOTE_GROUP(comm, group)

IN comm inter-communicator (handle)

OUT group remote group corresponding to comm (handle)
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int MPI_Comm_remote_group(MPI_Comm comm, MPI_Group *group)

MPI_COMM_REMOTE_GROUP(COMM, GROUP, IERROR)
INTEGER COMM, GROUP, IERROR

{MPI::Group MPI::Intercomm::Get_remote_group() const (binding deprecated, see
Section 15.2) }

Rationale. Symmetric access to both the local and remote groups of an inter-
communicator is important, so this function, as well as MPI_COMM_REMOTE_SIZE
have been provided. (End of rationale.)

6.6.2 Inter-communicator Operations

This section introduces four blocking inter-communicator operations.
MPI_INTERCOMM_CREATE is used to bind two intra-communicators into an inter-com-
municator; the function MPI_INTERCOMM_MERGE creates an intra-communicator by merg-
ing the local and remote groups of an inter-communicator. The functions MPI_COMM_DUP
and MPI_COMM_FREE, introduced previously, duplicate and free an inter-communicator,
respectively.

Overlap of local and remote groups that are bound into an inter-communicator is
prohibited. If there is overlap, then the program is erroneous and is likely to deadlock. (If
a process is multithreaded, and MPI calls block only a thread, rather than a process, then
“dual membership” can be supported. It is then the user’s responsibility to make sure that
calls on behalf of the two “roles” of a process are executed by two independent threads.)

The function MPI_INTERCOMM_CREATE can be used to create an inter-communicator
from two existing intra-communicators, in the following situation: At least one selected
member from each group (the “group leader”) has the ability to communicate with the
selected member from the other group; that is, a “peer” communicator exists to which both
leaders belong, and each leader knows the rank of the other leader in this peer communicator.
Furthermore, members of each group know the rank of their leader.

Construction of an inter-communicator from two intra-communicators requires separate
collective operations in the local group and in the remote group, as well as a point-to-point
communication between a process in the local group and a process in the remote group.

In standard MPI implementations (with static process allocation at initialization), the
MPI_COMM_WORLD communicator (or preferably a dedicated duplicate thereof) can be this
peer communicator. For applications that have used spawn or join, it may be necessary to
first create an intracommunicator to be used as peer.

The application topology functions described in Chapter 7 do not apply to inter-
communicators. Users that require this capability should utilize
MPI_INTERCOMM_MERGE to build an intra-communicator, then apply the graph or carte-
sian topology capabilities to that intra-communicator, creating an appropriate topology-
oriented intra-communicator. Alternatively, it may be reasonable to devise one’s own ap-
plication topology mechanisms for this case, without loss of generality.
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MPI_INTERCOMM_CREATE(local_comm, local_leader, peer_comm, remote_leader, tag,
newintercomm)

IN local_comm local intra-communicator (handle)

IN local_leader rank of local group leader in local_comm (integer)

IN peer_comm “peer” communicator; significant only at the
local_leader (handle)

IN remote_leader rank of remote group leader in peer_comm; significant
only at the local_leader (integer)

IN tag “safe” tag (integer)

OUT newintercomm new inter-communicator (handle)

int MPI_Intercomm_create(MPI_Comm local_comm, int local_leader,
MPI_Comm peer_comm, int remote_leader, int tag,
MPI_Comm *newintercomm)

MPI_INTERCOMM_CREATE(LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER,
TAG, NEWINTERCOMM, IERROR)

INTEGER LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER, TAG,
NEWINTERCOMM, IERROR

{MPI::Intercomm MPI::Intracomm::Create_intercomm(int local_leader, const
MPI::Comm& peer_comm, int remote_leader, int tag) const
(binding deprecated, see Section 15.2) }

This call creates an inter-communicator. It is collective over the union of the local and
remote groups. Processes should provide identical local_comm and local_leader arguments
within each group. Wildcards are not permitted for remote_leader, local_leader, and tag.

This call uses point-to-point communication with communicator
peer_comm, and with tag tag between the leaders. Thus, care must be taken that there be
no pending communication on peer_comm that could interfere with this communication.

Advice to users. We recommend using a dedicated peer communicator, such as a
duplicate of MPI_COMM_WORLD, to avoid trouble with peer communicators. (End of
advice to users.)

MPI_INTERCOMM_MERGE(intercomm, high, newintracomm)

IN intercomm Inter-Communicator (handle)

IN high (logical)

OUT newintracomm new intra-communicator (handle)

int MPI_Intercomm_merge(MPI_Comm intercomm, int high,
MPI_Comm *newintracomm)

MPI_INTERCOMM_MERGE(INTERCOMM, HIGH, INTRACOMM, IERROR)
INTEGER INTERCOMM, INTRACOMM, IERROR
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Group 1 Group 2Group 0

Figure 6.3: Three-group pipeline.

LOGICAL HIGH

{MPI::Intracomm MPI::Intercomm::Merge(bool high) const (binding deprecated, see
Section 15.2) }

This function creates an intra-communicator from the union of the two groups that are
associated with intercomm. All processes should provide the same high value within each
of the two groups. If processes in one group provided the value high = false and processes
in the other group provided the value high = true then the union orders the “low” group
before the “high” group. If all processes provided the same high argument then the order
of the union is arbitrary. This call is blocking and collective within the union of the two
groups.

The error handler on the new intercommunicator in each process is inherited from
the communicator that contributes the local group. Note that this can result in different
processes in the same communicator having different error handlers.

Advice to implementors. The implementation of MPI_INTERCOMM_MERGE,
MPI_COMM_FREE and MPI_COMM_DUP are similar to the implementation of
MPI_INTERCOMM_CREATE, except that contexts private to the input inter-com-
municator are used for communication between group leaders rather than contexts
inside a bridge communicator. (End of advice to implementors.)

6.6.3 Inter-Communication Examples

Example 1: Three-Group “Pipeline”

Groups 0 and 1 communicate. Groups 1 and 2 communicate. Therefore, group 0 requires
one inter-communicator, group 1 requires two inter-communicators, and group 2 requires 1
inter-communicator.

int main(int argc, char **argv)
{
MPI_Comm myComm; /* intra-communicator of local sub-group */
MPI_Comm myFirstComm; /* inter-communicator */
MPI_Comm mySecondComm; /* second inter-communicator (group 1 only) */
int membershipKey;
int rank;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
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/* User code must generate membershipKey in the range [0, 1, 2] */
membershipKey = rank % 3;

/* Build intra-communicator for local sub-group */
MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm);

/* Build inter-communicators. Tags are hard-coded. */
if (membershipKey == 0)
{ /* Group 0 communicates with group 1. */
MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 1,

1, &myFirstComm);
}
else if (membershipKey == 1)
{ /* Group 1 communicates with groups 0 and 2. */
MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 0,

1, &myFirstComm);
MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 2,

12, &mySecondComm);
}
else if (membershipKey == 2)
{ /* Group 2 communicates with group 1. */
MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 1,

12, &myFirstComm);
}

/* Do work ... */

switch(membershipKey) /* free communicators appropriately */
{
case 1:

MPI_Comm_free(&mySecondComm);
case 0:
case 2:

MPI_Comm_free(&myFirstComm);
break;

}

MPI_Finalize();
}

Example 2: Three-Group “Ring”

Groups 0 and 1 communicate. Groups 1 and 2 communicate. Groups 0 and 2 communicate.
Therefore, each requires two inter-communicators.

int main(int argc, char **argv)
{
MPI_Comm myComm; /* intra-communicator of local sub-group */
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Group 1 Group 2Group 0

Figure 6.4: Three-group ring.

MPI_Comm myFirstComm; /* inter-communicators */
MPI_Comm mySecondComm;
MPI_Status status;
int membershipKey;
int rank;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
...

/* User code must generate membershipKey in the range [0, 1, 2] */
membershipKey = rank % 3;

/* Build intra-communicator for local sub-group */
MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm);

/* Build inter-communicators. Tags are hard-coded. */
if (membershipKey == 0)
{ /* Group 0 communicates with groups 1 and 2. */
MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 1,

1, &myFirstComm);
MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 2,

2, &mySecondComm);
}
else if (membershipKey == 1)
{ /* Group 1 communicates with groups 0 and 2. */
MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 0,

1, &myFirstComm);
MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 2,

12, &mySecondComm);
}
else if (membershipKey == 2)
{ /* Group 2 communicates with groups 0 and 1. */
MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 0,

2, &myFirstComm);
MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 1,

12, &mySecondComm);
}
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/* Do some work ... */

/* Then free communicators before terminating... */
MPI_Comm_free(&myFirstComm);
MPI_Comm_free(&mySecondComm);
MPI_Comm_free(&myComm);
MPI_Finalize();

}

6.7 Caching

MPI provides a “caching” facility that allows an application to attach arbitrary pieces of
information, called attributes, to three kinds of MPI objects, communicators, windows and
datatypes. More precisely, the caching facility allows a portable library to do the following:

• pass information between calls by associating it with an MPI intra- or inter-commun-
icator, window or datatype,

• quickly retrieve that information, and

• be guaranteed that out-of-date information is never retrieved, even if the object is
freed and its handle subsequently reused by MPI.

The caching capabilities, in some form, are required by built-in MPI routines such as
collective communication and application topology. Defining an interface to these capa-
bilities as part of the MPI standard is valuable because it permits routines like collective
communication and application topologies to be implemented as portable code, and also
because it makes MPI more extensible by allowing user-written routines to use standard
MPI calling sequences.

Advice to users. The communicator MPI_COMM_SELF is a suitable choice for posting
process-local attributes, via this attributing-caching mechanism. (End of advice to
users.)

Rationale. In one extreme one can allow caching on all opaque handles. The other
extreme is to only allow it on communicators. Caching has a cost associated with it
and should only be allowed when it is clearly needed and the increased cost is modest.
This is the reason that windows and datatypes were added but not other handles.
(End of rationale.)

One difficulty is the potential for size differences between Fortran integers and C point-
ers. To overcome this problem with attribute caching on communicators, functions are also
given for this case. The functions to cache on datatypes and windows also address this
issue. For a general discussion of the address size problem, see Section 16.3.6.

Advice to implementors. High-quality implementations should raise an error when
a keyval that was created by a call to MPI_XXX_CREATE_KEYVAL is used with an
object of the wrong type with a call to MPI_YYY_GET_ATTR, MPI_YYY_SET_ATTR,
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6.7. CACHING 225

MPI_YYY_DELETE_ATTR, or MPI_YYY_FREE_KEYVAL. To do so, it is necessary to
maintain, with each keyval, information on the type of the associated user function.
(End of advice to implementors.)

6.7.1 Functionality

Attributes can be attached to communicators, windows, and datatypes. Attributes are local
to the process and specific to the communicator to which they are attached. Attributes are
not propagated by MPI from one communicator to another except when the communicator
is duplicated using MPI_COMM_DUP (and even then the application must give specific
permission through callback functions for the attribute to be copied).

Advice to users. Attributes in C are of type void *. Typically, such an attribute will
be a pointer to a structure that contains further information, or a handle to an MPI
object. In Fortran, attributes are of type INTEGER. Such attribute can be a handle to
an MPI object, or just an integer-valued attribute. (End of advice to users.)

Advice to implementors. Attributes are scalar values, equal in size to, or larger than
a C-language pointer. Attributes can always hold an MPI handle. (End of advice to
implementors.)

The caching interface defined here requires that attributes be stored by MPI opaquely
within a communicator, window, and datatype. Accessor functions include the following:

• obtain a key value (used to identify an attribute); the user specifies “callback” func-
tions by which MPI informs the application when the communicator is destroyed or
copied.

• store and retrieve the value of an attribute;

Advice to implementors. Caching and callback functions are only called synchronously,
in response to explicit application requests. This avoid problems that result from re-
peated crossings between user and system space. (This synchronous calling rule is a
general property of MPI.)

The choice of key values is under control of MPI. This allows MPI to optimize its
implementation of attribute sets. It also avoids conflict between independent modules
caching information on the same communicators.

A much smaller interface, consisting of just a callback facility, would allow the entire
caching facility to be implemented by portable code. However, with the minimal call-
back interface, some form of table searching is implied by the need to handle arbitrary
communicators. In contrast, the more complete interface defined here permits rapid
access to attributes through the use of pointers in communicators (to find the attribute
table) and cleverly chosen key values (to retrieve individual attributes). In light of the
efficiency “hit” inherent in the minimal interface, the more complete interface defined
here is seen to be superior. (End of advice to implementors.)

MPI provides the following services related to caching. They are all process local.
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6.7.2 Communicators

Functions for caching on communicators are:

MPI_COMM_CREATE_KEYVAL(comm_copy_attr_fn, comm_delete_attr_fn, comm_keyval,
extra_state)

IN comm_copy_attr_fn copy callback function for comm_keyval (function)

IN comm_delete_attr_fn delete callback function for comm_keyval (function)

OUT comm_keyval key value for future access (integer)

IN extra_state extra state for callback functions

int MPI_Comm_create_keyval(MPI_Comm_copy_attr_function *comm_copy_attr_fn,
MPI_Comm_delete_attr_function *comm_delete_attr_fn,
int *comm_keyval, void *extra_state)

MPI_COMM_CREATE_KEYVAL(COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN, COMM_KEYVAL,
EXTRA_STATE, IERROR)

EXTERNAL COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN
INTEGER COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

{static int MPI::Comm::Create_keyval(MPI::Comm::Copy_attr_function*
comm_copy_attr_fn,
MPI::Comm::Delete_attr_function* comm_delete_attr_fn,
void* extra_state) (binding deprecated, see Section 15.2) }

Generates a new attribute key. Keys are locally unique in a process, and opaque to
user, though they are explicitly stored in integers. Once allocated, the key value can be
used to associate attributes and access them on any locally defined communicator.

This function replaces MPI_KEYVAL_CREATE, whose use is deprecated. The C binding
is identical. The Fortran binding differs in that extra_state is an address-sized integer.
Also, the copy and delete callback functions have Fortran bindings that are consistent with
address-sized attributes.

The C callback functions are:
typedef int MPI_Comm_copy_attr_function(MPI_Comm oldcomm, int comm_keyval,

void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag);

and
typedef int MPI_Comm_delete_attr_function(MPI_Comm comm, int comm_keyval,

void *attribute_val, void *extra_state);

which are the same as the MPI-1.1 calls but with a new name. The old names are deprecated.
The Fortran callback functions are:

SUBROUTINE COMM_COPY_ATTR_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE,
ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
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6.7. CACHING 227

ATTRIBUTE_VAL_OUT
LOGICAL FLAG

and
SUBROUTINE COMM_DELETE_ATTR_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)
INTEGER COMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The C++ callbacks are:
{typedef int MPI::Comm::Copy_attr_function(const MPI::Comm& oldcomm,

int comm_keyval, void* extra_state, void* attribute_val_in,
void* attribute_val_out, bool& flag); (binding deprecated, see
Section 15.2) }

and
{typedef int MPI::Comm::Delete_attr_function(MPI::Comm& comm,

int comm_keyval, void* attribute_val, void* extra_state);
(binding deprecated, see Section 15.2) }

The comm_copy_attr_fn function is invoked when a communicator is duplicated by
MPI_COMM_DUP. comm_copy_attr_fn should be of type MPI_Comm_copy_attr_function. The
copy callback function is invoked for each key value in oldcomm in arbitrary order. Each call
to the copy callback is made with a key value and its corresponding attribute. If it returns
flag = 0, then the attribute is deleted in the duplicated communicator. Otherwise (flag = 1),
the new attribute value is set to the value returned in attribute_val_out. The function returns
MPI_SUCCESS on success and an error code on failure (in which case MPI_COMM_DUP will
fail).

The argument comm_copy_attr_fn may be specified as MPI_COMM_NULL_COPY_FN
or MPI_COMM_DUP_FN from either C, C++, or Fortran. MPI_COMM_NULL_COPY_FN
is a function that does nothing other than returning flag = 0 and MPI_SUCCESS.
MPI_COMM_DUP_FN is a simple-minded copy function that sets flag = 1, returns the value
of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS. These replace the MPI-1
predefined callbacks MPI_NULL_COPY_FN and MPI_DUP_FN, whose use is deprecated.

Advice to users. Even though both formal arguments attribute_val_in and
attribute_val_out are of type void *, their usage differs. The C copy function is passed
by MPI in attribute_val_in the value of the attribute, and in attribute_val_out the
address of the attribute, so as to allow the function to return the (new) attribute
value. The use of type void * for both is to avoid messy type casts.

A valid copy function is one that completely duplicates the information by making
a full duplicate copy of the data structures implied by an attribute; another might
just make another reference to that data structure, while using a reference-count
mechanism. Other types of attributes might not copy at all (they might be specific
to oldcomm only). (End of advice to users.)

Advice to implementors. A C interface should be assumed for copy and delete
functions associated with key values created in C; a Fortran calling interface should
be assumed for key values created in Fortran. (End of advice to implementors.)
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228 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

Analogous to comm_copy_attr_fn is a callback deletion function, defined as follows.
The comm_delete_attr_fn function is invoked when a communicator is deleted by
MPI_COMM_FREE or when a call is made explicitly to MPI_COMM_DELETE_ATTR.
comm_delete_attr_fn should be of type MPI_Comm_delete_attr_function.

This function is called by MPI_COMM_FREE, MPI_COMM_DELETE_ATTR, and
MPI_COMM_SET_ATTR to do whatever is needed to remove an attribute. The function
returns MPI_SUCCESS on success and an error code on failure (in which case
MPI_COMM_FREE will fail).

The argument comm_delete_attr_fn may be specified as MPI_COMM_NULL_DELETE_FN
from either C, C++, or Fortran. MPI_COMM_NULL_DELETE_FN is a function that
does nothing, other than returning MPI_SUCCESS. MPI_COMM_NULL_DELETE_FN re-
places MPI_NULL_DELETE_FN, whose use is deprecated.

If an attribute copy function or attribute delete function returns other than
MPI_SUCCESS, then the call that caused it to be invoked (for example, MPI_COMM_FREE),
is erroneous.

The special key value MPI_KEYVAL_INVALID is never returned by
MPI_KEYVAL_CREATE. Therefore, it can be used for static initialization of key values.

Advice to implementors. To be able to use the predefined C functions
MPI_COMM_NULL_COPY_FN or MPI_COMM_DUP_FN as comm_copy_attr_fn argu-
ment and/or MPI_COMM_NULL_DELETE_FN as the comm_delete_attr_fn argument
in a call to the C++ routine MPI::Comm::Create_keyval, this routine may be over-
loaded with 3 additional routines that accept the C functions as the first, the second,
or both input arguments (instead of an argument that matches the C++ prototype).
(End of advice to implementors.)

Advice to users. If a user wants to write a “wrapper” routine that internally calls
MPI::Comm::Create_keyval and comm_copy_attr_fn and/or comm_delete_attr_fn are
arguments of this wrapper routine, and if this wrapper routine should be callable with
both user-defined C++ copy and delete functions and with the predefined C functions,
then the same overloading as described above in the advice to implementors may be
necessary. (End of advice to users.)

MPI_COMM_FREE_KEYVAL(comm_keyval)

INOUT comm_keyval key value (integer)

int MPI_Comm_free_keyval(int *comm_keyval)

MPI_COMM_FREE_KEYVAL(COMM_KEYVAL, IERROR)
INTEGER COMM_KEYVAL, IERROR

{static void MPI::Comm::Free_keyval(int& comm_keyval) (binding deprecated, see
Section 15.2) }

Frees an extant attribute key. This function sets the value of keyval to
MPI_KEYVAL_INVALID. Note that it is not erroneous to free an attribute key that is in use,
because the actual free does not transpire until after all references (in other communicators
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on the process) to the key have been freed. These references need to be explictly freed by the
program, either via calls to MPI_COMM_DELETE_ATTR that free one attribute instance,
or by calls to MPI_COMM_FREE that free all attribute instances associated with the freed
communicator.

This call is identical to the MPI-1 call MPI_KEYVAL_FREE but is needed to match the
new communicator-specific creation function. The use of MPI_KEYVAL_FREE is deprecated.

MPI_COMM_SET_ATTR(comm, comm_keyval, attribute_val)

INOUT comm communicator from which attribute will be attached
(handle)

IN comm_keyval key value (integer)

IN attribute_val attribute value

int MPI_Comm_set_attr(MPI_Comm comm, int comm_keyval, void *attribute_val)

MPI_COMM_SET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, IERROR)
INTEGER COMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

{void MPI::Comm::Set_attr(int comm_keyval, const void* attribute_val) const
(binding deprecated, see Section 15.2) }

This function stores the stipulated attribute value attribute_val for subsequent retrieval
by MPI_COMM_GET_ATTR. If the value is already present, then the outcome is as if
MPI_COMM_DELETE_ATTR was first called to delete the previous value (and the callback
function comm_delete_attr_fn was executed), and a new value was next stored. The call
is erroneous if there is no key with value keyval; in particular MPI_KEYVAL_INVALID is an
erroneous key value. The call will fail if the comm_delete_attr_fn function returned an error
code other than MPI_SUCCESS.

This function replaces MPI_ATTR_PUT, whose use is deprecated. The C binding is
identical. The Fortran binding differs in that attribute_val is an address-sized integer.

MPI_COMM_GET_ATTR(comm, comm_keyval, attribute_val, flag)

IN comm communicator to which the attribute is attached (han-
dle)

IN comm_keyval key value (integer)

OUT attribute_val attribute value, unless flag = false

OUT flag false if no attribute is associated with the key (logical)

int MPI_Comm_get_attr(MPI_Comm comm, int comm_keyval, void *attribute_val,
int *flag)

MPI_COMM_GET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
INTEGER COMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
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LOGICAL FLAG

{bool MPI::Comm::Get_attr(int comm_keyval, void* attribute_val) const
(binding deprecated, see Section 15.2) }

Retrieves attribute value by key. The call is erroneous if there is no key with value
keyval. On the other hand, the call is correct if the key value exists, but no attribute is
attached on comm for that key; in such case, the call returns flag = false. In particular
MPI_KEYVAL_INVALID is an erroneous key value.

Advice to users. The call to MPI_Comm_set_attr passes in attribute_val the value of
the attribute; the call to MPI_Comm_get_attr passes in attribute_val the address of the
location where the attribute value is to be returned. Thus, if the attribute value itself is
a pointer of type void*, then the actual attribute_val parameter to MPI_Comm_set_attr
will be of type void* and the actual attribute_val parameter to MPI_Comm_get_attr
will be of type void**. (End of advice to users.)

Rationale. The use of a formal parameter attribute_val or type void* (rather than
void**) avoids the messy type casting that would be needed if the attribute value is
declared with a type other than void*. (End of rationale.)

This function replaces MPI_ATTR_GET, whose use is deprecated. The C binding is
identical. The Fortran binding differs in that attribute_val is an address-sized integer.

MPI_COMM_DELETE_ATTR(comm, comm_keyval)

INOUT comm communicator from which the attribute is deleted (han-
dle)

IN comm_keyval key value (integer)

int MPI_Comm_delete_attr(MPI_Comm comm, int comm_keyval)

MPI_COMM_DELETE_ATTR(COMM, COMM_KEYVAL, IERROR)
INTEGER COMM, COMM_KEYVAL, IERROR

{void MPI::Comm::Delete_attr(int comm_keyval) (binding deprecated, see
Section 15.2) }

Delete attribute from cache by key. This function invokes the attribute delete function
comm_delete_attr_fn specified when the keyval was created. The call will fail if the
comm_delete_attr_fn function returns an error code other than MPI_SUCCESS.

Whenever a communicator is replicated using the function MPI_COMM_DUP, all call-
back copy functions for attributes that are currently set are invoked (in arbitrary order).
Whenever a communicator is deleted using the function MPI_COMM_FREE all callback
delete functions for attributes that are currently set are invoked.

This function is the same as MPI_ATTR_DELETE but is needed to match the new
communicator specific functions. The use of MPI_ATTR_DELETE is deprecated.

6.7.3 Windows

The new functions for caching on windows are:
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MPI_WIN_CREATE_KEYVAL(win_copy_attr_fn, win_delete_attr_fn, win_keyval, extra_state)

IN win_copy_attr_fn copy callback function for win_keyval (function)

IN win_delete_attr_fn delete callback function for win_keyval (function)

OUT win_keyval key value for future access (integer)

IN extra_state extra state for callback functions

int MPI_Win_create_keyval(MPI_Win_copy_attr_function *win_copy_attr_fn,
MPI_Win_delete_attr_function *win_delete_attr_fn,
int *win_keyval, void *extra_state)

MPI_WIN_CREATE_KEYVAL(WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN, WIN_KEYVAL,
EXTRA_STATE, IERROR)

EXTERNAL WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN
INTEGER WIN_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

{static int MPI::Win::Create_keyval(MPI::Win::Copy_attr_function*
win_copy_attr_fn,
MPI::Win::Delete_attr_function* win_delete_attr_fn,
void* extra_state) (binding deprecated, see Section 15.2) }

The argument win_copy_attr_fn may be specified as MPI_WIN_NULL_COPY_FN or
MPI_WIN_DUP_FN from either C, C++, or Fortran. MPI_WIN_NULL_COPY_FN is a
function that does nothing other than returning flag = 0 and MPI_SUCCESS.
MPI_WIN_DUP_FN is a simple-minded copy function that sets flag = 1, returns the value
of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS.

The argument win_delete_attr_fn may be specified as MPI_WIN_NULL_DELETE_FN
from either C, C++, or Fortran. MPI_WIN_NULL_DELETE_FN is a function that does
nothing, other than returning MPI_SUCCESS.

The C callback functions are:
typedef int MPI_Win_copy_attr_function(MPI_Win oldwin, int win_keyval,

void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag);

and
typedef int MPI_Win_delete_attr_function(MPI_Win win, int win_keyval,

void *attribute_val, void *extra_state);

The Fortran callback functions are:
SUBROUTINE WIN_COPY_ATTR_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
INTEGER OLDWIN, WIN_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT
LOGICAL FLAG

and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



232 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

SUBROUTINE WIN_DELETE_ATTR_FN(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE,
IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The C++ callbacks are:
{typedef int MPI::Win::Copy_attr_function(const MPI::Win& oldwin,

int win_keyval, void* extra_state, void* attribute_val_in,
void* attribute_val_out, bool& flag); (binding deprecated, see
Section 15.2) }

and
{typedef int MPI::Win::Delete_attr_function(MPI::Win& win, int win_keyval,

void* attribute_val, void* extra_state); (binding deprecated, see
Section 15.2) }

If an attribute copy function or attribute delete function returns other than
MPI_SUCCESS, then the call that caused it to be invoked (for example, MPI_WIN_FREE), is
erroneous.

MPI_WIN_FREE_KEYVAL(win_keyval)

INOUT win_keyval key value (integer)

int MPI_Win_free_keyval(int *win_keyval)

MPI_WIN_FREE_KEYVAL(WIN_KEYVAL, IERROR)
INTEGER WIN_KEYVAL, IERROR

{static void MPI::Win::Free_keyval(int& win_keyval) (binding deprecated, see
Section 15.2) }

MPI_WIN_SET_ATTR(win, win_keyval, attribute_val)

INOUT win window to which attribute will be attached (handle)

IN win_keyval key value (integer)

IN attribute_val attribute value

int MPI_Win_set_attr(MPI_Win win, int win_keyval, void *attribute_val)

MPI_WIN_SET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, IERROR)
INTEGER WIN, WIN_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

{void MPI::Win::Set_attr(int win_keyval, const void* attribute_val) (binding
deprecated, see Section 15.2) }
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MPI_WIN_GET_ATTR(win, win_keyval, attribute_val, flag)

IN win window to which the attribute is attached (handle)

IN win_keyval key value (integer)

OUT attribute_val attribute value, unless flag = false

OUT flag false if no attribute is associated with the key (logical)

int MPI_Win_get_attr(MPI_Win win, int win_keyval, void *attribute_val,
int *flag)

MPI_WIN_GET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
INTEGER WIN, WIN_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
LOGICAL FLAG

{bool MPI::Win::Get_attr(int win_keyval, void* attribute_val) const (binding
deprecated, see Section 15.2) }

MPI_WIN_DELETE_ATTR(win, win_keyval)

INOUT win window from which the attribute is deleted (handle)

IN win_keyval key value (integer)

int MPI_Win_delete_attr(MPI_Win win, int win_keyval)

MPI_WIN_DELETE_ATTR(WIN, WIN_KEYVAL, IERROR)
INTEGER WIN, WIN_KEYVAL, IERROR

{void MPI::Win::Delete_attr(int win_keyval) (binding deprecated, see Section 15.2)
}

6.7.4 Datatypes

The new functions for caching on datatypes are:

MPI_TYPE_CREATE_KEYVAL(type_copy_attr_fn, type_delete_attr_fn, type_keyval, extra_state)

IN type_copy_attr_fn copy callback function for type_keyval (function)

IN type_delete_attr_fn delete callback function for type_keyval (function)

OUT type_keyval key value for future access (integer)

IN extra_state extra state for callback functions

int MPI_Type_create_keyval(MPI_Type_copy_attr_function *type_copy_attr_fn,
MPI_Type_delete_attr_function *type_delete_attr_fn,
int *type_keyval, void *extra_state)
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MPI_TYPE_CREATE_KEYVAL(TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN, TYPE_KEYVAL,
EXTRA_STATE, IERROR)

EXTERNAL TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN
INTEGER TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

{static int MPI::Datatype::Create_keyval(MPI::Datatype::Copy_attr_function*
type_copy_attr_fn, MPI::Datatype::Delete_attr_function*
type_delete_attr_fn, void* extra_state) (binding deprecated, see
Section 15.2) }

The argument type_copy_attr_fn may be specified as MPI_TYPE_NULL_COPY_FN or
MPI_TYPE_DUP_FN from either C, C++, or Fortran. MPI_TYPE_NULL_COPY_FN is a
function that does nothing other than returning flag = 0 and MPI_SUCCESS.
MPI_TYPE_DUP_FN is a simple-minded copy function that sets flag = 1, returns the value
of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS.

The argument type_delete_attr_fn may be specified as MPI_TYPE_NULL_DELETE_FN
from either C, C++, or Fortran. MPI_TYPE_NULL_DELETE_FN is a function that does
nothing, other than returning MPI_SUCCESS.

The C callback functions are:
typedef int MPI_Type_copy_attr_function(MPI_Datatype oldtype,

int type_keyval, void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag);

and
typedef int MPI_Type_delete_attr_function(MPI_Datatype type,

int type_keyval, void *attribute_val, void *extra_state);

The Fortran callback functions are:
SUBROUTINE TYPE_COPY_ATTR_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
INTEGER OLDTYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT
LOGICAL FLAG

and
SUBROUTINE TYPE_DELETE_ATTR_FN(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)
INTEGER TYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The C++ callbacks are:
{typedef int

MPI::Datatype::Copy_attr_function(const MPI::Datatype& oldtype,
int type_keyval, void* extra_state,
const void* attribute_val_in, void* attribute_val_out,
bool& flag); (binding deprecated, see Section 15.2) }

and
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{typedef int MPI::Datatype::Delete_attr_function(MPI::Datatype& type,
int type_keyval, void* attribute_val, void* extra_state);
(binding deprecated, see Section 15.2) }

If an attribute copy function or attribute delete function returns other than
MPI_SUCCESS, then the call that caused it to be invoked (for example, MPI_TYPE_FREE),
is erroneous.

MPI_TYPE_FREE_KEYVAL(type_keyval)

INOUT type_keyval key value (integer)

int MPI_Type_free_keyval(int *type_keyval)

MPI_TYPE_FREE_KEYVAL(TYPE_KEYVAL, IERROR)
INTEGER TYPE_KEYVAL, IERROR

{static void MPI::Datatype::Free_keyval(int& type_keyval) (binding deprecated,
see Section 15.2) }

MPI_TYPE_SET_ATTR(type, type_keyval, attribute_val)

INOUT type datatype to which attribute will be attached (handle)

IN type_keyval key value (integer)

IN attribute_val attribute value

int MPI_Type_set_attr(MPI_Datatype type, int type_keyval,
void *attribute_val)

MPI_TYPE_SET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, IERROR)
INTEGER TYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

{void MPI::Datatype::Set_attr(int type_keyval, const void* attribute_val)
(binding deprecated, see Section 15.2) }

MPI_TYPE_GET_ATTR(type, type_keyval, attribute_val, flag)

IN type datatype to which the attribute is attached (handle)

IN type_keyval key value (integer)

OUT attribute_val attribute value, unless flag = false

OUT flag false if no attribute is associated with the key (logical)

int MPI_Type_get_attr(MPI_Datatype type, int type_keyval, void
*attribute_val, int *flag)

MPI_TYPE_GET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
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INTEGER TYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
LOGICAL FLAG

{bool MPI::Datatype::Get_attr(int type_keyval, void* attribute_val) const
(binding deprecated, see Section 15.2) }

MPI_TYPE_DELETE_ATTR(type, type_keyval)

INOUT type datatype from which the attribute is deleted (handle)

IN type_keyval key value (integer)

int MPI_Type_delete_attr(MPI_Datatype type, int type_keyval)

MPI_TYPE_DELETE_ATTR(TYPE, TYPE_KEYVAL, IERROR)
INTEGER TYPE, TYPE_KEYVAL, IERROR

{void MPI::Datatype::Delete_attr(int type_keyval) (binding deprecated, see
Section 15.2) }

6.7.5 Error Class for Invalid Keyval

Key values for attributes are system-allocated, by MPI_{TYPE,COMM,WIN}_CREATE_KEYVAL.
Only such values can be passed to the functions that use key values as input arguments.
In order to signal that an erroneous key value has been passed to one of these functions,
there is a new MPI error class: MPI_ERR_KEYVAL. It can be returned by
MPI_ATTR_PUT, MPI_ATTR_GET, MPI_ATTR_DELETE, MPI_KEYVAL_FREE,
MPI_{TYPE,COMM,WIN}_DELETE_ATTR, MPI_{TYPE,COMM,WIN}_SET_ATTR,
MPI_{TYPE,COMM,WIN}_GET_ATTR, MPI_{TYPE,COMM,WIN}_FREE_KEYVAL,
MPI_COMM_DUP, MPI_COMM_DISCONNECT, and MPI_COMM_FREE. The last three are
included because keyval is an argument to the copy and delete functions for attributes.

6.7.6 Attributes Example

Advice to users. This example shows how to write a collective communication
operation that uses caching to be more efficient after the first call. The coding style
assumes that MPI function results return only error statuses. (End of advice to users.)

/* key for this module’s stuff: */
static int gop_key = MPI_KEYVAL_INVALID;

typedef struct
{

int ref_count; /* reference count */
/* other stuff, whatever else we want */

} gop_stuff_type;

Efficient_Collective_Op (comm, ...)
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MPI_Comm comm;
{
gop_stuff_type *gop_stuff;
MPI_Group group;
int foundflag;

MPI_Comm_group(comm, &group);

if (gop_key == MPI_KEYVAL_INVALID) /* get a key on first call ever */
{
if ( ! MPI_Comm_create_keyval( gop_stuff_copier,

gop_stuff_destructor,
&gop_key, (void *)0));

/* get the key while assigning its copy and delete callback
behavior. */

MPI_Abort (comm, 99);
}

MPI_Comm_get_attr (comm, gop_key, &gop_stuff, &foundflag);
if (foundflag)
{ /* This module has executed in this group before.

We will use the cached information */
}
else
{ /* This is a group that we have not yet cached anything in.

We will now do so.
*/

/* First, allocate storage for the stuff we want,
and initialize the reference count */

gop_stuff = (gop_stuff_type *) malloc (sizeof(gop_stuff_type));
if (gop_stuff == NULL) { /* abort on out-of-memory error */ }

gop_stuff -> ref_count = 1;

/* Second, fill in *gop_stuff with whatever we want.
This part isn’t shown here */

/* Third, store gop_stuff as the attribute value */
MPI_Comm_set_attr ( comm, gop_key, gop_stuff);

}
/* Then, in any case, use contents of *gop_stuff

to do the global op ... */
}

/* The following routine is called by MPI when a group is freed */
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gop_stuff_destructor (comm, keyval, gop_stuff, extra)
MPI_Comm comm;
int keyval;
gop_stuff_type *gop_stuff;
void *extra;
{
if (keyval != gop_key) { /* abort -- programming error */ }

/* The group’s being freed removes one reference to gop_stuff */
gop_stuff -> ref_count -= 1;

/* If no references remain, then free the storage */
if (gop_stuff -> ref_count == 0) {
free((void *)gop_stuff);

}
}

/* The following routine is called by MPI when a group is copied */
gop_stuff_copier (comm, keyval, extra, gop_stuff_in, gop_stuff_out, flag)
MPI_Comm comm;
int keyval;
gop_stuff_type *gop_stuff_in, *gop_stuff_out;
void *extra;
{
if (keyval != gop_key) { /* abort -- programming error */ }

/* The new group adds one reference to this gop_stuff */
gop_stuff -> ref_count += 1;
gop_stuff_out = gop_stuff_in;

}

6.8 Naming Objects

There are many occasions on which it would be useful to allow a user to associate a printable
identifier with an MPI communicator, window, or datatype, for instance error reporting,
debugging, and profiling. The names attached to opaque objects do not propagate when
the object is duplicated or copied by MPI routines. For communicators this can be achieved
using the following two functions.

MPI_COMM_SET_NAME (comm, comm_name)

INOUT comm communicator whose identifier is to be set (handle)

IN comm_name the character string which is remembered as the name
(string)

int MPI_Comm_set_name(MPI_Comm comm, char *comm_name)
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MPI_COMM_SET_NAME(COMM, COMM_NAME, IERROR)
INTEGER COMM, IERROR
CHARACTER*(*) COMM_NAME

{void MPI::Comm::Set_name(const char* comm_name) (binding deprecated, see
Section 15.2) }

MPI_COMM_SET_NAME allows a user to associate a name string with a communicator.
The character string which is passed to MPI_COMM_SET_NAME will be saved inside the
MPI library (so it can be freed by the caller immediately after the call, or allocated on the
stack). Leading spaces in name are significant but trailing ones are not.

MPI_COMM_SET_NAME is a local (non-collective) operation, which only affects the
name of the communicator as seen in the process which made the MPI_COMM_SET_NAME
call. There is no requirement that the same (or any) name be assigned to a communicator
in every process where it exists.

Advice to users. Since MPI_COMM_SET_NAME is provided to help debug code, it
is sensible to give the same name to a communicator in all of the processes where it
exists, to avoid confusion. (End of advice to users.)

The length of the name which can be stored is limited to the value of
MPI_MAX_OBJECT_NAME in Fortran and MPI_MAX_OBJECT_NAME-1 in C and C++ to al-
low for the null terminator. Attempts to put names longer than this will result in truncation
of the name. MPI_MAX_OBJECT_NAME must have a value of at least 64.

Advice to users. Under circumstances of store exhaustion an attempt to put a name
of any length could fail, therefore the value of MPI_MAX_OBJECT_NAME should be
viewed only as a strict upper bound on the name length, not a guarantee that setting
names of less than this length will always succeed. (End of advice to users.)

Advice to implementors. Implementations which pre-allocate a fixed size space for a
name should use the length of that allocation as the value of MPI_MAX_OBJECT_NAME.
Implementations which allocate space for the name from the heap should still define
MPI_MAX_OBJECT_NAME to be a relatively small value, since the user has to allocate
space for a string of up to this size when calling MPI_COMM_GET_NAME. (End of
advice to implementors.)

MPI_COMM_GET_NAME (comm, comm_name, resultlen)

IN comm communicator whose name is to be returned (handle)

OUT comm_name the name previously stored on the communicator, or
an empty string if no such name exists (string)

OUT resultlen length of returned name (integer)

int MPI_Comm_get_name(MPI_Comm comm, char *comm_name, int *resultlen)

MPI_COMM_GET_NAME(COMM, COMM_NAME, RESULTLEN, IERROR)
INTEGER COMM, RESULTLEN, IERROR
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CHARACTER*(*) COMM_NAME

{void MPI::Comm::Get_name(char* comm_name, int& resultlen) const (binding
deprecated, see Section 15.2) }

MPI_COMM_GET_NAME returns the last name which has previously been associated
with the given communicator. The name may be set and got from any language. The same
name will be returned independent of the language used. name should be allocated so that
it can hold a resulting string of length MPI_MAX_OBJECT_NAME characters.
MPI_COMM_GET_NAME returns a copy of the set name in name.

In C, a null character is additionally stored at name[resultlen]. resultlen cannot be
larger then MPI_MAX_OBJECT_NAME-1. In Fortran, name is padded on the right with
blank characters. resultlen cannot be larger then MPI_MAX_OBJECT_NAME.

If the user has not associated a name with a communicator, or an error occurs,
MPI_COMM_GET_NAME will return an empty string (all spaces in Fortran, "" in C and
C++). The three predefined communicators will have predefined names associated with
them. Thus, the names of MPI_COMM_WORLD, MPI_COMM_SELF, and the communicator
returned by MPI_COMM_GET_PARENT (if not MPI_COMM_NULL) will have the default of
MPI_COMM_WORLD, MPI_COMM_SELF, and MPI_COMM_PARENT. The fact that the system
may have chosen to give a default name to a communicator does not prevent the user from
setting a name on the same communicator; doing this removes the old name and assigns
the new one.

Rationale. We provide separate functions for setting and getting the name of a com-
municator, rather than simply providing a predefined attribute key for the following
reasons:

• It is not, in general, possible to store a string as an attribute from Fortran.

• It is not easy to set up the delete function for a string attribute unless it is known
to have been allocated from the heap.

• To make the attribute key useful additional code to call strdup is necessary. If
this is not standardized then users have to write it. This is extra unneeded work
which we can easily eliminate.

• The Fortran binding is not trivial to write (it will depend on details of the
Fortran compilation system), and will not be portable. Therefore it should be in
the library rather than in user code.

(End of rationale.)

Advice to users. The above definition means that it is safe simply to print the string
returned by MPI_COMM_GET_NAME, as it is always a valid string even if there was
no name.

Note that associating a name with a communicator has no effect on the semantics of
an MPI program, and will (necessarily) increase the store requirement of the program,
since the names must be saved. Therefore there is no requirement that users use these
functions to associate names with communicators. However debugging and profiling
MPI applications may be made easier if names are associated with communicators,
since the debugger or profiler should then be able to present information in a less
cryptic manner. (End of advice to users.)
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The following functions are used for setting and getting names of datatypes.

MPI_TYPE_SET_NAME (type, type_name)

INOUT type datatype whose identifier is to be set (handle)

IN type_name the character string which is remembered as the name
(string)

int MPI_Type_set_name(MPI_Datatype type, char *type_name)

MPI_TYPE_SET_NAME(TYPE, TYPE_NAME, IERROR)
INTEGER TYPE, IERROR
CHARACTER*(*) TYPE_NAME

{void MPI::Datatype::Set_name(const char* type_name) (binding deprecated, see
Section 15.2) }

MPI_TYPE_GET_NAME (type, type_name, resultlen)

IN type datatype whose name is to be returned (handle)

OUT type_name the name previously stored on the datatype, or a empty
string if no such name exists (string)

OUT resultlen length of returned name (integer)

int MPI_Type_get_name(MPI_Datatype type, char *type_name, int *resultlen)

MPI_TYPE_GET_NAME(TYPE, TYPE_NAME, RESULTLEN, IERROR)
INTEGER TYPE, RESULTLEN, IERROR
CHARACTER*(*) TYPE_NAME

{void MPI::Datatype::Get_name(char* type_name, int& resultlen) const
(binding deprecated, see Section 15.2) }

Named predefined datatypes have the default names of the datatype name. For exam-
ple, MPI_WCHAR has the default name of MPI_WCHAR.

The following functions are used for setting and getting names of windows.

MPI_WIN_SET_NAME (win, win_name)

INOUT win window whose identifier is to be set (handle)

IN win_name the character string which is remembered as the name
(string)

int MPI_Win_set_name(MPI_Win win, char *win_name)

MPI_WIN_SET_NAME(WIN, WIN_NAME, IERROR)
INTEGER WIN, IERROR
CHARACTER*(*) WIN_NAME
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{void MPI::Win::Set_name(const char* win_name) (binding deprecated, see
Section 15.2) }

MPI_WIN_GET_NAME (win, win_name, resultlen)

IN win window whose name is to be returned (handle)

OUT win_name the name previously stored on the window, or a empty
string if no such name exists (string)

OUT resultlen length of returned name (integer)

int MPI_Win_get_name(MPI_Win win, char *win_name, int *resultlen)

MPI_WIN_GET_NAME(WIN, WIN_NAME, RESULTLEN, IERROR)
INTEGER WIN, RESULTLEN, IERROR
CHARACTER*(*) WIN_NAME

{void MPI::Win::Get_name(char* win_name, int& resultlen) const (binding
deprecated, see Section 15.2) }

6.9 Formalizing the Loosely Synchronous Model

In this section, we make further statements about the loosely synchronous model, with
particular attention to intra-communication.

6.9.1 Basic Statements

When a caller passes a communicator (that contains a context and group) to a callee, that
communicator must be free of side effects throughout execution of the subprogram: there
should be no active operations on that communicator that might involve the process. This
provides one model in which libraries can be written, and work “safely.” For libraries
so designated, the callee has permission to do whatever communication it likes with the
communicator, and under the above guarantee knows that no other communications will
interfere. Since we permit good implementations to create new communicators without
synchronization (such as by preallocated contexts on communicators), this does not impose
a significant overhead.

This form of safety is analogous to other common computer-science usages, such as
passing a descriptor of an array to a library routine. The library routine has every right to
expect such a descriptor to be valid and modifiable.

6.9.2 Models of Execution

In the loosely synchronous model, transfer of control to a parallel procedure is effected by
having each executing process invoke the procedure. The invocation is a collective operation:
it is executed by all processes in the execution group, and invocations are similarly ordered
at all processes. However, the invocation need not be synchronized.

We say that a parallel procedure is active in a process if the process belongs to a group
that may collectively execute the procedure, and some member of that group is currently
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6.9. FORMALIZING THE LOOSELY SYNCHRONOUS MODEL 243

executing the procedure code. If a parallel procedure is active in a process, then this process
may be receiving messages pertaining to this procedure, even if it does not currently execute
the code of this procedure.

Static communicator allocation

This covers the case where, at any point in time, at most one invocation of a parallel
procedure can be active at any process, and the group of executing processes is fixed. For
example, all invocations of parallel procedures involve all processes, processes are single-
threaded, and there are no recursive invocations.

In such a case, a communicator can be statically allocated to each procedure. The
static allocation can be done in a preamble, as part of initialization code. If the parallel
procedures can be organized into libraries, so that only one procedure of each library can
be concurrently active in each processor, then it is sufficient to allocate one communicator
per library.

Dynamic communicator allocation

Calls of parallel procedures are well-nested if a new parallel procedure is always invoked in
a subset of a group executing the same parallel procedure. Thus, processes that execute
the same parallel procedure have the same execution stack.

In such a case, a new communicator needs to be dynamically allocated for each new
invocation of a parallel procedure. The allocation is done by the caller. A new communicator
can be generated by a call to MPI_COMM_DUP, if the callee execution group is identical to
the caller execution group, or by a call to MPI_COMM_SPLIT if the caller execution group
is split into several subgroups executing distinct parallel routines. The new communicator
is passed as an argument to the invoked routine.

The need for generating a new communicator at each invocation can be alleviated or
avoided altogether in some cases: If the execution group is not split, then one can allocate
a stack of communicators in a preamble, and next manage the stack in a way that mimics
the stack of recursive calls.

One can also take advantage of the well-ordering property of communication to avoid
confusing caller and callee communication, even if both use the same communicator. To do
so, one needs to abide by the following two rules:

• messages sent before a procedure call (or before a return from the procedure) are also
received before the matching call (or return) at the receiving end;

• messages are always selected by source (no use is made of MPI_ANY_SOURCE).

The General case

In the general case, there may be multiple concurrently active invocations of the same
parallel procedure within the same group; invocations may not be well-nested. A new
communicator needs to be created for each invocation. It is the user’s responsibility to make
sure that, should two distinct parallel procedures be invoked concurrently on overlapping
sets of processes, then communicator creation be properly coordinated.
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Chapter 7

Process Topologies

7.1 Introduction

This chapter discusses the MPI topology mechanism. A topology is an extra, optional
attribute that one can give to an intra-communicator; topologies cannot be added to inter-
communicators. A topology can provide a convenient naming mechanism for the processes
of a group (within a communicator), and additionally, may assist the runtime system in
mapping the processes onto hardware.

As stated in Chapter 6, a process group in MPI is a collection of n processes. Each
process in the group is assigned a rank between 0 and n-1. In many parallel applications
a linear ranking of processes does not adequately reflect the logical communication pattern
of the processes (which is usually determined by the underlying problem geometry and
the numerical algorithm used). Often the processes are arranged in topological patterns
such as two- or three-dimensional grids. More generally, the logical process arrangement is
described by a graph. In this chapter we will refer to this logical process arrangement as
the “virtual topology.”

A clear distinction must be made between the virtual process topology and the topology
of the underlying, physical hardware. The virtual topology can be exploited by the system
in the assignment of processes to physical processors, if this helps to improve the commu-
nication performance on a given machine. How this mapping is done, however, is outside
the scope of MPI. The description of the virtual topology, on the other hand, depends only
on the application, and is machine-independent. The functions that are described in this
chapter deal only with machine-independent mapping.

Rationale. Though physical mapping is not discussed, the existence of the virtual
topology information may be used as advice by the runtime system. There are well-
known techniques for mapping grid/torus structures to hardware topologies such as
hypercubes or grids. For more complicated graph structures good heuristics often
yield nearly optimal results [32]. On the other hand, if there is no way for the user
to specify the logical process arrangement as a “virtual topology,” a random mapping
is most likely to result. On some machines, this will lead to unnecessary contention
in the interconnection network. Some details about predicted and measured perfor-
mance improvements that result from good process-to-processor mapping on modern
wormhole-routing architectures can be found in [10, 11].

Besides possible performance benefits, the virtual topology can function as a conve-
nient, process-naming structure, with significant benefits for program readability and
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notational power in message-passing programming. (End of rationale.)

7.2 Virtual Topologies

The communication pattern of a set of processes can be represented by a graph. The
nodes represent processes, and the edges connect processes that communicate with each
other. MPI provides message-passing between any pair of processes in a group. There
is no requirement for opening a channel explicitly. Therefore, a “missing link” in the
user-defined process graph does not prevent the corresponding processes from exchanging
messages. It means rather that this connection is neglected in the virtual topology. This
strategy implies that the topology gives no convenient way of naming this pathway of
communication. Another possible consequence is that an automatic mapping tool (if one
exists for the runtime environment) will not take account of this edge when mapping.

Specifying the virtual topology in terms of a graph is sufficient for all applications.
However, in many applications the graph structure is regular, and the detailed set-up of the
graph would be inconvenient for the user and might be less efficient at run time. A large frac-
tion of all parallel applications use process topologies like rings, two- or higher-dimensional
grids, or tori. These structures are completely defined by the number of dimensions and
the numbers of processes in each coordinate direction. Also, the mapping of grids and tori
is generally an easier problem then that of general graphs. Thus, it is desirable to address
these cases explicitly.

Process coordinates in a Cartesian structure begin their numbering at 0. Row-major
numbering is always used for the processes in a Cartesian structure. This means that, for
example, the relation between group rank and coordinates for four processes in a (2 × 2)
grid is as follows.

coord (0,0): rank 0
coord (0,1): rank 1
coord (1,0): rank 2
coord (1,1): rank 3

7.3 Embedding in MPI

The support for virtual topologies as defined in this chapter is consistent with other parts of
MPI, and, whenever possible, makes use of functions that are defined elsewhere. Topology
information is associated with communicators. It is added to communicators using the
caching mechanism described in Chapter 6.

7.4 Overview of the Functions

The functions MPI_GRAPH_CREATE, MPI_DIST_GRAPH_CREATE_ADJACENT,
MPI_DIST_GRAPH_CREATE and MPI_CART_CREATE are used to create general (graph)
virtual topologies and Cartesian topologies, respectively. These topology creation functions
are collective. As with other collective calls, the program must be written to work correctly,
whether the call synchronizes or not.

The topology creation functions take as input an existing communicator
comm_old, which defines the set of processes on which the topology is to be mapped. For
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7.4. OVERVIEW OF THE FUNCTIONS 247

MPI_GRAPH_CREATE and MPI_CART_CREATE, all input arguments must have identical
values on all processes of the group of comm_old. For MPI_DIST_GRAPH_CREATE_ADJACENT
and MPI_DIST_GRAPH_CREATE the input communication graph is distributed across the
calling processes. Therefore the processes provide different values for the arguments spec-
ifying the graph. However, all processes must give the same value for reorder and the
info argument. In all cases, a new communicator comm_topol is created that carries
the topological structure as cached information (see Chapter 6). In analogy to function
MPI_COMM_CREATE, no cached information propagates from comm_old to comm_topol.

MPI_CART_CREATE can be used to describe Cartesian structures of arbitrary dimen-
sion. For each coordinate direction one specifies whether the process structure is periodic or
not. Note that an n-dimensional hypercube is an n-dimensional torus with 2 processes per
coordinate direction. Thus, special support for hypercube structures is not necessary. The
local auxiliary function MPI_DIMS_CREATE can be used to compute a balanced distribution
of processes among a given number of dimensions.

Rationale. Similar functions are contained in EXPRESS [12] and PARMACS. (End
of rationale.)

The function MPI_TOPO_TEST can be used to inquire about the topology associated
with a communicator. The topological information can be extracted from the communicator
using the functions MPI_GRAPHDIMS_GET and MPI_GRAPH_GET, for general graphs, and
MPI_CARTDIM_GET and MPI_CART_GET, for Cartesian topologies. Several additional
functions are provided to manipulate Cartesian topologies: the functions MPI_CART_RANK
and MPI_CART_COORDS translate Cartesian coordinates into a group rank, and vice-
versa; the function MPI_CART_SUB can be used to extract a Cartesian subspace (analo-
gous to MPI_COMM_SPLIT). The function MPI_CART_SHIFT provides the information
needed to communicate with neighbors in a Cartesian dimension. The two functions
MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS can be used to extract
the neighbors of a node in a graph. For distributed graphs, the functions
MPI_DIST_NEIGHBORS_COUNT and MPI_DIST_NEIGHBORS can be used to extract the
neighbors of the calling node. The function MPI_CART_SUB is collective over the input
communicator’s group; all other functions are local.

Two additional functions, MPI_GRAPH_MAP and MPI_CART_MAP are presented in
the last section. In general these functions are not called by the user directly. However,
together with the communicator manipulation functions presented in Chapter 6, they are
sufficient to implement all other topology functions. Section 7.5.8 outlines such an imple-
mentation.
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7.5 Topology Constructors

7.5.1 Cartesian Constructor

MPI_CART_CREATE(comm_old, ndims, dims, periods, reorder, comm_cart)

IN comm_old input communicator (handle)

IN ndims number of dimensions of Cartesian grid (integer)

IN dims integer array of size ndims specifying the number of
processes in each dimension

IN periods logical array of size ndims specifying whether the grid
is periodic (true) or not (false) in each dimension

IN reorder ranking may be reordered (true) or not (false) (logical)

OUT comm_cart communicator with new Cartesian topology (handle)

int MPI_Cart_create(MPI_Comm comm_old, int ndims, int *dims, int *periods,
int reorder, MPI_Comm *comm_cart)

MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS, REORDER, COMM_CART, IERROR)
INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR
LOGICAL PERIODS(*), REORDER

{MPI::Cartcomm MPI::Intracomm::Create_cart(int ndims, const int dims[],
const bool periods[], bool reorder) const (binding deprecated, see
Section 15.2) }

MPI_CART_CREATE returns a handle to a new communicator to which the Cartesian
topology information is attached. If reorder = false then the rank of each process in the
new group is identical to its rank in the old group. Otherwise, the function may reorder
the processes (possibly so as to choose a good embedding of the virtual topology onto
the physical machine). If the total size of the Cartesian grid is smaller than the size of
the group of comm, then some processes are returned MPI_COMM_NULL, in analogy to
MPI_COMM_SPLIT. If ndims is zero then a zero-dimensional Cartesian topology is created.
The call is erroneous if it specifies a grid that is larger than the group size or if ndims is
negative.

7.5.2 Cartesian Convenience Function: MPI_DIMS_CREATE

For Cartesian topologies, the function MPI_DIMS_CREATE helps the user select a balanced
distribution of processes per coordinate direction, depending on the number of processes
in the group to be balanced and optional constraints that can be specified by the user.
One use is to partition all the processes (the size of MPI_COMM_WORLD’s group) into an
n-dimensional topology.
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7.5. TOPOLOGY CONSTRUCTORS 249

MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes number of nodes in a grid (integer)

IN ndims number of Cartesian dimensions (integer)

INOUT dims integer array of size ndims specifying the number of
nodes in each dimension

int MPI_Dims_create(int nnodes, int ndims, int *dims)

MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)
INTEGER NNODES, NDIMS, DIMS(*), IERROR

{void MPI::Compute_dims(int nnodes, int ndims, int dims[]) (binding
deprecated, see Section 15.2) }

The entries in the array dims are set to describe a Cartesian grid with ndims dimensions
and a total of nnodes nodes. The dimensions are set to be as close to each other as possible,
using an appropriate divisibility algorithm. The caller may further constrain the operation
of this routine by specifying elements of array dims. If dims[i] is set to a positive number,
the routine will not modify the number of nodes in dimension i; only those entries where
dims[i] = 0 are modified by the call.

Negative input values of dims[i] are erroneous. An error will occur if nnodes is not a
multiple of

∏
i,dims[i] 6=0

dims[i].

For dims[i] set by the call, dims[i] will be ordered in non-increasing order. Array
dims is suitable for use as input to routine MPI_CART_CREATE. MPI_DIMS_CREATE is
local.

Example 7.1

dims function call dims
before call on return
(0,0) MPI_DIMS_CREATE(6, 2, dims) (3,2)
(0,0) MPI_DIMS_CREATE(7, 2, dims) (7,1)
(0,3,0) MPI_DIMS_CREATE(6, 3, dims) (2,3,1)
(0,3,0) MPI_DIMS_CREATE(7, 3, dims) erroneous call
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7.5.3 General (Graph) Constructor

MPI_GRAPH_CREATE(comm_old, nnodes, index, edges, reorder, comm_graph)

IN comm_old input communicator (handle)

IN nnodes number of nodes in graph (integer)

IN index array of integers describing node degrees (see below)

IN edges array of integers describing graph edges (see below)

IN reorder ranking may be reordered (true) or not (false) (logical)

OUT comm_graph communicator with graph topology added (handle)

int MPI_Graph_create(MPI_Comm comm_old, int nnodes, int *index, int *edges,
int reorder, MPI_Comm *comm_graph)

MPI_GRAPH_CREATE(COMM_OLD, NNODES, INDEX, EDGES, REORDER, COMM_GRAPH,
IERROR)

INTEGER COMM_OLD, NNODES, INDEX(*), EDGES(*), COMM_GRAPH, IERROR
LOGICAL REORDER

{MPI::Graphcomm MPI::Intracomm::Create_graph(int nnodes, const int index[],
const int edges[], bool reorder) const (binding deprecated, see
Section 15.2) }

MPI_GRAPH_CREATE returns a handle to a new communicator to which the graph
topology information is attached. If reorder = false then the rank of each process in the
new group is identical to its rank in the old group. Otherwise, the function may reorder the
processes. If the size, nnodes, of the graph is smaller than the size of the group of comm,
then some processes are returned MPI_COMM_NULL, in analogy to MPI_CART_CREATE
and MPI_COMM_SPLIT. If the graph is empty, i.e., nnodes == 0, then MPI_COMM_NULL

is returned in all processes. The call is erroneous if it specifies a graph that is larger than
the group size of the input communicator.

The three parameters nnodes, index and edges define the graph structure. nnodes is
the number of nodes of the graph. The nodes are numbered from 0 to nnodes-1. The
i-th entry of array index stores the total number of neighbors of the first i graph nodes.
The lists of neighbors of nodes 0, 1, ..., nnodes-1 are stored in consecutive locations
in array edges. The array edges is a flattened representation of the edge lists. The total
number of entries in index is nnodes and the total number of entries in edges is equal to the
number of graph edges.

The definitions of the arguments nnodes, index, and edges are illustrated with the
following simple example.

Example 7.2 Assume there are four processes 0, 1, 2, 3 with the following adjacency
matrix:
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process neighbors
0 1, 3
1 0
2 3
3 0, 2

Then, the input arguments are:

nnodes = 4
index = 2, 3, 4, 6
edges = 1, 3, 0, 3, 0, 2

Thus, in C, index[0] is the degree of node zero, and index[i] - index[i-1] is the
degree of node i, i=1, ..., nnodes-1; the list of neighbors of node zero is stored in
edges[j], for 0 ≤ j ≤ index[0]− 1 and the list of neighbors of node i, i > 0, is stored in
edges[j], index[i− 1] ≤ j ≤ index[i]− 1.

In Fortran, index(1) is the degree of node zero, and index(i+1) - index(i) is the
degree of node i, i=1, ..., nnodes-1; the list of neighbors of node zero is stored in
edges(j), for 1 ≤ j ≤ index(1) and the list of neighbors of node i, i > 0, is stored in
edges(j), index(i) + 1 ≤ j ≤ index(i + 1).

A single process is allowed to be defined multiple times in the list of neighbors of a
process (i.e., there may be multiple edges between two processes). A process is also allowed
to be a neighbor to itself (i.e., a self loop in the graph). The adjacency matrix is allowed
to be non-symmetric.

Advice to users. Performance implications of using multiple edges or a non-symmetric
adjacency matrix are not defined. The definition of a node-neighbor edge does not
imply a direction of the communication. (End of advice to users.)

Advice to implementors. The following topology information is likely to be stored
with a communicator:

• Type of topology (Cartesian/graph),
• For a Cartesian topology:

1. ndims (number of dimensions),
2. dims (numbers of processes per coordinate direction),
3. periods (periodicity information),
4. own_position (own position in grid, could also be computed from rank and

dims)
• For a graph topology:

1. index,
2. edges,

which are the vectors defining the graph structure.

For a graph structure the number of nodes is equal to the number of processes in
the group. Therefore, the number of nodes does not have to be stored explicitly.
An additional zero entry at the start of array index simplifies access to the topology
information. (End of advice to implementors.)
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7.5.4 Distributed (Graph) Constructor

The general graph constructor assumes that each process passes the full (global) communi-
cation graph to the call. This limits the scalability of this constructor. With the distributed
graph interface, the communication graph is specified in a fully distributed fashion. Each
process specifies only the part of the communication graph of which it is aware. Typically,
this could be the set of processes from which the process will eventually receive or get
data, or the set of processes to which the process will send or put data, or some combi-
nation of such edges. Two different interfaces can be used to create a distributed graph
topology. MPI_DIST_GRAPH_CREATE_ADJACENT creates a distributed graph communi-
cator with each process specifying all of its incoming and outgoing (adjacent) edges in the
logical communication graph and thus requires minimal communication during creation.
MPI_DIST_GRAPH_CREATE provides full flexibility, and processes can indicate that com-
munication will occur between other pairs of processes.

To provide better possibilities for optimization by the MPI library, the distributed
graph constructors permit weighted communication edges and take an info argument that
can further influence process reordering or other optimizations performed by the MPI library.
For example, hints can be provided on how edge weights are to be interpreted, the quality
of the reordering, and/or the time permitted for the MPI library to process the graph.

MPI_DIST_GRAPH_CREATE_ADJACENT(comm_old, indegree, sources, sourceweights, out-
degree, destinations, destweights, info, reorder, comm_dist_graph)

IN comm_old input communicator (handle)

IN indegree size of sources and sourceweights arrays (non-negative
integer)

IN sources ranks of processes for which the calling process is a
destination (array of non-negative integers)

IN sourceweights weights of the edges into the calling process (array of
non-negative integers)

IN outdegree size of destinations and destweights arrays (non-negative
integer)

IN destinations ranks of processes for which the calling process is a
source (array of non-negative integers)

IN destweights weights of the edges out of the calling process (array
of non-negative integers)

IN info hints on optimization and interpretation of weights
(handle)

IN reorder the ranks may be reordered (true) or not (false) (logi-
cal)

OUT comm_dist_graph communicator with distributed graph topology (han-
dle)

int MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int indegree,
int sources[], int sourceweights[], int outdegree,
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int destinations[], int destweights[], MPI_Info info,
int reorder, MPI_Comm *comm_dist_graph)

MPI_DIST_GRAPH_CREATE_ADJACENT(COMM_OLD, INDEGREE, SOURCES, SOURCEWEIGHTS,
OUTDEGREE, DESTINATIONS, DESTWEIGHTS, INFO, REORDER,
COMM_DIST_GRAPH, IERROR)

INTEGER COMM_OLD, INDEGREE, SOURCES(*), SOURCEWEIGHTS(*), OUTDEGREE,
DESTINATIONS(*), DESTWEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR

LOGICAL REORDER

{MPI::Distgraphcomm MPI::Intracomm::Dist_graph_create_adjacent(int
indegree, const int sources[], const int sourceweights[],
int outdegree, const int destinations[],
const int destweights[], const MPI::Info& info, bool reorder)
const (binding deprecated, see Section 15.2) }

{MPI::Distgraphcomm
MPI::Intracomm::Dist_graph_create_adjacent(int indegree,
const int sources[], int outdegree, const int destinations[],
const MPI::Info& info, bool reorder) const (binding deprecated,
see Section 15.2) }

MPI_DIST_GRAPH_CREATE_ADJACENT returns a handle to a new communicator to
which the distributed graph topology information is attached. Each process passes all
information about the edges to its neighbors in the virtual distributed graph topology. The
calling processes must ensure that each edge of the graph is described in the source and
in the destination process with the same weights. If there are multiple edges for a given
(source,dest) pair, then the sequence of the weights of these edges does not matter. The
complete communication topology is the combination of all edges shown in the sources arrays
of all processes in comm_old, which must be identical to the combination of all edges shown
in the destinations arrays. Source and destination ranks must be process ranks of comm_old.
This allows a fully distributed specification of the communication graph. Isolated processes
(i.e., processes with no outgoing or incoming edges, that is, processes that have specified
indegree and outdegree as zero and that thus do not occur as source or destination rank in
the graph specification) are allowed.

The call creates a new communicator comm_dist_graph of distributed graph topology
type to which topology information has been attached. The number of processes in
comm_dist_graph is identical to the number of processes in comm_old. The call to
MPI_DIST_GRAPH_CREATE_ADJACENT is collective.

Weights are specified as non-negative integers and can be used to influence the process
remapping strategy and other internal MPI optimizations. For instance, approximate count
arguments of later communication calls along specific edges could be used as their edge
weights. Multiplicity of edges can likewise indicate more intense communication between
pairs of processes. However, the exact meaning of edge weights is not specified by the MPI
standard and is left to the implementation. In C or Fortran, an application can supply
the special value MPI_UNWEIGHTED for the weight array to indicate that all edges have the
same (effectively no) weight. In C++, this constant does not exist and the weight arguments
may be omitted from the argument list. It is erroneous to supply MPI_UNWEIGHTED, or
in C++ omit the weight arrays, for some but not all processes of comm_old. Note that
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MPI_UNWEIGHTED is not a special weight value; rather it is a special value for the total
array argument. In C, one would expect it to be NULL. In Fortran, MPI_UNWEIGHTED is an
object like MPI_BOTTOM (not usable for initialization or assignment). See Section 2.5.4.

The meaning of the info and reorder arguments is defined in the description of the
following routine.

MPI_DIST_GRAPH_CREATE(comm_old, n, sources, degrees, destinations, weights, info, re-
order, comm_dist_graph)

IN comm_old input communicator (handle)

IN n number of source nodes for which this process specifies
edges (non-negative integer)

IN sources array containing the n source nodes for which this pro-
cess specifies edges (array of non-negative integers)

IN degrees array specifying the number of destinations for each
source node in the source node array (array of non-
negative integers)

IN destinations destination nodes for the source nodes in the source
node array (array of non-negative integers)

IN weights weights for source to destination edges (array of non-
negative integers)

IN info hints on optimization and interpretation of weights
(handle)

IN reorder the process may be reordered (true) or not (false) (log-
ical)

OUT comm_dist_graph communicator with distributed graph topology added
(handle)

int MPI_Dist_graph_create(MPI_Comm comm_old, int n, int sources[],
int degrees[], int destinations[], int weights[],
MPI_Info info, int reorder, MPI_Comm *comm_dist_graph)

MPI_DIST_GRAPH_CREATE(COMM_OLD, N, SOURCES, DEGREES, DESTINATIONS, WEIGHTS,
INFO, REORDER, COMM_DIST_GRAPH, IERROR)

INTEGER COMM_OLD, N, SOURCES(*), DEGREES(*), DESTINATIONS(*),
WEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR
LOGICAL REORDER

{MPI::Distgraphcomm MPI::Intracomm::Dist_graph_create(int n,
const int sources[], const int degrees[], const int
destinations[], const int weights[], const MPI::Info& info,
bool reorder) const (binding deprecated, see Section 15.2) }

{MPI::Distgraphcomm MPI::Intracomm::Dist_graph_create(int n,
const int sources[], const int degrees[],
const int destinations[], const MPI::Info& info, bool reorder)
const (binding deprecated, see Section 15.2) }
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7.5. TOPOLOGY CONSTRUCTORS 255

MPI_DIST_GRAPH_CREATE returns a handle to a new communicator to which the
distributed graph topology information is attached. Concretely, each process calls the con-
structor with a set of directed (source,destination) communication edges as described below.
Every process passes an array of n source nodes in the sources array. For each source node, a
non-negative number of destination nodes is specified in the degrees array. The destination
nodes are stored in the corresponding consecutive segment of the destinations array. More
precisely, if the i-th node in sources is s, this specifies degrees[i] edges (s,d) with d of the j-th
such edge stored in destinations[degrees[0]+...+degrees[i-1]+j]. The weight of this edge is
stored in weights[degrees[0]+...+degrees[i-1]+j]. Both the sources and the destinations arrays
may contain the same node more than once, and the order in which nodes are listed as
destinations or sources is not significant. Similarly, different processes may specify edges
with the same source and destination nodes. Source and destination nodes must be pro-
cess ranks of comm_old. Different processes may specify different numbers of source and
destination nodes, as well as different source to destination edges. This allows a fully dis-
tributed specification of the communication graph. Isolated processes (i.e., processes with
no outgoing or incoming edges, that is, processes that do not occur as source or destination
node in the graph specification) are allowed.

The call creates a new communicator comm_dist_graph of distributed graph topology
type to which topology information has been attached. The number of processes in
comm_dist_graph is identical to the number of processes in comm_old. The call to
MPI_Dist_graph_create is collective.

If reorder = false, all processes will have the same rank in comm_dist_graph as in
comm_old. If reorder = true then the MPI library is free to remap to other processes (of
comm_old) in order to improve communication on the edges of the communication graph.
The weight associated with each edge is a hint to the MPI library about the amount or
intensity of communication on that edge, and may be used to compute a “best” reordering.

Weights are specified as non-negative integers and can be used to influence the process
remapping strategy and other internal MPI optimizations. For instance, approximate count
arguments of later communication calls along specific edges could be used as their edge
weights. Multiplicity of edges can likewise indicate more intense communication between
pairs of processes. However, the exact meaning of edge weights is not specified by the MPI
standard and is left to the implementation. In C or Fortran, an application can supply
the special value MPI_UNWEIGHTED for the weight array to indicate that all edges have the
same (effectively no) weight. In C++, this constant does not exist and the weights argument
may be omitted from the argument list. It is erroneous to supply MPI_UNWEIGHTED, or
in C++ omit the weight arrays, for some but not all processes of comm_old. Note that
MPI_UNWEIGHTED is not a special weight value; rather it is a special value for the total
array argument. In C, one would expect it to be NULL. In Fortran, MPI_UNWEIGHTED is
an object like MPI_BOTTOM (not usable for initialization or assignment). See Section 2.5.4

The meaning of the weights argument can be influenced by the info argument. Info
arguments can be used to guide the mapping; possible options include minimizing the
maximum number of edges between processes on different SMP nodes, or minimizing the
sum of all such edges. An MPI implementation is not obliged to follow specific hints, and it
is valid for an MPI implementation not to do any reordering. An MPI implementation may
specify more info key-value pairs. All processes must specify the same set of key-value info
pairs.

Advice to implementors. MPI implementations must document any additionally

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



256 CHAPTER 7. PROCESS TOPOLOGIES

supported key-value info pairs. MPI_INFO_NULL is always valid, and may indicate the
default creation of the distributed graph topology to the MPI library.

An implementation does not explicitly need to construct the topology from its dis-
tributed parts. However, all processes can construct the full topology from the dis-
tributed specification and use this in a call to MPI_GRAPH_CREATE to create the
topology. This may serve as a reference implementation of the functionality, and
may be acceptable for small communicators. However, a scalable high-quality im-
plementation would save the topology graph in a distributed way. (End of advice to
implementors.)

Example 7.3 As for Example 7.2, assume there are four processes 0, 1, 2, 3 with the
following adjacency matrix and unit edge weights:

process neighbors
0 1, 3
1 0
2 3
3 0, 2

With MPI_DIST_GRAPH_CREATE, this graph could be constructed in many different
ways. One way would be that each process specifies its outgoing edges. The arguments per
process would be:

process n sources degrees destinations weights

0 1 0 2 1,3 1,1
1 1 1 1 0 1
2 1 2 1 3 1
3 1 3 2 0,2 1,1

Another way would be to pass the whole graph on process 0, which could be done with
the following arguments per process:

process n sources degrees destinations weights

0 4 0,1,2,3 2,1,1,2 1,3,0,3,0,2 1,1,1,1,1,1
1 0 - - - -
2 0 - - - -
3 0 - - -

In both cases above, the application could supply MPI_UNWEIGHTED instead of explic-
itly providing identical weights.

MPI_DIST_GRAPH_CREATE_ADJACENT could be used to specify this graph using the
following arguments:

process indegree sources sourceweights outdegree destinations destweights

0 2 1,3 1,1 2 1,3 1,1
1 1 0 1 1 0 1
2 1 3 1 1 3 1
3 2 0,2 1,1 2 0,2 1,1
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Example 7.4 A two-dimensional PxQ torus where all processes communicate along the
dimensions and along the diagonal edges. This cannot be modelled with Cartesian topolo-
gies, but can easily be captured with MPI_DIST_GRAPH_CREATE as shown in the following
code. In this example, the communication along the dimensions is twice as heavy as the
communication along the diagonals:

/*
Input: dimensions P, Q
Condition: number of processes equal to P*Q; otherwise only

ranks smaller than P*Q participate
*/
int rank, x, y;
int sources[1], degrees[1];
int destinations[8], weights[8];

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* get x and y dimension */
y=rank/P; x=rank%P;

/* get my communication partners along x dimension */
destinations[0] = P*y+(x+1)%P; weights[0] = 2;
destinations[1] = P*y+(P+x-1)%P; weights[1] = 2;

/* get my communication partners along y dimension */
destinations[2] = P*((y+1)%Q)+x; weights[2] = 2;
destinations[3] = P*((Q+y-1)%Q)+x; weights[3] = 2;

/* get my communication partners along diagonals */
destinations[4] = P*((y+1)%Q)+(x+1)%P; weights[4] = 1;
destinations[5] = P*((Q+y-1)%Q)+(x+1)%P; weights[5] = 1;
destinations[6] = P*((y+1)%Q)+(P+x-1)%P; weights[6] = 1;
destinations[7] = P*((Q+y-1)%Q)+(P+x-1)%P; weights[7] = 1;

sources[0] = rank;
degrees[0] = 8;
MPI_Dist_graph_create(MPI_COMM_WORLD, 1, sources, degrees, destinations,

weights, MPI_INFO_NULL, 1, comm_dist_graph)

7.5.5 Topology Inquiry Functions

If a topology has been defined with one of the above functions, then the topology information
can be looked up using inquiry functions. They all are local calls.
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MPI_TOPO_TEST(comm, status)

IN comm communicator (handle)

OUT status topology type of communicator comm (state)

int MPI_Topo_test(MPI_Comm comm, int *status)

MPI_TOPO_TEST(COMM, STATUS, IERROR)
INTEGER COMM, STATUS, IERROR

{int MPI::Comm::Get_topology() const (binding deprecated, see Section 15.2) }

The function MPI_TOPO_TEST returns the type of topology that is assigned to a
communicator.

The output value status is one of the following:

MPI_GRAPH graph topology
MPI_CART Cartesian topology
MPI_DIST_GRAPH distributed graph topology
MPI_UNDEFINED no topology

MPI_GRAPHDIMS_GET(comm, nnodes, nedges)

IN comm communicator for group with graph structure (handle)

OUT nnodes number of nodes in graph (integer) (same as number
of processes in the group)

OUT nedges number of edges in graph (integer)

int MPI_Graphdims_get(MPI_Comm comm, int *nnodes, int *nedges)

MPI_GRAPHDIMS_GET(COMM, NNODES, NEDGES, IERROR)
INTEGER COMM, NNODES, NEDGES, IERROR

{void MPI::Graphcomm::Get_dims(int nnodes[], int nedges[]) const (binding
deprecated, see Section 15.2) }

Functions MPI_GRAPHDIMS_GET and MPI_GRAPH_GET retrieve the graph-topology
information that was associated with a communicator by MPI_GRAPH_CREATE.

The information provided by MPI_GRAPHDIMS_GET can be used to dimension the
vectors index and edges correctly for the following call to MPI_GRAPH_GET.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48
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MPI_GRAPH_GET(comm, maxindex, maxedges, index, edges)

IN comm communicator with graph structure (handle)

IN maxindex length of vector index in the calling program
(integer)

IN maxedges length of vector edges in the calling program
(integer)

OUT index array of integers containing the graph structure (for
details see the definition of MPI_GRAPH_CREATE)

OUT edges array of integers containing the graph structure

int MPI_Graph_get(MPI_Comm comm, int maxindex, int maxedges, int *index,
int *edges)

MPI_GRAPH_GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)
INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(*), IERROR

{void MPI::Graphcomm::Get_topo(int maxindex, int maxedges, int index[],
int edges[]) const (binding deprecated, see Section 15.2) }

MPI_CARTDIM_GET(comm, ndims)

IN comm communicator with Cartesian structure (handle)

OUT ndims number of dimensions of the Cartesian structure (in-
teger)

int MPI_Cartdim_get(MPI_Comm comm, int *ndims)

MPI_CARTDIM_GET(COMM, NDIMS, IERROR)
INTEGER COMM, NDIMS, IERROR

{int MPI::Cartcomm::Get_dim() const (binding deprecated, see Section 15.2) }

The functions MPI_CARTDIM_GET and MPI_CART_GET return the Cartesian topol-
ogy information that was associated with a communicator by MPI_CART_CREATE. If comm
is associated with a zero-dimensional Cartesian topology, MPI_CARTDIM_GET returns
ndims=0 and MPI_CART_GET will keep all output arguments unchanged.
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MPI_CART_GET(comm, maxdims, dims, periods, coords)

IN comm communicator with Cartesian structure (handle)

IN maxdims length of vectors dims, periods, and coords in the
calling program (integer)

OUT dims number of processes for each Cartesian dimension (ar-
ray of integer)

OUT periods periodicity (true/false) for each Cartesian dimension
(array of logical)

OUT coords coordinates of calling process in Cartesian structure
(array of integer)

int MPI_Cart_get(MPI_Comm comm, int maxdims, int *dims, int *periods,
int *coords)

MPI_CART_GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)
INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERROR
LOGICAL PERIODS(*)

{void MPI::Cartcomm::Get_topo(int maxdims, int dims[], bool periods[],
int coords[]) const (binding deprecated, see Section 15.2) }

MPI_CART_RANK(comm, coords, rank)

IN comm communicator with Cartesian structure (handle)

IN coords integer array (of size ndims) specifying the Cartesian
coordinates of a process

OUT rank rank of specified process (integer)

int MPI_Cart_rank(MPI_Comm comm, int *coords, int *rank)

MPI_CART_RANK(COMM, COORDS, RANK, IERROR)
INTEGER COMM, COORDS(*), RANK, IERROR

{int MPI::Cartcomm::Get_cart_rank(const int coords[]) const (binding
deprecated, see Section 15.2) }

For a process group with Cartesian structure, the function MPI_CART_RANK trans-
lates the logical process coordinates to process ranks as they are used by the point-to-point
routines.

For dimension i with periods(i) = true, if the coordinate, coords(i), is out of
range, that is, coords(i) < 0 or coords(i) ≥ dims(i), it is shifted back to the interval
0 ≤ coords(i) < dims(i) automatically. Out-of-range coordinates are erroneous for
non-periodic dimensions.

If comm is associated with a zero-dimensional Cartesian topology, coords is not signif-
icant and 0 is returned in rank.
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MPI_CART_COORDS(comm, rank, maxdims, coords)

IN comm communicator with Cartesian structure (handle)

IN rank rank of a process within group of comm (integer)

IN maxdims length of vector coords in the calling program (inte-
ger)

OUT coords integer array (of size ndims) containing the Cartesian
coordinates of specified process (array of integers)

int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int *coords)

MPI_CART_COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)
INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR

{void MPI::Cartcomm::Get_coords(int rank, int maxdims, int coords[]) const
(binding deprecated, see Section 15.2) }

The inverse mapping, rank-to-coordinates translation is provided by
MPI_CART_COORDS.

If comm is associated with a zero-dimensional Cartesian topology,
coords will be unchanged.

MPI_GRAPH_NEIGHBORS_COUNT(comm, rank, nneighbors)

IN comm communicator with graph topology (handle)

IN rank rank of process in group of comm (integer)

OUT nneighbors number of neighbors of specified process (integer)

int MPI_Graph_neighbors_count(MPI_Comm comm, int rank, int *nneighbors)

MPI_GRAPH_NEIGHBORS_COUNT(COMM, RANK, NNEIGHBORS, IERROR)
INTEGER COMM, RANK, NNEIGHBORS, IERROR

{int MPI::Graphcomm::Get_neighbors_count(int rank) const (binding deprecated,
see Section 15.2) }

MPI_GRAPH_NEIGHBORS(comm, rank, maxneighbors, neighbors)

IN comm communicator with graph topology (handle)

IN rank rank of process in group of comm (integer)

IN maxneighbors size of array neighbors (integer)

OUT neighbors ranks of processes that are neighbors to specified pro-
cess (array of integer)

int MPI_Graph_neighbors(MPI_Comm comm, int rank, int maxneighbors,
int *neighbors)
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MPI_GRAPH_NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)
INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR

{void MPI::Graphcomm::Get_neighbors(int rank, int maxneighbors, int
neighbors[]) const (binding deprecated, see Section 15.2) }

MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS provide adjacency
information for a general graph topology. The returned count and array of neighbors for
the queried rank will both include all neighbors and reflect the same edge ordering as
was specified by the original call to MPI_GRAPH_CREATE. Specifically,
MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS will return values based
on the original index and edges array passed to MPI_GRAPH_CREATE (assuming that
index[-1] effectively equals zero):

• The count returned from MPI_GRAPH_NEIGHBORS_COUNT will be (index[rank]
- index[rank-1]).

• The neighbors array returned from MPI_GRAPH_NEIGHBORS will be
edges[index[rank-1]] through edges[index[rank]-1].

Example 7.5 Assume there are four processes 0, 1, 2, 3 with the following adjacency
matrix (note that some neighbors are listed multiple times):

process neighbors
0 1, 1, 3
1 0, 0
2 3
3 0, 2, 2

Thus, the input arguments to MPI_GRAPH_CREATE are:

nnodes = 4
index = 3, 5, 6, 9
edges = 1, 1, 3, 0, 0, 3, 0, 2, 2

Therefore, calling MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS
for each of the 4 processes will return:

Input rank Count Neighbors
0 3 1, 1, 3
1 2 0, 0
2 1 3
3 3 0, 2, 2

Example 7.6 Suppose that comm is a communicator with a shuffle-exchange topology. The
group has 2n members. Each process is labeled by a1, . . . , an with ai ∈ {0, 1}, and has
three neighbors: exchange(a1, . . . , an) = a1, . . . , an−1, ān (ā = 1 − a), shuffle(a1, . . . , an) =
a2, . . . , an, a1, and unshuffle(a1, . . . , an) = an, a1, . . . , an−1. The graph adjacency list is
illustrated below for n = 3.
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node exchange shuffle unshuffle
neighbors(1) neighbors(2) neighbors(3)

0 (000) 1 0 0
1 (001) 0 2 4
2 (010) 3 4 1
3 (011) 2 6 5
4 (100) 5 1 2
5 (101) 4 3 6
6 (110) 7 5 3
7 (111) 6 7 7

Suppose that the communicator comm has this topology associated with it. The follow-
ing code fragment cycles through the three types of neighbors and performs an appropriate
permutation for each.

C assume: each process has stored a real number A.
C extract neighborhood information

CALL MPI_COMM_RANK(comm, myrank, ierr)
CALL MPI_GRAPH_NEIGHBORS(comm, myrank, 3, neighbors, ierr)

C perform exchange permutation
CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(1), 0,
+ neighbors(1), 0, comm, status, ierr)

C perform shuffle permutation
CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(2), 0,
+ neighbors(3), 0, comm, status, ierr)

C perform unshuffle permutation
CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(3), 0,
+ neighbors(2), 0, comm, status, ierr)

MPI_DIST_GRAPH_NEIGHBORS_COUNT and MPI_DIST_GRAPH_NEIGHBORS pro-
vide adjacency information for a distributed graph topology.

MPI_DIST_GRAPH_NEIGHBORS_COUNT(comm, indegree, outdegree, weighted)

IN comm communicator with distributed graph topology (han-
dle)

OUT indegree number of edges into this process (non-negative inte-
ger)

OUT outdegree number of edges out of this process (non-negative in-
teger)

OUT weighted false if MPI_UNWEIGHTED was supplied during cre-
ation, true otherwise (logical)

int MPI_Dist_graph_neighbors_count(MPI_Comm comm, int *indegree,
int *outdegree, int *weighted)

MPI_DIST_GRAPH_NEIGHBORS_COUNT(COMM, INDEGREE, OUTDEGREE, WEIGHTED, IERROR)
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INTEGER COMM, INDEGREE, OUTDEGREE, IERROR
LOGICAL WEIGHTED

{void MPI::Distgraphcomm::Get_dist_neighbors_count(int rank,
int indegree[], int outdegree[], bool& weighted) const (binding
deprecated, see Section 15.2) }

MPI_DIST_GRAPH_NEIGHBORS(comm, maxindegree, sources, sourceweights, maxoutdegree,
destinations, destweights)

IN comm communicator with distributed graph topology (han-
dle)

IN maxindegree size of sources and sourceweights arrays (non-negative
integer)

OUT sources processes for which the calling process is a destination
(array of non-negative integers)

OUT sourceweights weights of the edges into the calling process (array of
non-negative integers)

IN maxoutdegree size of destinations and destweights arrays (non-negative
integer)

OUT destinations processes for which the calling process is a source (ar-
ray of non-negative integers)

OUT destweights weights of the edges out of the calling process (array
of non-negative integers)

int MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree, int sources[],
int sourceweights[], int maxoutdegree, int destinations[],
int destweights[])

MPI_DIST_GRAPH_NEIGHBORS(COMM, MAXINDEGREE, SOURCES, SOURCEWEIGHTS,
MAXOUTDEGREE, DESTINATIONS, DESTWEIGHTS, IERROR)

INTEGER COMM, MAXINDEGREE, SOURCES(*), SOURCEWEIGHTS(*), MAXOUTDEGREE,
DESTINATIONS(*), DESTWEIGHTS(*), IERROR

{void MPI::Distgraphcomm::Get_dist_neighbors(int maxindegree,
int sources[], int sourceweights[], int maxoutdegree,
int destinations[], int destweights[]) (binding deprecated, see
Section 15.2) }

These calls are local. The number of edges into and out of the process returned by
MPI_DIST_GRAPH_NEIGHBORS_COUNT are the total number of such edges given in the
call to MPI_DIST_GRAPH_CREATE_ADJACENT or MPI_DIST_GRAPH_CREATE (poten-
tially by processes other than the calling process in the case of
MPI_DIST_GRAPH_CREATE). Multiply defined edges are all counted and returned by
MPI_DIST_GRAPH_NEIGHBORS in some order. If MPI_UNWEIGHTED is supplied for
sourceweights or destweights or both, or if MPI_UNWEIGHTED was supplied during the con-
struction of the graph then no weight information is returned in that array or those arrays.
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7.5. TOPOLOGY CONSTRUCTORS 265

The only requirement on the order of values in sources and destinations is that two calls
to the routine with same input argument comm will return the same sequence of edges.
If maxindegree or maxoutdegree is smaller than the numbers returned by
MPI_DIST_GRAPH_NEIGHBOR_COUNT, then only the first part of the full list is returned.
Note, that the order of returned edges does need not to be identical to the order that was
provided in the creation of comm for the case that MPI_DIST_GRAPH_CREATE_ADJACENT
was used.

Advice to implementors. Since the query calls are defined to be local, each process
needs to store the list of its neighbors with incoming and outgoing edges. Communica-
tion is required at the collective MPI_DIST_GRAPH_CREATE call in order to compute
the neighbor lists for each process from the distributed graph specification. (End of
advice to implementors.)

7.5.6 Cartesian Shift Coordinates

If the process topology is a Cartesian structure, an MPI_SENDRECV operation is likely to
be used along a coordinate direction to perform a shift of data. As input, MPI_SENDRECV
takes the rank of a source process for the receive, and the rank of a destination process for the
send. If the function MPI_CART_SHIFT is called for a Cartesian process group, it provides
the calling process with the above identifiers, which then can be passed to MPI_SENDRECV.
The user specifies the coordinate direction and the size of the step (positive or negative).
The function is local.

MPI_CART_SHIFT(comm, direction, disp, rank_source, rank_dest)

IN comm communicator with Cartesian structure (handle)

IN direction coordinate dimension of shift (integer)

IN disp displacement (> 0: upwards shift, < 0: downwards
shift) (integer)

OUT rank_source rank of source process (integer)

OUT rank_dest rank of destination process (integer)

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)

MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR)
INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR

{void MPI::Cartcomm::Shift(int direction, int disp, int& rank_source,
int& rank_dest) const (binding deprecated, see Section 15.2) }

The direction argument indicates the coordinate dimension to be traversed by the shift.
The dimensions are numbered from 0 to ndims-1, where ndims is the number of dimensions.

Depending on the periodicity of the Cartesian group in the specified coordinate direc-
tion, MPI_CART_SHIFT provides the identifiers for a circular or an end-off shift. In the case
of an end-off shift, the value MPI_PROC_NULL may be returned in rank_source or rank_dest,
indicating that the source or the destination for the shift is out of range.
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It is erroneous to call MPI_CART_SHIFT with a direction that is either negative or
greater than or equal to the number of dimensions in the Cartesian communicator. This
implies that it is erroneous to call MPI_CART_SHIFT with a comm that is associated with
a zero-dimensional Cartesian topology.

Example 7.7 The communicator, comm, has a two-dimensional, periodic, Cartesian topol-
ogy associated with it. A two-dimensional array of REALs is stored one element per process,
in variable A. One wishes to skew this array, by shifting column i (vertically, i.e., along the
column) by i steps.

....
C find process rank

CALL MPI_COMM_RANK(comm, rank, ierr)
C find Cartesian coordinates

CALL MPI_CART_COORDS(comm, rank, maxdims, coords, ierr)
C compute shift source and destination

CALL MPI_CART_SHIFT(comm, 0, coords(2), source, dest, ierr)
C skew array

CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, dest, 0, source, 0, comm,
+ status, ierr)

Advice to users. In Fortran, the dimension indicated by DIRECTION = i has DIMS(i+1)

nodes, where DIMS is the array that was used to create the grid. In C, the dimension
indicated by direction = i is the dimension specified by dims[i]. (End of advice to users.)

7.5.7 Partitioning of Cartesian structures

MPI_CART_SUB(comm, remain_dims, newcomm)

IN comm communicator with Cartesian structure (handle)

IN remain_dims the i-th entry of remain_dims specifies whether the
i-th dimension is kept in the subgrid (true) or is drop-
ped (false) (logical vector)

OUT newcomm communicator containing the subgrid that includes
the calling process (handle)

int MPI_Cart_sub(MPI_Comm comm, int *remain_dims, MPI_Comm *newcomm)

MPI_CART_SUB(COMM, REMAIN_DIMS, NEWCOMM, IERROR)
INTEGER COMM, NEWCOMM, IERROR
LOGICAL REMAIN_DIMS(*)

{MPI::Cartcomm MPI::Cartcomm::Sub(const bool remain_dims[]) const (binding
deprecated, see Section 15.2) }

If a Cartesian topology has been created with MPI_CART_CREATE, the function
MPI_CART_SUB can be used to partition the communicator group into subgroups that
form lower-dimensional Cartesian subgrids, and to build for each subgroup a communicator
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7.5. TOPOLOGY CONSTRUCTORS 267

with the associated subgrid Cartesian topology. If all entries in remain_dims are false or
comm is already associated with a zero-dimensional Cartesian topology then newcomm is
associated with a zero-dimensional Cartesian topology. (This function is closely related to
MPI_COMM_SPLIT.)

Example 7.8 Assume that MPI_CART_CREATE(..., comm) has defined a (2 × 3 × 4)
grid. Let remain_dims = (true, false, true). Then a call to,

MPI_CART_SUB(comm, remain_dims, comm_new),

will create three communicators each with eight processes in a 2 × 4 Cartesian topol-
ogy. If remain_dims = (false, false, true) then the call to MPI_CART_SUB(comm,
remain_dims, comm_new) will create six non-overlapping communicators, each with four
processes, in a one-dimensional Cartesian topology.

7.5.8 Low-Level Topology Functions

The two additional functions introduced in this section can be used to implement all other
topology functions. In general they will not be called by the user directly, unless he or she
is creating additional virtual topology capability other than that provided by MPI.

MPI_CART_MAP(comm, ndims, dims, periods, newrank)

IN comm input communicator (handle)

IN ndims number of dimensions of Cartesian structure (integer)

IN dims integer array of size ndims specifying the number of
processes in each coordinate direction

IN periods logical array of size ndims specifying the periodicity
specification in each coordinate direction

OUT newrank reordered rank of the calling process;
MPI_UNDEFINED if calling process does not belong
to grid (integer)

int MPI_Cart_map(MPI_Comm comm, int ndims, int *dims, int *periods,
int *newrank)

MPI_CART_MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)
INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERROR
LOGICAL PERIODS(*)

{int MPI::Cartcomm::Map(int ndims, const int dims[], const bool periods[])
const (binding deprecated, see Section 15.2) }

MPI_CART_MAP computes an “optimal” placement for the calling process on the phys-
ical machine. A possible implementation of this function is to always return the rank of the
calling process, that is, not to perform any reordering.

Advice to implementors. The function MPI_CART_CREATE(comm, ndims, dims, pe-
riods, reorder, comm_cart), with reorder = true can be implemented by calling
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MPI_CART_MAP(comm, ndims, dims, periods, newrank), then calling
MPI_COMM_SPLIT(comm, color, key, comm_cart), with color = 0 if newrank 6=
MPI_UNDEFINED, color = MPI_UNDEFINED otherwise, and key = newrank.

The function MPI_CART_SUB(comm, remain_dims, comm_new) can be implemented
by a call to MPI_COMM_SPLIT(comm, color, key, comm_new), using a single number
encoding of the lost dimensions as color and a single number encoding of the preserved
dimensions as key.

All other Cartesian topology functions can be implemented locally, using the topology
information that is cached with the communicator. (End of advice to implementors.)

The corresponding new function for general graph structures is as follows.

MPI_GRAPH_MAP(comm, nnodes, index, edges, newrank)

IN comm input communicator (handle)

IN nnodes number of graph nodes (integer)

IN index integer array specifying the graph structure, see
MPI_GRAPH_CREATE

IN edges integer array specifying the graph structure

OUT newrank reordered rank of the calling process;
MPI_UNDEFINED if the calling process does not be-
long to graph (integer)

int MPI_Graph_map(MPI_Comm comm, int nnodes, int *index, int *edges,
int *newrank)

MPI_GRAPH_MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)
INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERROR

{int MPI::Graphcomm::Map(int nnodes, const int index[], const int edges[])
const (binding deprecated, see Section 15.2) }

Advice to implementors. The function MPI_GRAPH_CREATE(comm, nnodes, index,
edges, reorder, comm_graph), with reorder = true can be implemented by calling
MPI_GRAPH_MAP(comm, nnodes, index, edges, newrank), then calling
MPI_COMM_SPLIT(comm, color, key, comm_graph), with color = 0 if newrank 6=
MPI_UNDEFINED, color = MPI_UNDEFINED otherwise, and key = newrank.

All other graph topology functions can be implemented locally, using the topology
information that is cached with the communicator. (End of advice to implementors.)

7.6 An Application Example

Example 7.9 The example in Figure 7.1 shows how the grid definition and inquiry func-
tions can be used in an application program. A partial differential equation, for instance
the Poisson equation, is to be solved on a rectangular domain. First, the processes organize
themselves in a two-dimensional structure. Each process then inquires about the ranks of
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7.6. AN APPLICATION EXAMPLE 269

its neighbors in the four directions (up, down, right, left). The numerical problem is solved
by an iterative method, the details of which are hidden in the subroutine relax.

In each relaxation step each process computes new values for the solution grid function
at all points owned by the process. Then the values at inter-process boundaries have to be
exchanged with neighboring processes. For example, the exchange subroutine might contain
a call like MPI_SEND(...,neigh_rank(1),...) to send updated values to the left-hand neighbor
(i-1,j).
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integer ndims, num_neigh
logical reorder
parameter (ndims=2, num_neigh=4, reorder=.true.)
integer comm, comm_cart, dims(ndims), neigh_def(ndims), ierr
integer neigh_rank(num_neigh), own_position(ndims), i, j
logical periods(ndims)
real∗8 u(0:101,0:101), f(0:101,0:101)
data dims / ndims ∗ 0 /
comm = MPI_COMM_WORLD

C Set process grid size and periodicity
call MPI_DIMS_CREATE(comm, ndims, dims,ierr)
periods(1) = .TRUE.
periods(2) = .TRUE.

C Create a grid structure in WORLD group and inquire about own position
call MPI_CART_CREATE (comm, ndims, dims, periods, reorder, comm_cart,ierr)
call MPI_CART_GET (comm_cart, ndims, dims, periods, own_position,ierr)

C Look up the ranks for the neighbors. Own process coordinates are (i,j).
C Neighbors are (i-1,j), (i+1,j), (i,j-1), (i,j+1)

i = own_position(1)
j = own_position(2)
neigh_def(1) = i-1
neigh_def(2) = j
call MPI_CART_RANK (comm_cart, neigh_def, neigh_rank(1),ierr)
neigh_def(1) = i+1
neigh_def(2) = j
call MPI_CART_RANK (comm_cart, neigh_def, neigh_rank(2),ierr)
neigh_def(1) = i
neigh_def(2) = j-1
call MPI_CART_RANK (comm_cart, neigh_def, neigh_rank(3),ierr)
neigh_def(1) = i
neigh_def(2) = j+1
call MPI_CART_RANK (comm_cart, neigh_def, neigh_rank(4),ierr)

C Initialize the grid functions and start the iteration
call init (u, f)
do 10 it=1,100
call relax (u, f)

C Exchange data with neighbor processes
call exchange (u, comm_cart, neigh_rank, num_neigh)

10 continue
call output (u)
end

Figure 7.1: Set-up of process structure for two-dimensional parallel Poisson solver.
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Chapter 8

MPI Environmental Management

This chapter discusses routines for getting and, where appropriate, setting various param-
eters that relate to the MPI implementation and the execution environment (such as error
handling). The procedures for entering and leaving the MPI execution environment are also
described here.

8.1 Implementation Information

8.1.1 Version Inquiries

In order to cope with changes to the MPI Standard, there are both compile-time and run-
time ways to determine which version of the standard is in use in the environment one is
using.

The “version” will be represented by two separate integers, for the version and subver-
sion: In C and C++,

#define MPI_VERSION 2
#define MPI_SUBVERSION 2

in Fortran,

INTEGER MPI_VERSION, MPI_SUBVERSION
PARAMETER (MPI_VERSION = 2)
PARAMETER (MPI_SUBVERSION = 2)

For runtime determination,

MPI_GET_VERSION( version, subversion )

OUT version version number (integer)

OUT subversion subversion number (integer)

int MPI_Get_version(int *version, int *subversion)

MPI_GET_VERSION(VERSION, SUBVERSION, IERROR)
INTEGER VERSION, SUBVERSION, IERROR
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272 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

{void MPI::Get_version(int& version, int& subversion) (binding deprecated, see
Section 15.2) }

MPI_GET_VERSION is one of the few functions that can be called before MPI_INIT and
after MPI_FINALIZE. Valid (MPI_VERSION, MPI_SUBVERSION) pairs in this and previous
versions of the MPI standard are (2,2), (2,1), (2,0), and (1,2).

8.1.2 Environmental Inquiries

A set of attributes that describe the execution environment are attached to the commu-
nicator MPI_COMM_WORLD when MPI is initialized. The value of these attributes can
be inquired by using the function MPI_COMM_GET_ATTR described in Chapter 6. It is
erroneous to delete these attributes, free their keys, or change their values.

The list of predefined attribute keys include

MPI_TAG_UB Upper bound for tag value.

MPI_HOST Host process rank, if such exists, MPI_PROC_NULL, otherwise.

MPI_IO rank of a node that has regular I/O facilities (possibly myrank). Nodes in the same
communicator may return different values for this parameter.

MPI_WTIME_IS_GLOBAL Boolean variable that indicates whether clocks are synchronized.

Vendors may add implementation specific parameters (such as node number, real mem-
ory size, virtual memory size, etc.)

These predefined attributes do not change value between MPI initialization (MPI_INIT
and MPI completion (MPI_FINALIZE), and cannot be updated or deleted by users.

Advice to users. Note that in the C binding, the value returned by these attributes
is a pointer to an int containing the requested value. (End of advice to users.)

The required parameter values are discussed in more detail below:

Tag Values

Tag values range from 0 to the value returned for MPI_TAG_UB inclusive. These values are
guaranteed to be unchanging during the execution of an MPI program. In addition, the tag
upper bound value must be at least 32767. An MPI implementation is free to make the
value of MPI_TAG_UB larger than this; for example, the value 230 − 1 is also a legal value
for MPI_TAG_UB.

The attribute MPI_TAG_UB has the same value on all processes of MPI_COMM_WORLD.

Host Rank

The value returned for MPI_HOST gets the rank of the HOST process in the group associated
with communicator MPI_COMM_WORLD, if there is such. MPI_PROC_NULL is returned if
there is no host. MPI does not specify what it means for a process to be a HOST, nor does
it requires that a HOST exists.

The attribute MPI_HOST has the same value on all processes of MPI_COMM_WORLD.
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IO Rank

The value returned for MPI_IO is the rank of a processor that can provide language-standard
I/O facilities. For Fortran, this means that all of the Fortran I/O operations are supported
(e.g., OPEN, REWIND, WRITE). For C and C++, this means that all of the ISO C and C++,
I/O operations are supported (e.g., fopen, fprintf, lseek).

If every process can provide language-standard I/O, then the value MPI_ANY_SOURCE

will be returned. Otherwise, if the calling process can provide language-standard I/O,
then its rank will be returned. Otherwise, if some process can provide language-standard
I/O then the rank of one such process will be returned. The same value need not be
returned by all processes. If no process can provide language-standard I/O, then the value
MPI_PROC_NULL will be returned.

Advice to users. Note that input is not collective, and this attribute does not indicate
which process can or does provide input. (End of advice to users.)

Clock Synchronization

The value returned for MPI_WTIME_IS_GLOBAL is 1 if clocks at all processes in
MPI_COMM_WORLD are synchronized, 0 otherwise. A collection of clocks is considered
synchronized if explicit effort has been taken to synchronize them. The expectation is that
the variation in time, as measured by calls to MPI_WTIME, will be less then one half the
round-trip time for an MPI message of length zero. If time is measured at a process just
before a send and at another process just after a matching receive, the second time should
be always higher than the first one.

The attribute MPI_WTIME_IS_GLOBAL need not be present when the clocks are not
synchronized (however, the attribute key MPI_WTIME_IS_GLOBAL is always valid). This
attribute may be associated with communicators other then MPI_COMM_WORLD.

The attribute MPI_WTIME_IS_GLOBAL has the same value on all processes of
MPI_COMM_WORLD.

MPI_GET_PROCESSOR_NAME( name, resultlen )

OUT name A unique specifier for the actual (as opposed to vir-
tual) node.

OUT resultlen Length (in printable characters) of the result returned
in name

int MPI_Get_processor_name(char *name, int *resultlen)

MPI_GET_PROCESSOR_NAME( NAME, RESULTLEN, IERROR)
CHARACTER*(*) NAME
INTEGER RESULTLEN,IERROR

{void MPI::Get_processor_name(char* name, int& resultlen) (binding deprecated,
see Section 15.2) }

This routine returns the name of the processor on which it was called at the moment
of the call. The name is a character string for maximum flexibility. From this value it
must be possible to identify a specific piece of hardware; possible values include “processor
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274 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

9 in rack 4 of mpp.cs.org” and “231” (where 231 is the actual processor number in the
running homogeneous system). The argument name must represent storage that is at least
MPI_MAX_PROCESSOR_NAME characters long. MPI_GET_PROCESSOR_NAME may write
up to this many characters into name.

The number of characters actually written is returned in the output argument, resultlen.
In C, a null character is additionally stored at name[resultlen]. The resultlen cannot be larger
then MPI_MAX_PROCESSOR_NAME-1. In Fortran, name is padded on the right with blank
characters. The resultlen cannot be larger then MPI_MAX_PROCESSOR_NAME.

Rationale. This function allows MPI implementations that do process migration to
return the current processor. Note that nothing in MPI requires or defines process
migration; this definition of MPI_GET_PROCESSOR_NAME simply allows such an
implementation. (End of rationale.)

Advice to users. The user must provide at least MPI_MAX_PROCESSOR_NAME space
to write the processor name — processor names can be this long. The user should
examine the output argument, resultlen, to determine the actual length of the name.
(End of advice to users.)

The constant MPI_BSEND_OVERHEAD provides an upper bound on the fixed overhead
per message buffered by a call to MPI_BSEND (see Section 3.6.1).

8.2 Memory Allocation

In some systems, message-passing and remote-memory-access (RMA) operations run faster
when accessing specially allocated memory (e.g., memory that is shared by the other pro-
cesses in the communicating group on an SMP). MPI provides a mechanism for allocating
and freeing such special memory. The use of such memory for message-passing or RMA is not
mandatory, and this memory can be used without restrictions as any other dynamically allo-
cated memory. However, implementations may restrict the use of the MPI_WIN_LOCK and
MPI_WIN_UNLOCK functions to windows allocated in such memory (see Section 11.4.3.)

MPI_ALLOC_MEM(size, info, baseptr)

IN size size of memory segment in bytes (non-negative inte-
ger)

IN info info argument (handle)

OUT baseptr pointer to beginning of memory segment allocated

int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)

MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)
INTEGER INFO, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

{void* MPI::Alloc_mem(MPI::Aint size, const MPI::Info& info) (binding
deprecated, see Section 15.2) }
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The info argument can be used to provide directives that control the desired location
of the allocated memory. Such a directive does not affect the semantics of the call. Valid
info values are implementation-dependent; a null directive value of info = MPI_INFO_NULL
is always valid.

The function MPI_ALLOC_MEM may return an error code of class MPI_ERR_NO_MEM

to indicate it failed because memory is exhausted.

MPI_FREE_MEM(base)

IN base initial address of memory segment allocated by
MPI_ALLOC_MEM (choice)

int MPI_Free_mem(void *base)

MPI_FREE_MEM(BASE, IERROR)
<type> BASE(*)
INTEGER IERROR

{void MPI::Free_mem(void *base) (binding deprecated, see Section 15.2) }

The function MPI_FREE_MEM may return an error code of class MPI_ERR_BASE to
indicate an invalid base argument.

Rationale. The C and C++ bindings of MPI_ALLOC_MEM and MPI_FREE_MEM
are similar to the bindings for the malloc and free C library calls: a call to
MPI_Alloc_mem(..., &base) should be paired with a call to MPI_Free_mem(base) (one
less level of indirection). Both arguments are declared to be of same type void* so
as to facilitate type casting. The Fortran binding is consistent with the C and C++
bindings: the Fortran MPI_ALLOC_MEM call returns in baseptr the (integer valued)
address of the allocated memory. The base argument of MPI_FREE_MEM is a choice
argument, which passes (a reference to) the variable stored at that location. (End of
rationale.)

Advice to implementors. If MPI_ALLOC_MEM allocates special memory, then a
design similar to the design of C malloc and free functions has to be used, in order
to find out the size of a memory segment, when the segment is freed. If no special
memory is used, MPI_ALLOC_MEM simply invokes malloc, and MPI_FREE_MEM
invokes free.

A call to MPI_ALLOC_MEM can be used in shared memory systems to allocate mem-
ory in a shared memory segment. (End of advice to implementors.)

Example 8.1 Example of use of MPI_ALLOC_MEM, in Fortran with pointer support. We
assume 4-byte REALs, and assume that pointers are address-sized.

REAL A
POINTER (P, A(100,100)) ! no memory is allocated
CALL MPI_ALLOC_MEM(4*100*100, MPI_INFO_NULL, P, IERR)
! memory is allocated
...
A(3,5) = 2.71;
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...
CALL MPI_FREE_MEM(A, IERR) ! memory is freed

Since standard Fortran does not support (C-like) pointers, this code is not Fortran 77
or Fortran 90 code. Some compilers (in particular, at the time of writing, g77 and Fortran
compilers for Intel) do not support this code.

Example 8.2 Same example, in C

float (* f)[100][100] ;
/* no memory is allocated */
MPI_Alloc_mem(sizeof(float)*100*100, MPI_INFO_NULL, &f);
/* memory allocated */
...
(*f)[5][3] = 2.71;
...
MPI_Free_mem(f);

8.3 Error Handling

An MPI implementation cannot or may choose not to handle some errors that occur during
MPI calls. These can include errors that generate exceptions or traps, such as floating point
errors or access violations. The set of errors that are handled by MPI is implementation-
dependent. Each such error generates an MPI exception.

The above text takes precedence over any text on error handling within this document.
Specifically, text that states that errors will be handled should be read as may be handled.

A user can associate error handlers to three types of objects: communicators, windows,
and files. The specified error handling routine will be used for any MPI exception that occurs
during a call to MPI for the respective object. MPI calls that are not related to any objects
are considered to be attached to the communicator MPI_COMM_WORLD. The attachment
of error handlers to objects is purely local: different processes may attach different error
handlers to corresponding objects.

Several predefined error handlers are available in MPI:

MPI_ERRORS_ARE_FATAL The handler, when called, causes the program to abort on all
executing processes. This has the same effect as if MPI_ABORT was called by the
process that invoked the handler.

MPI_ERRORS_RETURN The handler has no effect other than returning the error code to
the user.

Implementations may provide additional predefined error handlers and programmers
can code their own error handlers.

The error handler MPI_ERRORS_ARE_FATAL is associated by default with MPI_COMM-

_WORLD after initialization. Thus, if the user chooses not to control error handling, every
error that MPI handles is treated as fatal. Since (almost) all MPI calls return an error code,
a user may choose to handle errors in its main code, by testing the return code of MPI calls
and executing a suitable recovery code when the call was not successful. In this case, the
error handler MPI_ERRORS_RETURN will be used. Usually it is more convenient and more
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efficient not to test for errors after each MPI call, and have such error handled by a non
trivial MPI error handler.

After an error is detected, the state of MPI is undefined. That is, using a user-defined
error handler, or MPI_ERRORS_RETURN, does not necessarily allow the user to continue to
use MPI after an error is detected. The purpose of these error handlers is to allow a user to
issue user-defined error messages and to take actions unrelated to MPI (such as flushing I/O
buffers) before a program exits. An MPI implementation is free to allow MPI to continue
after an error but is not required to do so.

Advice to implementors. A good quality implementation will, to the greatest possible
extent, circumscribe the impact of an error, so that normal processing can continue
after an error handler was invoked. The implementation documentation will provide
information on the possible effect of each class of errors. (End of advice to implemen-
tors.)

An MPI error handler is an opaque object, which is accessed by a handle. MPI calls are
provided to create new error handlers, to associate error handlers with objects, and to test
which error handler is associated with an object. C and C++ have distinct typedefs for
user defined error handling callback functions that accept communicator, file, and window
arguments. In Fortran there are three user routines.

An error handler object is created by a call to MPI_XXX_CREATE_ERRHANDLER(function,
errhandler), where XXX is, respectively, COMM, WIN, or FILE.

An error handler is attached to a communicator, window, or file by a call to
MPI_XXX_SET_ERRHANDLER. The error handler must be either a predefined error han-
dler, or an error handler that was created by a call to MPI_XXX_CREATE_ERRHANDLER,
with matching XXX. The predefined error handlers MPI_ERRORS_RETURN and
MPI_ERRORS_ARE_FATAL can be attached to communicators, windows, and files. In C++,
the predefined error handler MPI::ERRORS_THROW_EXCEPTIONS can also be attached to
communicators, windows, and files.

The error handler currently associated with a communicator, window, or file can be
retrieved by a call to MPI_XXX_GET_ERRHANDLER.

The MPI function MPI_ERRHANDLER_FREE can be used to free an error handler that
was created by a call to MPI_XXX_CREATE_ERRHANDLER.

MPI_{COMM,WIN,FILE}_GET_ERRHANDLER behave as if a new error handler object
is created. That is, once the error handler is no longer needed, MPI_ERRHANDLER_FREE
should be called with the error handler returned from MPI_ERRHANDLER_GET or
MPI_{COMM,WIN,FILE}_GET_ERRHANDLER to mark the error handler for deallocation.
This provides behavior similar to that of MPI_COMM_GROUP and MPI_GROUP_FREE.

Advice to implementors. High-quality implementation should raise an error when
an error handler that was created by a call to MPI_XXX_CREATE_ERRHANDLER is
attached to an object of the wrong type with a call to MPI_YYY_SET_ERRHANDLER.
To do so, it is necessary to maintain, with each error handler, information on the
typedef of the associated user function. (End of advice to implementors.)

The syntax for these calls is given below.
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8.3.1 Error Handlers for Communicators

MPI_COMM_CREATE_ERRHANDLER(function, errhandler)

IN function user defined error handling procedure (function)

OUT errhandler MPI error handler (handle)

int MPI_Comm_create_errhandler(MPI_Comm_errhandler_function *function,
MPI_Errhandler *errhandler)

MPI_COMM_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

{static MPI::Errhandler
MPI::Comm::Create_errhandler(MPI::Comm::Errhandler_function*
function) (binding deprecated, see Section 15.2) }

Creates an error handler that can be attached to communicators. This function is
identical to MPI_ERRHANDLER_CREATE, whose use is deprecated.

The user routine should be, in C, a function of type MPI_Comm_errhandler_function, which
is defined as
typedef void MPI_Comm_errhandler_function(MPI_Comm *, int *, ...);

The first argument is the communicator in use. The second is the error code to be
returned by the MPI routine that raised the error. If the routine would have returned
MPI_ERR_IN_STATUS, it is the error code returned in the status for the request that caused
the error handler to be invoked. The remaining arguments are “stdargs” arguments whose
number and meaning is implementation-dependent. An implementation should clearly doc-
ument these arguments. Addresses are used so that the handler may be written in Fortran.
This typedef replaces MPI_Handler_function, whose use is deprecated.

In Fortran, the user routine should be of the form:
SUBROUTINE COMM_ERRHANDLER_FUNCTION(COMM, ERROR_CODE)

INTEGER COMM, ERROR_CODE

In C++, the user routine should be of the form:
{typedef void MPI::Comm::Errhandler_function(MPI::Comm &, int *, ...);

(binding deprecated, see Section 15.2) }

Rationale. The variable argument list is provided because it provides an ISO-
standard hook for providing additional information to the error handler; without this
hook, ISO C prohibits additional arguments. (End of rationale.)

Advice to users. A newly created communicator inherits the error handler that
is associated with the “parent” communicator. In particular, the user can specify
a “global” error handler for all communicators by associating this handler with the
communicator MPI_COMM_WORLD immediately after initialization. (End of advice to
users.)
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MPI_COMM_SET_ERRHANDLER(comm, errhandler)

INOUT comm communicator (handle)

IN errhandler new error handler for communicator (handle)

int MPI_Comm_set_errhandler(MPI_Comm comm, MPI_Errhandler errhandler)

MPI_COMM_SET_ERRHANDLER(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

{void MPI::Comm::Set_errhandler(const MPI::Errhandler& errhandler) (binding
deprecated, see Section 15.2) }

Attaches a new error handler to a communicator. The error handler must be either
a predefined error handler, or an error handler created by a call to
MPI_COMM_CREATE_ERRHANDLER. This call is identical to MPI_ERRHANDLER_SET,
whose use is deprecated.

MPI_COMM_GET_ERRHANDLER(comm, errhandler)

IN comm communicator (handle)

OUT errhandler error handler currently associated with communicator
(handle)

int MPI_Comm_get_errhandler(MPI_Comm comm, MPI_Errhandler *errhandler)

MPI_COMM_GET_ERRHANDLER(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

{MPI::Errhandler MPI::Comm::Get_errhandler() const (binding deprecated, see
Section 15.2) }

Retrieves the error handler currently associated with a communicator. This call is
identical to MPI_ERRHANDLER_GET, whose use is deprecated.

Example: A library function may register at its entry point the current error handler
for a communicator, set its own private error handler for this communicator, and restore
before exiting the previous error handler.

8.3.2 Error Handlers for Windows

MPI_WIN_CREATE_ERRHANDLER(function, errhandler)

IN function user defined error handling procedure (function)

OUT errhandler MPI error handler (handle)

int MPI_Win_create_errhandler(MPI_Win_errhandler_function *function,
MPI_Errhandler *errhandler)

MPI_WIN_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)
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EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

{static MPI::Errhandler
MPI::Win::Create_errhandler(MPI::Win::Errhandler_function*
function) (binding deprecated, see Section 15.2) }

Creates an error handler that can be attached to a window object. The user routine
should be, in C, a function of type MPI_Win_errhandler_function which is defined as
typedef void MPI_Win_errhandler_function(MPI_Win *, int *, ...);

The first argument is the window in use, the second is the error code to be returned.
In Fortran, the user routine should be of the form:

SUBROUTINE WIN_ERRHANDLER_FUNCTION(WIN, ERROR_CODE)
INTEGER WIN, ERROR_CODE

In C++, the user routine should be of the form:
{typedef void MPI::Win::Errhandler_function(MPI::Win &, int *, ...);

(binding deprecated, see Section 15.2) }

MPI_WIN_SET_ERRHANDLER(win, errhandler)

INOUT win window (handle)

IN errhandler new error handler for window (handle)

int MPI_Win_set_errhandler(MPI_Win win, MPI_Errhandler errhandler)

MPI_WIN_SET_ERRHANDLER(WIN, ERRHANDLER, IERROR)
INTEGER WIN, ERRHANDLER, IERROR

{void MPI::Win::Set_errhandler(const MPI::Errhandler& errhandler) (binding
deprecated, see Section 15.2) }

Attaches a new error handler to a window. The error handler must be either a pre-
defined error handler, or an error handler created by a call to
MPI_WIN_CREATE_ERRHANDLER.

MPI_WIN_GET_ERRHANDLER(win, errhandler)

IN win window (handle)

OUT errhandler error handler currently associated with window (han-
dle)

int MPI_Win_get_errhandler(MPI_Win win, MPI_Errhandler *errhandler)

MPI_WIN_GET_ERRHANDLER(WIN, ERRHANDLER, IERROR)
INTEGER WIN, ERRHANDLER, IERROR

{MPI::Errhandler MPI::Win::Get_errhandler() const (binding deprecated, see
Section 15.2) }
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Retrieves the error handler currently associated with a window.

8.3.3 Error Handlers for Files

MPI_FILE_CREATE_ERRHANDLER(function, errhandler)

IN function user defined error handling procedure (function)

OUT errhandler MPI error handler (handle)

int MPI_File_create_errhandler(MPI_File_errhandler_function *function,
MPI_Errhandler *errhandler)

MPI_FILE_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

{static MPI::Errhandler
MPI::File::Create_errhandler(MPI::File::Errhandler_function*
function) (binding deprecated, see Section 15.2) }

Creates an error handler that can be attached to a file object. The user routine should
be, in C, a function of type MPI_File_errhandler_function, which is defined as
typedef void MPI_File_errhandler_function(MPI_File *, int *, ...);

The first argument is the file in use, the second is the error code to be returned.
In Fortran, the user routine should be of the form:

SUBROUTINE FILE_ERRHANDLER_FUNCTION(FILE, ERROR_CODE)
INTEGER FILE, ERROR_CODE

In C++, the user routine should be of the form:
{typedef void MPI::File::Errhandler_function(MPI::File &, int *, ...);

(binding deprecated, see Section 15.2) }

MPI_FILE_SET_ERRHANDLER(file, errhandler)

INOUT file file (handle)

IN errhandler new error handler for file (handle)

int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler errhandler)

MPI_FILE_SET_ERRHANDLER(FILE, ERRHANDLER, IERROR)
INTEGER FILE, ERRHANDLER, IERROR

{void MPI::File::Set_errhandler(const MPI::Errhandler& errhandler) (binding
deprecated, see Section 15.2) }

Attaches a new error handler to a file. The error handler must be either a predefined
error handler, or an error handler created by a call to MPI_FILE_CREATE_ERRHANDLER.
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MPI_FILE_GET_ERRHANDLER(file, errhandler)

IN file file (handle)

OUT errhandler error handler currently associated with file (handle)

int MPI_File_get_errhandler(MPI_File file, MPI_Errhandler *errhandler)

MPI_FILE_GET_ERRHANDLER(FILE, ERRHANDLER, IERROR)
INTEGER FILE, ERRHANDLER, IERROR

{MPI::Errhandler MPI::File::Get_errhandler() const (binding deprecated, see
Section 15.2) }

Retrieves the error handler currently associated with a file.

8.3.4 Freeing Errorhandlers and Retrieving Error Strings

MPI_ERRHANDLER_FREE( errhandler )

INOUT errhandler MPI error handler (handle)

int MPI_Errhandler_free(MPI_Errhandler *errhandler)

MPI_ERRHANDLER_FREE(ERRHANDLER, IERROR)
INTEGER ERRHANDLER, IERROR

{void MPI::Errhandler::Free() (binding deprecated, see Section 15.2) }

Marks the error handler associated with errhandler for deallocation and sets errhandler
to MPI_ERRHANDLER_NULL. The error handler will be deallocated after all the objects
associated with it (communicator, window, or file) have been deallocated.

MPI_ERROR_STRING( errorcode, string, resultlen )

IN errorcode Error code returned by an MPI routine

OUT string Text that corresponds to the errorcode

OUT resultlen Length (in printable characters) of the result returned
in string

int MPI_Error_string(int errorcode, char *string, int *resultlen)

MPI_ERROR_STRING(ERRORCODE, STRING, RESULTLEN, IERROR)
INTEGER ERRORCODE, RESULTLEN, IERROR
CHARACTER*(*) STRING

{void MPI::Get_error_string(int errorcode, char* name, int& resultlen)
(binding deprecated, see Section 15.2) }

Returns the error string associated with an error code or class. The argument string
must represent storage that is at least MPI_MAX_ERROR_STRING characters long.
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The number of characters actually written is returned in the output argument, resultlen.

Rationale. The form of this function was chosen to make the Fortran and C bindings
similar. A version that returns a pointer to a string has two difficulties. First, the
return string must be statically allocated and different for each error message (allowing
the pointers returned by successive calls to MPI_ERROR_STRING to point to the correct
message). Second, in Fortran, a function declared as returning CHARACTER*(*) can
not be referenced in, for example, a PRINT statement. (End of rationale.)

8.4 Error Codes and Classes

The error codes returned by MPI are left entirely to the implementation (with the exception
of MPI_SUCCESS). This is done to allow an implementation to provide as much information
as possible in the error code (for use with MPI_ERROR_STRING).

To make it possible for an application to interpret an error code, the routine
MPI_ERROR_CLASS converts any error code into one of a small set of standard error codes,
called error classes. Valid error classes are shown in Table 8.1 and Table 8.2.

The error classes are a subset of the error codes: an MPI function may return an
error class number; and the function MPI_ERROR_STRING can be used to compute the
error string associated with an error class. An MPI error class is a valid MPI error code.
Specifically, the values defined for MPI error classes are valid MPI error codes.

The error codes satisfy,

0 = MPI_SUCCESS < MPI_ERR_... ≤ MPI_ERR_LASTCODE.

Rationale. The difference between MPI_ERR_UNKNOWN and MPI_ERR_OTHER is that
MPI_ERROR_STRING can return useful information about MPI_ERR_OTHER.

Note that MPI_SUCCESS = 0 is necessary to be consistent with C practice; the sepa-
ration of error classes and error codes allows us to define the error classes this way.
Having a known LASTCODE is often a nice sanity check as well. (End of rationale.)

MPI_ERROR_CLASS( errorcode, errorclass )

IN errorcode Error code returned by an MPI routine

OUT errorclass Error class associated with errorcode

int MPI_Error_class(int errorcode, int *errorclass)

MPI_ERROR_CLASS(ERRORCODE, ERRORCLASS, IERROR)
INTEGER ERRORCODE, ERRORCLASS, IERROR

{int MPI::Get_error_class(int errorcode) (binding deprecated, see Section 15.2) }

The function MPI_ERROR_CLASS maps each standard error code (error class) onto
itself.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



284 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

MPI_SUCCESS No error
MPI_ERR_BUFFER Invalid buffer pointer
MPI_ERR_COUNT Invalid count argument
MPI_ERR_TYPE Invalid datatype argument
MPI_ERR_TAG Invalid tag argument
MPI_ERR_COMM Invalid communicator
MPI_ERR_RANK Invalid rank
MPI_ERR_REQUEST Invalid request (handle)
MPI_ERR_ROOT Invalid root
MPI_ERR_GROUP Invalid group
MPI_ERR_OP Invalid operation
MPI_ERR_TOPOLOGY Invalid topology
MPI_ERR_DIMS Invalid dimension argument
MPI_ERR_ARG Invalid argument of some other kind
MPI_ERR_UNKNOWN Unknown error
MPI_ERR_TRUNCATE Message truncated on receive
MPI_ERR_OTHER Known error not in this list
MPI_ERR_INTERN Internal MPI (implementation) error
MPI_ERR_IN_STATUS Error code is in status
MPI_ERR_PENDING Pending request
MPI_ERR_KEYVAL Invalid keyval has been passed
MPI_ERR_NO_MEM MPI_ALLOC_MEM failed because memory

is exhausted
MPI_ERR_BASE Invalid base passed to MPI_FREE_MEM
MPI_ERR_INFO_KEY Key longer than MPI_MAX_INFO_KEY

MPI_ERR_INFO_VALUE Value longer than MPI_MAX_INFO_VAL

MPI_ERR_INFO_NOKEY Invalid key passed to MPI_INFO_DELETE
MPI_ERR_SPAWN Error in spawning processes
MPI_ERR_PORT Invalid port name passed to

MPI_COMM_CONNECT
MPI_ERR_SERVICE Invalid service name passed to

MPI_UNPUBLISH_NAME
MPI_ERR_NAME Invalid service name passed to

MPI_LOOKUP_NAME
MPI_ERR_WIN Invalid win argument
MPI_ERR_SIZE Invalid size argument
MPI_ERR_DISP Invalid disp argument
MPI_ERR_INFO Invalid info argument
MPI_ERR_LOCKTYPE Invalid locktype argument
MPI_ERR_ASSERT Invalid assert argument
MPI_ERR_RMA_CONFLICT Conflicting accesses to window
MPI_ERR_RMA_SYNC Wrong synchronization of RMA calls

Table 8.1: Error classes (Part 1)
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MPI_ERR_FILE Invalid file handle
MPI_ERR_NOT_SAME Collective argument not identical on all

processes, or collective routines called in
a different order by different processes

MPI_ERR_AMODE Error related to the amode passed to
MPI_FILE_OPEN

MPI_ERR_UNSUPPORTED_DATAREP Unsupported datarep passed to
MPI_FILE_SET_VIEW

MPI_ERR_UNSUPPORTED_OPERATION Unsupported operation, such as seeking on
a file which supports sequential access only

MPI_ERR_NO_SUCH_FILE File does not exist
MPI_ERR_FILE_EXISTS File exists
MPI_ERR_BAD_FILE Invalid file name (e.g., path name too long)
MPI_ERR_ACCESS Permission denied
MPI_ERR_NO_SPACE Not enough space
MPI_ERR_QUOTA Quota exceeded
MPI_ERR_READ_ONLY Read-only file or file system
MPI_ERR_FILE_IN_USE File operation could not be completed, as

the file is currently open by some process
MPI_ERR_DUP_DATAREP Conversion functions could not be regis-

tered because a data representation identi-
fier that was already defined was passed to
MPI_REGISTER_DATAREP

MPI_ERR_CONVERSION An error occurred in a user supplied data
conversion function.

MPI_ERR_IO Other I/O error
MPI_ERR_LASTCODE Last error code

Table 8.2: Error classes (Part 2)

8.5 Error Classes, Error Codes, and Error Handlers

Users may want to write a layered library on top of an existing MPI implementation, and
this library may have its own set of error codes and classes. An example of such a library
is an I/O library based on MPI, see Chapter 13 on page 389. For this purpose, functions
are needed to:

1. add a new error class to the ones an MPI implementation already knows.

2. associate error codes with this error class, so that MPI_ERROR_CLASS works.

3. associate strings with these error codes, so that MPI_ERROR_STRING works.

4. invoke the error handler associated with a communicator, window, or object.

Several functions are provided to do this. They are all local. No functions are provided
to free error classes or codes: it is not expected that an application will generate them in
significant numbers.
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MPI_ADD_ERROR_CLASS(errorclass)

OUT errorclass value for the new error class (integer)

int MPI_Add_error_class(int *errorclass)

MPI_ADD_ERROR_CLASS(ERRORCLASS, IERROR)
INTEGER ERRORCLASS, IERROR

{int MPI::Add_error_class() (binding deprecated, see Section 15.2) }

Creates a new error class and returns the value for it.

Rationale. To avoid conflicts with existing error codes and classes, the value is set
by the implementation and not by the user. (End of rationale.)

Advice to implementors. A high-quality implementation will return the value for
a new errorclass in the same deterministic way on all processes. (End of advice to
implementors.)

Advice to users. Since a call to MPI_ADD_ERROR_CLASS is local, the same errorclass
may not be returned on all processes that make this call. Thus, it is not safe to assume
that registering a new error on a set of processes at the same time will yield the same
errorclass on all of the processes. However, if an implementation returns the new
errorclass in a deterministic way, and they are always generated in the same order on
the same set of processes (for example, all processes), then the value will be the same.
However, even if a deterministic algorithm is used, the value can vary across processes.
This can happen, for example, if different but overlapping groups of processes make
a series of calls. As a result of these issues, getting the “same” error on multiple
processes may not cause the same value of error code to be generated. (End of advice
to users.)

The value of MPI_ERR_LASTCODE is a constant value and is not affected by new user-
defined error codes and classes. Instead, a predefined attribute key MPI_LASTUSEDCODE is
associated with MPI_COMM_WORLD. The attribute value corresponding to this key is the
current maximum error class including the user-defined ones. This is a local value and may
be different on different processes. The value returned by this key is always greater than or
equal to MPI_ERR_LASTCODE.

Advice to users. The value returned by the key MPI_LASTUSEDCODE will not change
unless the user calls a function to explicitly add an error class/code. In a multi-
threaded environment, the user must take extra care in assuming this value has not
changed. Note that error codes and error classes are not necessarily dense. A user
may not assume that each error class below MPI_LASTUSEDCODE is valid. (End of
advice to users.)
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MPI_ADD_ERROR_CODE(errorclass, errorcode)

IN errorclass error class (integer)

OUT errorcode new error code to associated with errorclass (integer)

int MPI_Add_error_code(int errorclass, int *errorcode)

MPI_ADD_ERROR_CODE(ERRORCLASS, ERRORCODE, IERROR)
INTEGER ERRORCLASS, ERRORCODE, IERROR

{int MPI::Add_error_code(int errorclass) (binding deprecated, see Section 15.2) }

Creates new error code associated with errorclass and returns its value in errorcode.

Rationale. To avoid conflicts with existing error codes and classes, the value of the
new error code is set by the implementation and not by the user. (End of rationale.)

Advice to implementors. A high-quality implementation will return the value for
a new errorcode in the same deterministic way on all processes. (End of advice to
implementors.)

MPI_ADD_ERROR_STRING(errorcode, string)

IN errorcode error code or class (integer)

IN string text corresponding to errorcode (string)

int MPI_Add_error_string(int errorcode, char *string)

MPI_ADD_ERROR_STRING(ERRORCODE, STRING, IERROR)
INTEGER ERRORCODE, IERROR
CHARACTER*(*) STRING

{void MPI::Add_error_string(int errorcode, const char* string) (binding
deprecated, see Section 15.2) }

Associates an error string with an error code or class. The string must be no more
than MPI_MAX_ERROR_STRING characters long. The length of the string is as defined in
the calling language. The length of the string does not include the null terminator in C
or C++. Trailing blanks will be stripped in Fortran. Calling MPI_ADD_ERROR_STRING
for an errorcode that already has a string will replace the old string with the new string.
It is erroneous to call MPI_ADD_ERROR_STRING for an error code or class with a value
≤ MPI_ERR_LASTCODE.

If MPI_ERROR_STRING is called when no string has been set, it will return a empty
string (all spaces in Fortran, "" in C and C++).

Section 8.3 on page 276 describes the methods for creating and associating error han-
dlers with communicators, files, and windows.
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MPI_COMM_CALL_ERRHANDLER (comm, errorcode)

IN comm communicator with error handler (handle)

IN errorcode error code (integer)

int MPI_Comm_call_errhandler(MPI_Comm comm, int errorcode)

MPI_COMM_CALL_ERRHANDLER(COMM, ERRORCODE, IERROR)
INTEGER COMM, ERRORCODE, IERROR

{void MPI::Comm::Call_errhandler(int errorcode) const (binding deprecated, see
Section 15.2) }

This function invokes the error handler assigned to the communicator with the error
code supplied. This function returns MPI_SUCCESS in C and C++ and the same value in
IERROR if the error handler was successfully called (assuming the process is not aborted
and the error handler returns).

Advice to users. Users should note that the default error handler is
MPI_ERRORS_ARE_FATAL. Thus, calling MPI_COMM_CALL_ERRHANDLER will abort
the comm processes if the default error handler has not been changed for this com-
municator or on the parent before the communicator was created. (End of advice to
users.)

MPI_WIN_CALL_ERRHANDLER (win, errorcode)

IN win window with error handler (handle)

IN errorcode error code (integer)

int MPI_Win_call_errhandler(MPI_Win win, int errorcode)

MPI_WIN_CALL_ERRHANDLER(WIN, ERRORCODE, IERROR)
INTEGER WIN, ERRORCODE, IERROR

{void MPI::Win::Call_errhandler(int errorcode) const (binding deprecated, see
Section 15.2) }

This function invokes the error handler assigned to the window with the error code
supplied. This function returns MPI_SUCCESS in C and C++ and the same value in IERROR
if the error handler was successfully called (assuming the process is not aborted and the
error handler returns).

Advice to users. As with communicators, the default error handler for windows is
MPI_ERRORS_ARE_FATAL. (End of advice to users.)

MPI_FILE_CALL_ERRHANDLER (fh, errorcode)

IN fh file with error handler (handle)

IN errorcode error code (integer)
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int MPI_File_call_errhandler(MPI_File fh, int errorcode)

MPI_FILE_CALL_ERRHANDLER(FH, ERRORCODE, IERROR)
INTEGER FH, ERRORCODE, IERROR

{void MPI::File::Call_errhandler(int errorcode) const (binding deprecated, see
Section 15.2) }

This function invokes the error handler assigned to the file with the error code supplied.
This function returns MPI_SUCCESS in C and C++ and the same value in IERROR if the
error handler was successfully called (assuming the process is not aborted and the error
handler returns).

Advice to users. Unlike errors on communicators and windows, the default behavior
for files is to have MPI_ERRORS_RETURN. (End of advice to users.)

Advice to users. Users are warned that handlers should not be called recursively
with MPI_COMM_CALL_ERRHANDLER, MPI_FILE_CALL_ERRHANDLER, or
MPI_WIN_CALL_ERRHANDLER. Doing this can create a situation where an infinite
recursion is created. This can occur if MPI_COMM_CALL_ERRHANDLER,
MPI_FILE_CALL_ERRHANDLER, or MPI_WIN_CALL_ERRHANDLER is called inside
an error handler.

Error codes and classes are associated with a process. As a result, they may be used
in any error handler. Error handlers should be prepared to deal with any error code
they are given. Furthermore, it is good practice to only call an error handler with the
appropriate error codes. For example, file errors would normally be sent to the file
error handler. (End of advice to users.)

8.6 Timers and Synchronization

MPI defines a timer. A timer is specified even though it is not “message-passing,” because
timing parallel programs is important in “performance debugging” and because existing
timers (both in POSIX 1003.1-1988 and 1003.4D 14.1 and in Fortran 90) are either incon-
venient or do not provide adequate access to high-resolution timers. See also Section 2.6.5
on page 21.

MPI_WTIME()

double MPI_Wtime(void)

DOUBLE PRECISION MPI_WTIME()

{double MPI::Wtime() (binding deprecated, see Section 15.2) }

MPI_WTIME returns a floating-point number of seconds, representing elapsed wall-
clock time since some time in the past.

The “time in the past” is guaranteed not to change during the life of the process.
The user is responsible for converting large numbers of seconds to other units if they are
preferred.
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This function is portable (it returns seconds, not “ticks”), it allows high-resolution,
and carries no unnecessary baggage. One would use it like this:

{
double starttime, endtime;
starttime = MPI_Wtime();
.... stuff to be timed ...
endtime = MPI_Wtime();
printf("That took %f seconds\n",endtime-starttime);

}

The times returned are local to the node that called them. There is no requirement
that different nodes return “the same time.” (But see also the discussion of
MPI_WTIME_IS_GLOBAL).

MPI_WTICK()

double MPI_Wtick(void)

DOUBLE PRECISION MPI_WTICK()

{double MPI::Wtick() (binding deprecated, see Section 15.2) }

MPI_WTICK returns the resolution of MPI_WTIME in seconds. That is, it returns,
as a double precision value, the number of seconds between successive clock ticks. For
example, if the clock is implemented by the hardware as a counter that is incremented
every millisecond, the value returned by MPI_WTICK should be 10−3.

8.7 Startup

One goal of MPI is to achieve source code portability. By this we mean that a program writ-
ten using MPI and complying with the relevant language standards is portable as written,
and must not require any source code changes when moved from one system to another.
This explicitly does not say anything about how an MPI program is started or launched from
the command line, nor what the user must do to set up the environment in which an MPI
program will run. However, an implementation may require some setup to be performed
before other MPI routines may be called. To provide for this, MPI includes an initialization
routine MPI_INIT.

MPI_INIT()

int MPI_Init(int *argc, char ***argv)

MPI_INIT(IERROR)
INTEGER IERROR

{void MPI::Init(int& argc, char**& argv) (binding deprecated, see Section 15.2) }

{void MPI::Init() (binding deprecated, see Section 15.2) }
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All MPI programs must contain exactly one call to an MPI initialization routine:
MPI_INIT or MPI_INIT_THREAD. Subsequent calls to any initialization routines are erro-
neous. The only MPI functions that may be invoked before the MPI initialization routines
are called are MPI_GET_VERSION, MPI_INITIALIZED, and MPI_FINALIZED. The version
for ISO C accepts the argc and argv that are provided by the arguments to main or NULL:

int main(int argc, char **argv)
{

MPI_Init(&argc, &argv);

/* parse arguments */
/* main program */

MPI_Finalize(); /* see below */
}

The Fortran version takes only IERROR.
Conforming implementations of MPI are required to allow applications to pass NULL

for both the argc and argv arguments of main in C and C++. In C++, there is an alternative
binding for MPI::Init that does not have these arguments at all.

Rationale. In some applications, libraries may be making the call to
MPI_Init, and may not have access to argc and argv from main. It is anticipated
that applications requiring special information about the environment or information
supplied by mpiexec can get that information from environment variables. (End of
rationale.)

MPI_FINALIZE()

int MPI_Finalize(void)

MPI_FINALIZE(IERROR)
INTEGER IERROR

{void MPI::Finalize() (binding deprecated, see Section 15.2) }

This routine cleans up all MPI state. Each process must call MPI_FINALIZE before
it exits. Unless there has been a call to MPI_ABORT, each process must ensure that all
pending nonblocking communications are (locally) complete before calling MPI_FINALIZE.
Further, at the instant at which the last process calls MPI_FINALIZE, all pending sends
must be matched by a receive, and all pending receives must be matched by a send.

For example, the following program is correct:

Process 0 Process 1
--------- ---------
MPI_Init(); MPI_Init();
MPI_Send(dest=1); MPI_Recv(src=0);
MPI_Finalize(); MPI_Finalize();

Without the matching receive, the program is erroneous:
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Process 0 Process 1
----------- -----------
MPI_Init(); MPI_Init();
MPI_Send (dest=1);
MPI_Finalize(); MPI_Finalize();

A successful return from a blocking communication operation or from MPI_WAIT or
MPI_TEST tells the user that the buffer can be reused and means that the communication
is completed by the user, but does not guarantee that the local process has no more work
to do. A successful return from MPI_REQUEST_FREE with a request handle generated by
an MPI_ISEND nullifies the handle but provides no assurance of operation completion. The
MPI_ISEND is complete only when it is known by some means that a matching receive has
completed. MPI_FINALIZE guarantees that all local actions required by communications
the user has completed will, in fact, occur before it returns.

MPI_FINALIZE guarantees nothing about pending communications that have not been
completed (completion is assured only by MPI_WAIT, MPI_TEST, or MPI_REQUEST_FREE
combined with some other verification of completion).

Example 8.3 This program is correct:

rank 0 rank 1
=====================================================
... ...
MPI_Isend(); MPI_Recv();
MPI_Request_free(); MPI_Barrier();
MPI_Barrier(); MPI_Finalize();
MPI_Finalize(); exit();
exit();

Example 8.4 This program is erroneous and its behavior is undefined:

rank 0 rank 1
=====================================================
... ...
MPI_Isend(); MPI_Recv();
MPI_Request_free(); MPI_Finalize();
MPI_Finalize(); exit();
exit();

If no MPI_BUFFER_DETACH occurs between an MPI_BSEND (or other buffered send)
and MPI_FINALIZE, the MPI_FINALIZE implicitly supplies the MPI_BUFFER_DETACH.

Example 8.5 This program is correct, and after the MPI_Finalize, it is as if the buffer had
been detached.

rank 0 rank 1
=====================================================
... ...
buffer = malloc(1000000); MPI_Recv();
MPI_Buffer_attach(); MPI_Finalize();
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MPI_Bsend(); exit();
MPI_Finalize();
free(buffer);
exit();

Example 8.6 In this example, MPI_Iprobe() must return a FALSE flag.
MPI_Test_cancelled() must return a TRUE flag, independent of the relative order of execu-
tion of MPI_Cancel() in process 0 and MPI_Finalize() in process 1.

The MPI_Iprobe() call is there to make sure the implementation knows that the “tag1”
message exists at the destination, without being able to claim that the user knows about
it.

rank 0 rank 1
========================================================
MPI_Init(); MPI_Init();
MPI_Isend(tag1);
MPI_Barrier(); MPI_Barrier();

MPI_Iprobe(tag2);
MPI_Barrier(); MPI_Barrier();

MPI_Finalize();
exit();

MPI_Cancel();
MPI_Wait();
MPI_Test_cancelled();
MPI_Finalize();
exit();

Advice to implementors. An implementation may need to delay the return from
MPI_FINALIZE until all potential future message cancellations have been processed.
One possible solution is to place a barrier inside MPI_FINALIZE (End of advice to
implementors.)

Once MPI_FINALIZE returns, no MPI routine (not even MPI_INIT) may be called, ex-
cept for MPI_GET_VERSION, MPI_INITIALIZED, and MPI_FINALIZED. Each process must
complete any pending communication it initiated before it calls MPI_FINALIZE. If the call
returns, each process may continue local computations, or exit, without participating in
further MPI communication with other processes. MPI_FINALIZE is collective over all con-
nected processes. If no processes were spawned, accepted or connected then this means over
MPI_COMM_WORLD; otherwise it is collective over the union of all processes that have been
and continue to be connected, as explained in Section 10.5.4 on page 330.

Advice to implementors. Even though a process has completed all the communication
it initiated, such communication may not yet be completed from the viewpoint of the
underlying MPI system. E.g., a blocking send may have completed, even though the
data is still buffered at the sender. The MPI implementation must ensure that a
process has completed any involvement in MPI communication before MPI_FINALIZE
returns. Thus, if a process exits after the call to MPI_FINALIZE, this will not cause
an ongoing communication to fail. (End of advice to implementors.)
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Although it is not required that all processes return from MPI_FINALIZE, it is required
that at least process 0 in MPI_COMM_WORLD return, so that users can know that the MPI
portion of the computation is over. In addition, in a POSIX environment, they may desire
to supply an exit code for each process that returns from MPI_FINALIZE.

Example 8.7 The following illustrates the use of requiring that at least one process return
and that it be known that process 0 is one of the processes that return. One wants code
like the following to work no matter how many processes return.

...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
...
MPI_Finalize();
if (myrank == 0) {

resultfile = fopen("outfile","w");
dump_results(resultfile);
fclose(resultfile);

}
exit(0);

MPI_INITIALIZED( flag )

OUT flag Flag is true if MPI_INIT has been called and false
otherwise.

int MPI_Initialized(int *flag)

MPI_INITIALIZED(FLAG, IERROR)
LOGICAL FLAG
INTEGER IERROR

{bool MPI::Is_initialized() (binding deprecated, see Section 15.2) }

This routine may be used to determine whether MPI_INIT has been called.
MPI_INITIALIZED returns true if the calling process has called MPI_INIT. Whether
MPI_FINALIZE has been called does not affect the behavior of MPI_INITIALIZED. It is one
of the few routines that may be called before MPI_INIT is called.

MPI_ABORT( comm, errorcode )

IN comm communicator of tasks to abort

IN errorcode error code to return to invoking environment

int MPI_Abort(MPI_Comm comm, int errorcode)

MPI_ABORT(COMM, ERRORCODE, IERROR)
INTEGER COMM, ERRORCODE, IERROR

{void MPI::Comm::Abort(int errorcode) (binding deprecated, see Section 15.2) }
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This routine makes a “best attempt” to abort all tasks in the group of comm. This
function does not require that the invoking environment take any action with the error
code. However, a Unix or POSIX environment should handle this as a return errorcode
from the main program.

It may not be possible for an MPI implementation to abort only the processes repre-
sented by comm if this is a subset of the processes. In this case, the MPI implementation
should attempt to abort all the connected processes but should not abort any unconnected
processes. If no processes were spawned, accepted or connected then this has the effect of
aborting all the processes associated with MPI_COMM_WORLD.

Rationale. The communicator argument is provided to allow for future extensions of
MPI to environments with, for example, dynamic process management. In particular,
it allows but does not require an MPI implementation to abort a subset of
MPI_COMM_WORLD. (End of rationale.)

Advice to users. Whether the errorcode is returned from the executable or from the
MPI process startup mechanism (e.g., mpiexec), is an aspect of quality of the MPI
library but not mandatory. (End of advice to users.)

Advice to implementors. Where possible, a high-quality implementation will try
to return the errorcode from the MPI process startup mechanism (e.g. mpiexec or
singleton init). (End of advice to implementors.)

8.7.1 Allowing User Functions at Process Termination

There are times in which it would be convenient to have actions happen when an MPI process
finishes. For example, a routine may do initializations that are useful until the MPI job (or
that part of the job that being terminated in the case of dynamically created processes) is
finished. This can be accomplished in MPI by attaching an attribute to MPI_COMM_SELF

with a callback function. When MPI_FINALIZE is called, it will first execute the equivalent
of an MPI_COMM_FREE on MPI_COMM_SELF. This will cause the delete callback function
to be executed on all keys associated with MPI_COMM_SELF, in the reverse order that
they were set on MPI_COMM_SELF. If no key has been attached to MPI_COMM_SELF, then
no callback is invoked. The “freeing” of MPI_COMM_SELF occurs before any other parts
of MPI are affected. Thus, for example, calling MPI_FINALIZED will return false in any
of these callback functions. Once done with MPI_COMM_SELF, the order and rest of the
actions taken by MPI_FINALIZE is not specified.

Advice to implementors. Since attributes can be added from any supported language,
the MPI implementation needs to remember the creating language so the correct
callback is made. Implementations that use the attribute delete callback on
MPI_COMM_SELF internally should register their internal callbacks before returning
from MPI_INIT / MPI_INIT_THREAD, so that libraries or applications will not have
portions of the MPI implementation shut down before the application-level callbacks
are made. (End of advice to implementors.)
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8.7.2 Determining Whether MPI Has Finished

One of the goals of MPI was to allow for layered libraries. In order for a library to do
this cleanly, it needs to know if MPI is active. In MPI the function MPI_INITIALIZED was
provided to tell if MPI had been initialized. The problem arises in knowing if MPI has been
finalized. Once MPI has been finalized it is no longer active and cannot be restarted. A
library needs to be able to determine this to act accordingly. To achieve this the following
function is needed:

MPI_FINALIZED(flag)

OUT flag true if MPI was finalized (logical)

int MPI_Finalized(int *flag)

MPI_FINALIZED(FLAG, IERROR)
LOGICAL FLAG
INTEGER IERROR

{bool MPI::Is_finalized() (binding deprecated, see Section 15.2) }

This routine returns true if MPI_FINALIZE has completed. It is legal to call
MPI_FINALIZED before MPI_INIT and after MPI_FINALIZE.

Advice to users. MPI is “active” and it is thus safe to call MPI functions if MPI_INIT
has completed and MPI_FINALIZE has not completed. If a library has no other
way of knowing whether MPI is active or not, then it can use MPI_INITIALIZED and
MPI_FINALIZED to determine this. For example, MPI is “active” in callback functions
that are invoked during MPI_FINALIZE. (End of advice to users.)

8.8 Portable MPI Process Startup

A number of implementations of MPI provide a startup command for MPI programs that
is of the form

mpirun <mpirun arguments> <program> <program arguments>

Separating the command to start the program from the program itself provides flexibility,
particularly for network and heterogeneous implementations. For example, the startup
script need not run on one of the machines that will be executing the MPI program itself.

Having a standard startup mechanism also extends the portability of MPI programs one
step further, to the command lines and scripts that manage them. For example, a validation
suite script that runs hundreds of programs can be a portable script if it is written using such
a standard starup mechanism. In order that the “standard” command not be confused with
existing practice, which is not standard and not portable among implementations, instead
of mpirun MPI specifies mpiexec.

While a standardized startup mechanism improves the usability of MPI, the range of
environments is so diverse (e.g., there may not even be a command line interface) that MPI
cannot mandate such a mechanism. Instead, MPI specifies an mpiexec startup command
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8.8. PORTABLE MPI PROCESS STARTUP 297

and recommends but does not require it, as advice to implementors. However, if an im-
plementation does provide a command called mpiexec, it must be of the form described
below.

It is suggested that

mpiexec -n <numprocs> <program>

be at least one way to start <program> with an initial MPI_COMM_WORLD whose group
contains <numprocs> processes. Other arguments to mpiexec may be implementation-
dependent.

Advice to implementors. Implementors, if they do provide a special startup command
for MPI programs, are advised to give it the following form. The syntax is chosen in
order that mpiexec be able to be viewed as a command-line version of
MPI_COMM_SPAWN (See Section 10.3.4).

Analogous to MPI_COMM_SPAWN, we have

mpiexec -n <maxprocs>
-soft < >
-host < >
-arch < >
-wdir < >
-path < >
-file < >
...
<command line>

for the case where a single command line for the application program and its arguments
will suffice. See Section 10.3.4 for the meanings of these arguments. For the case
corresponding to MPI_COMM_SPAWN_MULTIPLE there are two possible formats:

Form A:

mpiexec { <above arguments> } : { ... } : { ... } : ... : { ... }

As with MPI_COMM_SPAWN, all the arguments are optional. (Even the -n x argu-
ment is optional; the default is implementation dependent. It might be 1, it might be
taken from an environment variable, or it might be specified at compile time.) The
names and meanings of the arguments are taken from the keys in the info argument
to MPI_COMM_SPAWN. There may be other, implementation-dependent arguments
as well.

Note that Form A, though convenient to type, prevents colons from being program
arguments. Therefore an alternate, file-based form is allowed:

Form B:

mpiexec -configfile <filename>
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where the lines of <filename> are of the form separated by the colons in Form A.
Lines beginning with ‘#’ are comments, and lines may be continued by terminating
the partial line with ‘\’.

Example 8.8 Start 16 instances of myprog on the current or default machine:

mpiexec -n 16 myprog

Example 8.9 Start 10 processes on the machine called ferrari:

mpiexec -n 10 -host ferrari myprog

Example 8.10 Start three copies of the same program with different command-line
arguments:

mpiexec myprog infile1 : myprog infile2 : myprog infile3

Example 8.11 Start the ocean program on five Suns and the atmos program on 10
RS/6000’s:

mpiexec -n 5 -arch sun ocean : -n 10 -arch rs6000 atmos

It is assumed that the implementation in this case has a method for choosing hosts of
the appropriate type. Their ranks are in the order specified.

Example 8.12 Start the ocean program on five Suns and the atmos program on 10
RS/6000’s (Form B):

mpiexec -configfile myfile

where myfile contains

-n 5 -arch sun ocean
-n 10 -arch rs6000 atmos

(End of advice to implementors.)
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Chapter 9

The Info Object

Many of the routines in MPI take an argument info. info is an opaque object with a handle
of type MPI_Info in C, MPI::Info in C++, and INTEGER in Fortran. It stores an unordered
set of (key,value) pairs (both key and value are strings). A key can have only one value. MPI
reserves several keys and requires that if an implementation uses a reserved key, it must
provide the specified functionality. An implementation is not required to support these keys
and may support any others not reserved by MPI.

An implementation must support info objects as caches for arbitrary (key, value) pairs,
regardless of whether it recognizes the key. Each function that takes hints in the form of an
MPI_Info must be prepared to ignore any key it does not recognize. This description of info
objects does not attempt to define how a particular function should react if it recognizes
a key but not the associated value. MPI_INFO_GET_NKEYS, MPI_INFO_GET_NTHKEY,
MPI_INFO_GET_VALUELEN, and MPI_INFO_GET must retain all (key,value) pairs so that
layered functionality can also use the Info object.

Keys have an implementation-defined maximum length of MPI_MAX_INFO_KEY, which
is at least 32 and at most 255. Values have an implementation-defined maximum length
of MPI_MAX_INFO_VAL. In Fortran, leading and trailing spaces are stripped from both.
Returned values will never be larger than these maximum lengths. Both key and value are
case sensitive.

Rationale. Keys have a maximum length because the set of known keys will always
be finite and known to the implementation and because there is no reason for keys
to be complex. The small maximum size allows applications to declare keys of size
MPI_MAX_INFO_KEY. The limitation on value sizes is so that an implementation is
not forced to deal with arbitrarily long strings. (End of rationale.)

Advice to users. MPI_MAX_INFO_VAL might be very large, so it might not be wise to
declare a string of that size. (End of advice to users.)

When it is an argument to a nonblocking routine, info is parsed before that routine
returns, so that it may be modified or freed immediately after return.

When the descriptions refer to a key or value as being a boolean, an integer, or a list,
they mean the string representation of these types. An implementation may define its own
rules for how info value strings are converted to other types, but to ensure portability, every
implementation must support the following representations. Legal values for a boolean must
include the strings “true” and “false” (all lowercase). For integers, legal values must include
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300 CHAPTER 9. THE INFO OBJECT

string representations of decimal values of integers that are within the range of a standard
integer type in the program. (However it is possible that not every legal integer is a legal
value for a given key.) On positive numbers, + signs are optional. No space may appear
between a + or − sign and the leading digit of a number. For comma separated lists, the
string must contain legal elements separated by commas. Leading and trailing spaces are
stripped automatically from the types of info values described above and for each element of
a comma separated list. These rules apply to all info values of these types. Implementations
are free to specify a different interpretation for values of other info keys.

MPI_INFO_CREATE(info)

OUT info info object created (handle)

int MPI_Info_create(MPI_Info *info)

MPI_INFO_CREATE(INFO, IERROR)
INTEGER INFO, IERROR

{static MPI::Info MPI::Info::Create() (binding deprecated, see Section 15.2) }

MPI_INFO_CREATE creates a new info object. The newly created object contains no
key/value pairs.

MPI_INFO_SET(info, key, value)

INOUT info info object (handle)

IN key key (string)

IN value value (string)

int MPI_Info_set(MPI_Info info, char *key, char *value)

MPI_INFO_SET(INFO, KEY, VALUE, IERROR)
INTEGER INFO, IERROR
CHARACTER*(*) KEY, VALUE

{void MPI::Info::Set(const char* key, const char* value) (binding deprecated,
see Section 15.2) }

MPI_INFO_SET adds the (key,value) pair to info, and overrides the value if a value for
the same key was previously set. key and value are null-terminated strings in C. In Fortran,
leading and trailing spaces in key and value are stripped. If either key or value are larger
than the allowed maximums, the errors MPI_ERR_INFO_KEY or MPI_ERR_INFO_VALUE are
raised, respectively.

MPI_INFO_DELETE(info, key)

INOUT info info object (handle)

IN key key (string)
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int MPI_Info_delete(MPI_Info info, char *key)

MPI_INFO_DELETE(INFO, KEY, IERROR)
INTEGER INFO, IERROR
CHARACTER*(*) KEY

{void MPI::Info::Delete(const char* key) (binding deprecated, see Section 15.2) }

MPI_INFO_DELETE deletes a (key,value) pair from info. If key is not defined in info,
the call raises an error of class MPI_ERR_INFO_NOKEY.

MPI_INFO_GET(info, key, valuelen, value, flag)

IN info info object (handle)

IN key key (string)

IN valuelen length of value arg (integer)

OUT value value (string)

OUT flag true if key defined, false if not (boolean)

int MPI_Info_get(MPI_Info info, char *key, int valuelen, char *value,
int *flag)

MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)
INTEGER INFO, VALUELEN, IERROR
CHARACTER*(*) KEY, VALUE
LOGICAL FLAG

{bool MPI::Info::Get(const char* key, int valuelen, char* value) const
(binding deprecated, see Section 15.2) }

This function retrieves the value associated with key in a previous call to
MPI_INFO_SET. If such a key exists, it sets flag to true and returns the value in value,
otherwise it sets flag to false and leaves value unchanged. valuelen is the number of characters
available in value. If it is less than the actual size of the value, the value is truncated. In
C, valuelen should be one less than the amount of allocated space to allow for the null
terminator.

If key is larger than MPI_MAX_INFO_KEY, the call is erroneous.

MPI_INFO_GET_VALUELEN(info, key, valuelen, flag)

IN info info object (handle)

IN key key (string)

OUT valuelen length of value arg (integer)

OUT flag true if key defined, false if not (boolean)

int MPI_Info_get_valuelen(MPI_Info info, char *key, int *valuelen,
int *flag)
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302 CHAPTER 9. THE INFO OBJECT

MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)
INTEGER INFO, VALUELEN, IERROR
LOGICAL FLAG
CHARACTER*(*) KEY

{bool MPI::Info::Get_valuelen(const char* key, int& valuelen) const (binding
deprecated, see Section 15.2) }

Retrieves the length of the value associated with key. If key is defined, valuelen is set
to the length of its associated value and flag is set to true. If key is not defined, valuelen is
not touched and flag is set to false. The length returned in C or C++ does not include the
end-of-string character.

If key is larger than MPI_MAX_INFO_KEY, the call is erroneous.

MPI_INFO_GET_NKEYS(info, nkeys)

IN info info object (handle)

OUT nkeys number of defined keys (integer)

int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)

MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR)
INTEGER INFO, NKEYS, IERROR

{int MPI::Info::Get_nkeys() const (binding deprecated, see Section 15.2) }

MPI_INFO_GET_NKEYS returns the number of currently defined keys in info.

MPI_INFO_GET_NTHKEY(info, n, key)

IN info info object (handle)

IN n key number (integer)

OUT key key (string)

int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)

MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)
INTEGER INFO, N, IERROR
CHARACTER*(*) KEY

{void MPI::Info::Get_nthkey(int n, char* key) const (binding deprecated, see
Section 15.2) }

This function returns the nth defined key in info. Keys are numbered 0 . . . N − 1 where
N is the value returned by MPI_INFO_GET_NKEYS. All keys between 0 and N − 1 are
guaranteed to be defined. The number of a given key does not change as long as info is not
modified with MPI_INFO_SET or MPI_INFO_DELETE.
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MPI_INFO_DUP(info, newinfo)

IN info info object (handle)

OUT newinfo info object (handle)

int MPI_Info_dup(MPI_Info info, MPI_Info *newinfo)

MPI_INFO_DUP(INFO, NEWINFO, IERROR)
INTEGER INFO, NEWINFO, IERROR

{MPI::Info MPI::Info::Dup() const (binding deprecated, see Section 15.2) }

MPI_INFO_DUP duplicates an existing info object, creating a new object, with the
same (key,value) pairs and the same ordering of keys.

MPI_INFO_FREE(info)

INOUT info info object (handle)

int MPI_Info_free(MPI_Info *info)

MPI_INFO_FREE(INFO, IERROR)
INTEGER INFO, IERROR

{void MPI::Info::Free() (binding deprecated, see Section 15.2) }

This function frees info and sets it to MPI_INFO_NULL. The value of an info argument is
interpreted each time the info is passed to a routine. Changes to an info after return from
a routine do not affect that interpretation.
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Chapter 10

Process Creation and Management

10.1 Introduction

MPI is primarily concerned with communication rather than process or resource manage-
ment. However, it is necessary to address these issues to some degree in order to define
a useful framework for communication. This chapter presents a set of MPI interfaces that
allow for a variety of approaches to process management while placing minimal restrictions
on the execution environment.

The MPI model for process creation allows both the creation of an intial set of pro-
cesses related by their membership in a common MPI_COMM_WORLD and the creation and
management of processes after an MPI application has been started. A major impetus for
the later form of process creation comes from the PVM [23] research effort. This work
has provided a wealth of experience with process management and resource control that
illustrates their benefits and potential pitfalls.

The MPI Forum decided not to address resource control because it was not able to
design a portable interface that would be appropriate for the broad spectrum of existing
and potential resource and process controllers. Resource control can encompass a wide
range of abilities, including adding and deleting nodes from a virtual parallel machine,
reserving and scheduling resources, managing compute partitions of an MPP, and returning
information about available resources. assumes that resource control is provided externally
— probably by computer vendors, in the case of tightly coupled systems, or by a third party
software package when the environment is a cluster of workstations.

The reasons for including process management in MPI are both technical and practical.
Important classes of message-passing applications require process control. These include
task farms, serial applications with parallel modules, and problems that require a run-time
assessment of the number and type of processes that should be started. On the practical
side, users of workstation clusters who are migrating from PVM to MPI may be accustomed
to using PVM’s capabilities for process and resource management. The lack of these features
would be a practical stumbling block to migration.

The following goals are central to the design of MPI process management:

• The MPI process model must apply to the vast majority of current parallel envi-
ronments. These include everything from tightly integrated MPPs to heterogeneous
networks of workstations.

• MPI must not take over operating system responsibilities. It should instead provide a
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306 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

clean interface between an application and system software.

• MPI must guarantee communication determinism in the presense of dynamic processes,
i.e., dynamic process management must not introduce unavoidable race conditions.

• MPI must not contain features that compromise performance.

The process management model addresses these issues in two ways. First, MPI remains
primarily a communication library. It does not manage the parallel environment in which
a parallel program executes, though it provides a minimal interface between an application
and external resource and process managers.

Second, MPI maintains a consistent concept of a communicator, regardless of how its
members came into existence. A communicator is never changed once created, and it is
always created using deterministic collective operations.

10.2 The Dynamic Process Model

The dynamic process model allows for the creation and cooperative termination of processes
after an MPI application has started. It provides a mechanism to establish communication
between the newly created processes and the existing MPI application. It also provides a
mechanism to establish communication between two existing MPI applications, even when
one did not “start” the other.

10.2.1 Starting Processes

MPI applications may start new processes through an interface to an external process man-
ager.

MPI_COMM_SPAWN starts MPI processes and establishes communication with them,
returning an intercommunicator. MPI_COMM_SPAWN_MULTIPLE starts several different
binaries (or the same binary with different arguments), placing them in the same
MPI_COMM_WORLD and returning an intercommunicator.

MPI uses the existing group abstraction to represent processes. A process is identified
by a (group, rank) pair.

10.2.2 The Runtime Environment

The MPI_COMM_SPAWN and MPI_COMM_SPAWN_MULTIPLE routines provide an inter-
face between MPI and the runtime environment of an MPI application. The difficulty is that
there is an enormous range of runtime environments and application requirements, and MPI
must not be tailored to any particular one. Examples of such environments are:

• MPP managed by a batch queueing system. Batch queueing systems generally
allocate resources before an application begins, enforce limits on resource use (CPU
time, memory use, etc.), and do not allow a change in resource allocation after a
job begins. Moreover, many MPPs have special limitations or extensions, such as a
limit on the number of processes that may run on one processor, or the ability to
gang-schedule processes of a parallel application.
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10.2. THE DYNAMIC PROCESS MODEL 307

• Network of workstations with PVM. PVM (Parallel Virtual Machine) allows a
user to create a “virtual machine” out of a network of workstations. An application
may extend the virtual machine or manage processes (create, kill, redirect output,
etc.) through the PVM library. Requests to manage the machine or processes may
be intercepted and handled by an external resource manager.

• Network of workstations managed by a load balancing system. A load balanc-
ing system may choose the location of spawned processes based on dynamic quantities,
such as load average. It may transparently migrate processes from one machine to
another when a resource becomes unavailable.

• Large SMP with Unix. Applications are run directly by the user. They are
scheduled at a low level by the operating system. Processes may have special schedul-
ing characteristics (gang-scheduling, processor affinity, deadline scheduling, processor
locking, etc.) and be subject to OS resource limits (number of processes, amount of
memory, etc.).

MPI assumes, implicitly, the existence of an environment in which an application runs.
It does not provide “operating system” services, such as a general ability to query what
processes are running, to kill arbitrary processes, to find out properties of the runtime
environment (how many processors, how much memory, etc.).

Complex interaction of an MPI application with its runtime environment should be
done through an environment-specific API. An example of such an API would be the PVM
task and machine management routines — pvm_addhosts, pvm_config, pvm_tasks, etc.,
possibly modified to return an MPI (group,rank) when possible. A Condor or PBS API
would be another possibility.

At some low level, obviously, MPI must be able to interact with the runtime system,
but the interaction is not visible at the application level and the details of the interaction
are not specified by the MPI standard.

In many cases, it is impossible to keep environment-specific information out of the MPI
interface without seriously compromising MPI functionality. To permit applications to take
advantage of environment-specific functionality, many MPI routines take an info argument
that allows an application to specify environment-specific information. There is a tradeoff
between functionality and portability: applications that make use of info are not portable.

MPI does not require the existence of an underlying “virtual machine” model, in which
there is a consistent global view of an MPI application and an implicit “operating system”
managing resources and processes. For instance, processes spawned by one task may not
be visible to another; additional hosts added to the runtime environment by one process
may not be visible in another process; tasks spawned by different processes may not be
automatically distributed over available resources.

Interaction between MPI and the runtime environment is limited to the following areas:

• A process may start new processes with MPI_COMM_SPAWN and
MPI_COMM_SPAWN_MULTIPLE.

• When a process spawns a child process, it may optionally use an info argument to tell
the runtime environment where or how to start the process. This extra information
may be opaque to MPI.
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• An attribute MPI_UNIVERSE_SIZE on MPI_COMM_WORLD tells a program how “large”
the initial runtime environment is, namely how many processes can usefully be started
in all. One can subtract the size of MPI_COMM_WORLD from this value to find out
how many processes might usefully be started in addition to those already running.

10.3 Process Manager Interface

10.3.1 Processes in MPI

A process is represented in MPI by a (group, rank) pair. A (group, rank) pair specifies a
unique process but a process does not determine a unique (group, rank) pair, since a process
may belong to several groups.

10.3.2 Starting Processes and Establishing Communication

The following routine starts a number of MPI processes and establishes communication with
them, returning an intercommunicator.

Advice to users. It is possible in MPI to start a static SPMD or MPMD appli-
cation by starting first one process and having that process start its siblings with
MPI_COMM_SPAWN. This practice is discouraged primarily for reasons of perfor-
mance. If possible, it is preferable to start all processes at once, as a single MPI
application. (End of advice to users.)

MPI_COMM_SPAWN(command, argv, maxprocs, info, root, comm, intercomm,
array_of_errcodes)

IN command name of program to be spawned (string, significant
only at root)

IN argv arguments to command (array of strings, significant
only at root)

IN maxprocs maximum number of processes to start (integer, sig-
nificant only at root)

IN info a set of key-value pairs telling the runtime system
where and how to start the processes (handle, signifi-
cant only at root)

IN root rank of process in which previous arguments are ex-
amined (integer)

IN comm intracommunicator containing group of spawning pro-
cesses (handle)

OUT intercomm intercommunicator between original group and the
newly spawned group (handle)

OUT array_of_errcodes one code per process (array of integer)
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10.3. PROCESS MANAGER INTERFACE 309

int MPI_Comm_spawn(char *command, char *argv[], int maxprocs, MPI_Info
info, int root, MPI_Comm comm, MPI_Comm *intercomm,
int array_of_errcodes[])

MPI_COMM_SPAWN(COMMAND, ARGV, MAXPROCS, INFO, ROOT, COMM, INTERCOMM,
ARRAY_OF_ERRCODES, IERROR)

CHARACTER*(*) COMMAND, ARGV(*)
INTEGER INFO, MAXPROCS, ROOT, COMM, INTERCOMM, ARRAY_OF_ERRCODES(*),
IERROR

{MPI::Intercomm MPI::Intracomm::Spawn(const char* command,
const char* argv[], int maxprocs, const MPI::Info& info,
int root, int array_of_errcodes[]) const (binding deprecated, see
Section 15.2) }

{MPI::Intercomm MPI::Intracomm::Spawn(const char* command,
const char* argv[], int maxprocs, const MPI::Info& info,
int root) const (binding deprecated, see Section 15.2) }

MPI_COMM_SPAWN tries to start maxprocs identical copies of the MPI program spec-
ified by command, establishing communication with them and returning an intercommun-
icator. The spawned processes are referred to as children. The children have their own
MPI_COMM_WORLD, which is separate from that of the parents. MPI_COMM_SPAWN is
collective over comm, and also may not return until MPI_INIT has been called in the chil-
dren. Similarly, MPI_INIT in the children may not return until all parents have called
MPI_COMM_SPAWN. In this sense, MPI_COMM_SPAWN in the parents and MPI_INIT in
the children form a collective operation over the union of parent and child processes. The
intercommunicator returned by MPI_COMM_SPAWN contains the parent processes in the
local group and the child processes in the remote group. The ordering of processes in the
local and remote groups is the same as the ordering of the group of the comm in the parents
and of MPI_COMM_WORLD of the children, respectively. This intercommunicator can be
obtained in the children through the function MPI_COMM_GET_PARENT.

Advice to users. An implementation may automatically establish communication
before MPI_INIT is called by the children. Thus, completion of MPI_COMM_SPAWN
in the parent does not necessarily mean that MPI_INIT has been called in the children
(although the returned intercommunicator can be used immediately). (End of advice
to users.)

The command argument The command argument is a string containing the name of a pro-
gram to be spawned. The string is null-terminated in C. In Fortran, leading and trailing
spaces are stripped. MPI does not specify how to find the executable or how the working
directory is determined. These rules are implementation-dependent and should be appro-
priate for the runtime environment.

Advice to implementors. The implementation should use a natural rule for finding
executables and determining working directories. For instance, a homogeneous sys-
tem with a global file system might look first in the working directory of the spawning
process, or might search the directories in a PATH environment variable as do Unix

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



310 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

shells. An implementation on top of PVM would use PVM’s rules for finding exe-
cutables (usually in $HOME/pvm3/bin/$PVM_ARCH). An MPI implementation running
under POE on an IBM SP would use POE’s method of finding executables. An imple-
mentation should document its rules for finding executables and determining working
directories, and a high-quality implementation should give the user some control over
these rules. (End of advice to implementors.)

If the program named in command does not call MPI_INIT, but instead forks a process
that calls MPI_INIT, the results are undefined. Implementations may allow this case to
work but are not required to.

Advice to users. MPI does not say what happens if the program you start is a
shell script and that shell script starts a program that calls MPI_INIT. Though some
implementations may allow you to do this, they may also have restrictions, such as
requiring that arguments supplied to the shell script be supplied to the program, or
requiring that certain parts of the environment not be changed. (End of advice to
users.)

The argv argument argv is an array of strings containing arguments that are passed to
the program. The first element of argv is the first argument passed to command, not, as
is conventional in some contexts, the command itself. The argument list is terminated by
NULL in C and C++ and an empty string in Fortran. In Fortran, leading and trailing spaces
are always stripped, so that a string consisting of all spaces is considered an empty string.
The constant MPI_ARGV_NULL may be used in C, C++ and Fortran to indicate an empty
argument list. In C and C++, this constant is the same as NULL.

Example 10.1 Examples of argv in C and Fortran
To run the program “ocean” with arguments “-gridfile” and “ocean1.grd” in C:

char command[] = "ocean";
char *argv[] = {"-gridfile", "ocean1.grd", NULL};
MPI_Comm_spawn(command, argv, ...);

or, if not everything is known at compile time:

char *command;
char **argv;
command = "ocean";
argv=(char **)malloc(3 * sizeof(char *));
argv[0] = "-gridfile";
argv[1] = "ocean1.grd";
argv[2] = NULL;
MPI_Comm_spawn(command, argv, ...);

In Fortran:

CHARACTER*25 command, argv(3)
command = ’ ocean ’
argv(1) = ’ -gridfile ’
argv(2) = ’ ocean1.grd’
argv(3) = ’ ’
call MPI_COMM_SPAWN(command, argv, ...)
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Arguments are supplied to the program if this is allowed by the operating system.
In C, the MPI_COMM_SPAWN argument argv differs from the argv argument of main in
two respects. First, it is shifted by one element. Specifically, argv[0] of main is provided
by the implementation and conventionally contains the name of the program (given by
command). argv[1] of main corresponds to argv[0] in MPI_COMM_SPAWN, argv[2] of
main to argv[1] of MPI_COMM_SPAWN, etc. Second, argv of MPI_COMM_SPAWN must be
null-terminated, so that its length can be determined. Passing an argv of MPI_ARGV_NULL

to MPI_COMM_SPAWN results in main receiving argc of 1 and an argv whose element 0
is (conventionally) the name of the program.

If a Fortran implementation supplies routines that allow a program to obtain its ar-
guments, the arguments may be available through that mechanism. In C, if the operating
system does not support arguments appearing in argv of main(), the MPI implementation
may add the arguments to the argv that is passed to MPI_INIT.

The maxprocs argument MPI tries to spawn maxprocs processes. If it is unable to spawn
maxprocs processes, it raises an error of class MPI_ERR_SPAWN.

An implementation may allow the info argument to change the default behavior, such
that if the implementation is unable to spawn all maxprocs processes, it may spawn a
smaller number of processes instead of raising an error. In principle, the info argument
may specify an arbitrary set {mi : 0 ≤ mi ≤ maxprocs} of allowed values for the number
of processes spawned. The set {mi} does not necessarily include the value maxprocs. If
an implementation is able to spawn one of these allowed numbers of processes,
MPI_COMM_SPAWN returns successfully and the number of spawned processes, m, is given
by the size of the remote group of intercomm. If m is less than maxproc, reasons why the
other processes were not spawned are given in array_of_errcodes as described below. If it is
not possible to spawn one of the allowed numbers of processes, MPI_COMM_SPAWN raises
an error of class MPI_ERR_SPAWN.

A spawn call with the default behavior is called hard. A spawn call for which fewer
than maxprocs processes may be returned is called soft. See Section 10.3.4 on page 315 for
more information on the soft key for info.

Advice to users. By default, requests are hard and MPI errors are fatal. This means
that by default there will be a fatal error if MPI cannot spawn all the requested
processes. If you want the behavior “spawn as many processes as possible, up to N ,”
you should do a soft spawn, where the set of allowed values {mi} is {0 . . . N}. However,
this is not completely portable, as implementations are not required to support soft
spawning. (End of advice to users.)

The info argument The info argument to all of the routines in this chapter is an opaque
handle of type MPI_Info in C, MPI::Info in C++ and INTEGER in Fortran. It is a container for
a number of user-specified (key,value) pairs. key and value are strings (null-terminated char*
in C, character*(*) in Fortran). Routines to create and manipulate the info argument are
described in Section 9 on page 299.

For the SPAWN calls, info provides additional (and possibly implementation-dependent)
instructions to MPI and the runtime system on how to start processes. An application may
pass MPI_INFO_NULL in C or Fortran. Portable programs not requiring detailed control over
process locations should use MPI_INFO_NULL.
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MPI does not specify the content of the info argument, except to reserve a number of
special key values (see Section 10.3.4 on page 315). The info argument is quite flexible and
could even be used, for example, to specify the executable and its command-line arguments.
In this case the command argument to MPI_COMM_SPAWN could be empty. The ability to
do this follows from the fact that MPI does not specify how an executable is found, and the
info argument can tell the runtime system where to “find” the executable “” (empty string).
Of course a program that does this will not be portable across MPI implementations.

The root argument All arguments before the root argument are examined only on the
process whose rank in comm is equal to root. The value of these arguments on other
processes is ignored.

The array_of_errcodes argument The array_of_errcodes is an array of length maxprocs in
which MPI reports the status of each process that MPI was requested to start. If all maxprocs
processes were spawned, array_of_errcodes is filled in with the value MPI_SUCCESS. If only m
(0 ≤ m < maxprocs) processes are spawned, m of the entries will contain MPI_SUCCESS and
the rest will contain an implementation-specific error code indicating the reason MPI could
not start the process. MPI does not specify which entries correspond to failed processes.
An implementation may, for instance, fill in error codes in one-to-one correspondence with
a detailed specification in the info argument. These error codes all belong to the error
class MPI_ERR_SPAWN if there was no error in the argument list. In C or Fortran, an
application may pass MPI_ERRCODES_IGNORE if it is not interested in the error codes. In
C++ this constant does not exist, and the array_of_errcodes argument may be omitted from
the argument list.

Advice to implementors. MPI_ERRCODES_IGNORE in Fortran is a special type of
constant, like MPI_BOTTOM. See the discussion in Section 2.5.4 on page 14. (End of
advice to implementors.)

MPI_COMM_GET_PARENT(parent)

OUT parent the parent communicator (handle)

int MPI_Comm_get_parent(MPI_Comm *parent)

MPI_COMM_GET_PARENT(PARENT, IERROR)
INTEGER PARENT, IERROR

{static MPI::Intercomm MPI::Comm::Get_parent() (binding deprecated, see
Section 15.2) }

If a process was started with MPI_COMM_SPAWN or MPI_COMM_SPAWN_MULTIPLE,
MPI_COMM_GET_PARENT returns the “parent” intercommunicator of the current process.
This parent intercommunicator is created implicitly inside of MPI_INIT and is the same in-
tercommunicator returned by SPAWN in the parents.

If the process was not spawned, MPI_COMM_GET_PARENT returns MPI_COMM_NULL.
After the parent communicator is freed or disconnected, MPI_COMM_GET_PARENT

returns MPI_COMM_NULL.
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Advice to users. MPI_COMM_GET_PARENT returns a handle to a single intercom-
municator. Calling MPI_COMM_GET_PARENT a second time returns a handle to
the same intercommunicator. Freeing the handle with MPI_COMM_DISCONNECT or
MPI_COMM_FREE will cause other references to the intercommunicator to become
invalid (dangling). Note that calling MPI_COMM_FREE on the parent communicator
is not useful. (End of advice to users.)

Rationale. The desire of the Forum was to create a constant
MPI_COMM_PARENT similar to MPI_COMM_WORLD. Unfortunately such a constant
cannot be used (syntactically) as an argument to MPI_COMM_DISCONNECT, which
is explicitly allowed. (End of rationale.)

10.3.3 Starting Multiple Executables and Establishing Communication

While MPI_COMM_SPAWN is sufficient for most cases, it does not allow the spawning
of multiple binaries, or of the same binary with multiple sets of arguments. The follow-
ing routine spawns multiple binaries or the same binary with multiple sets of arguments,
establishing communication with them and placing them in the same MPI_COMM_WORLD.

MPI_COMM_SPAWN_MULTIPLE(count, array_of_commands, array_of_argv, array_of_maxprocs,
array_of_info, root, comm, intercomm, array_of_errcodes)

IN count number of commands (positive integer, significant to
MPI only at root — see advice to users)

IN array_of_commands programs to be executed (array of strings, significant
only at root)

IN array_of_argv arguments for commands (array of array of strings,
significant only at root)

IN array_of_maxprocs maximum number of processes to start for each com-
mand (array of integer, significant only at root)

IN array_of_info info objects telling the runtime system where and how
to start processes (array of handles, significant only at
root)

IN root rank of process in which previous arguments are ex-
amined (integer)

IN comm intracommunicator containing group of spawning pro-
cesses (handle)

OUT intercomm intercommunicator between original group and newly
spawned group (handle)

OUT array_of_errcodes one error code per process (array of integer)

int MPI_Comm_spawn_multiple(int count, char *array_of_commands[],
char **array_of_argv[], int array_of_maxprocs[],
MPI_Info array_of_info[], int root, MPI_Comm comm,
MPI_Comm *intercomm, int array_of_errcodes[])
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MPI_COMM_SPAWN_MULTIPLE(COUNT, ARRAY_OF_COMMANDS, ARRAY_OF_ARGV,
ARRAY_OF_MAXPROCS, ARRAY_OF_INFO, ROOT, COMM, INTERCOMM,
ARRAY_OF_ERRCODES, IERROR)

INTEGER COUNT, ARRAY_OF_INFO(*), ARRAY_OF_MAXPROCS(*), ROOT, COMM,
INTERCOMM, ARRAY_OF_ERRCODES(*), IERROR
CHARACTER*(*) ARRAY_OF_COMMANDS(*), ARRAY_OF_ARGV(COUNT, *)

{MPI::Intercomm MPI::Intracomm::Spawn_multiple(int count,
const char* array_of_commands[], const char** array_of_argv[],
const int array_of_maxprocs[],
const MPI::Info array_of_info[], int root,
int array_of_errcodes[]) (binding deprecated, see Section 15.2) }

{MPI::Intercomm MPI::Intracomm::Spawn_multiple(int count,
const char* array_of_commands[], const char** array_of_argv[],
const int array_of_maxprocs[],
const MPI::Info array_of_info[], int root) (binding deprecated,
see Section 15.2) }

MPI_COMM_SPAWN_MULTIPLE is identical to MPI_COMM_SPAWN except that there
are multiple executable specifications. The first argument, count, gives the number of
specifications. Each of the next four arguments are simply arrays of the corresponding
arguments in MPI_COMM_SPAWN. For the Fortran version of array_of_argv, the element
array_of_argv(i,j) is the j-th argument to command number i.

Rationale. This may seem backwards to Fortran programmers who are familiar
with Fortran’s column-major ordering. However, it is necessary to do it this way to
allow MPI_COMM_SPAWN to sort out arguments. Note that the leading dimension
of array_of_argv must be the same as count. (End of rationale.)

Advice to users. The argument count is interpreted by MPI only at the root, as is
array_of_argv. Since the leading dimension of array_of_argv is count, a non-positive
value of count at a non-root node could theoretically cause a runtime bounds check
error, even though array_of_argv should be ignored by the subroutine. If this happens,
you should explicitly supply a reasonable value of count on the non-root nodes. (End
of advice to users.)

In any language, an application may use the constant MPI_ARGVS_NULL (which is likely
to be (char ***)0 in C) to specify that no arguments should be passed to any commands.
The effect of setting individual elements of array_of_argv to MPI_ARGV_NULL is not defined.
To specify arguments for some commands but not others, the commands without arguments
should have a corresponding argv whose first element is null ((char *)0 in C and empty
string in Fortran).

All of the spawned processes have the same MPI_COMM_WORLD. Their ranks in
MPI_COMM_WORLD correspond directly to the order in which the commands are specified
in MPI_COMM_SPAWN_MULTIPLE. Assume that m1 processes are generated by the first
command, m2 by the second, etc. The processes corresponding to the first command have
ranks 0, 1, . . . ,m1−1. The processes in the second command have ranks m1,m1+1, . . . ,m1+
m2−1. The processes in the third have ranks m1 +m2,m1 +m2 + 1, . . . ,m1 +m2 +m3−1,
etc.
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Advice to users. Calling MPI_COMM_SPAWN multiple times would create many
sets of children with different MPI_COMM_WORLDs whereas
MPI_COMM_SPAWN_MULTIPLE creates children with a single MPI_COMM_WORLD,
so the two methods are not completely equivalent. There are also two performance-
related reasons why, if you need to spawn multiple executables, you may want to
use MPI_COMM_SPAWN_MULTIPLE instead of calling MPI_COMM_SPAWN several
times. First, spawning several things at once may be faster than spawning them
sequentially. Second, in some implementations, communication between processes
spawned at the same time may be faster than communication between processes
spawned separately. (End of advice to users.)

The array_of_errcodes argument is a 1-dimensional array of size
∑count

i=1 ni, where ni is
the i-th element of array_of_maxprocs. Command number i corresponds to the ni contiguous
slots in this array from element

∑i−1
j=1 nj to

[∑i
j=1 nj

]
− 1. Error codes are treated as for

MPI_COMM_SPAWN.

Example 10.2 Examples of array_of_argv in C and Fortran
To run the program “ocean” with arguments “-gridfile” and “ocean1.grd” and the program
“atmos” with argument “atmos.grd” in C:

char *array_of_commands[2] = {"ocean", "atmos"};
char **array_of_argv[2];
char *argv0[] = {"-gridfile", "ocean1.grd", (char *)0};
char *argv1[] = {"atmos.grd", (char *)0};
array_of_argv[0] = argv0;
array_of_argv[1] = argv1;
MPI_Comm_spawn_multiple(2, array_of_commands, array_of_argv, ...);

Here’s how you do it in Fortran:

CHARACTER*25 commands(2), array_of_argv(2, 3)
commands(1) = ’ ocean ’
array_of_argv(1, 1) = ’ -gridfile ’
array_of_argv(1, 2) = ’ ocean1.grd’
array_of_argv(1, 3) = ’ ’

commands(2) = ’ atmos ’
array_of_argv(2, 1) = ’ atmos.grd ’
array_of_argv(2, 2) = ’ ’

call MPI_COMM_SPAWN_MULTIPLE(2, commands, array_of_argv, ...)

10.3.4 Reserved Keys

The following keys are reserved. An implementation is not required to interpret these keys,
but if it does interpret the key, it must provide the functionality described.

host Value is a hostname. The format of the hostname is determined by the implementation.

arch Value is an architecture name. Valid architecture names and what they mean are
determined by the implementation.
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wdir Value is the name of a directory on a machine on which the spawned process(es)
execute(s). This directory is made the working directory of the executing process(es).
The format of the directory name is determined by the implementation.

path Value is a directory or set of directories where the implementation should look for the
executable. The format of path is determined by the implementation.

file Value is the name of a file in which additional information is specified. The format of
the filename and internal format of the file are determined by the implementation.

soft Value specifies a set of numbers which are allowed values for the number of processes
that MPI_COMM_SPAWN (et al.) may create. The format of the value is a comma-
separated list of Fortran-90 triplets each of which specifies a set of integers and which
together specify the set formed by the union of these sets. Negative values in this set
and values greater than maxprocs are ignored. MPI will spawn the largest number of
processes it can, consistent with some number in the set. The order in which triplets
are given is not significant.

By Fortran-90 triplets, we mean:

1. a means a

2. a:b means a, a+ 1, a+ 2, . . . , b

3. a:b:c means a, a+ c, a+ 2c, . . . , a+ ck, where for c > 0, k is the largest integer
for which a+ ck ≤ b and for c < 0, k is the largest integer for which a+ ck ≥ b.
If b > a then c must be positive. If b < a then c must be negative.

Examples:

1. a:b gives a range between a and b

2. 0:N gives full “soft” functionality

3. 1,2,4,8,16,32,64,128,256,512,1024,2048,4096 allows power-of-two number
of processes.

4. 2:10000:2 allows even number of processes.

5. 2:10:2,7 allows 2, 4, 6, 7, 8, or 10 processes.

10.3.5 Spawn Example

Manager-worker Example, Using MPI_COMM_SPAWN.

/* manager */
#include "mpi.h"
int main(int argc, char *argv[])
{

int world_size, universe_size, *universe_sizep, flag;
MPI_Comm everyone; /* intercommunicator */
char worker_program[100];

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
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if (world_size != 1) error("Top heavy with management");

MPI_Comm_get_attr(MPI_COMM_WORLD, MPI_UNIVERSE_SIZE,
&universe_sizep, &flag);

if (!flag) {
printf("This MPI does not support UNIVERSE_SIZE. How many\n\

processes total?");
scanf("%d", &universe_size);

} else universe_size = *universe_sizep;
if (universe_size == 1) error("No room to start workers");

/*
* Now spawn the workers. Note that there is a run-time determination
* of what type of worker to spawn, and presumably this calculation must
* be done at run time and cannot be calculated before starting
* the program. If everything is known when the application is
* first started, it is generally better to start them all at once
* in a single MPI_COMM_WORLD.
*/

choose_worker_program(worker_program);
MPI_Comm_spawn(worker_program, MPI_ARGV_NULL, universe_size-1,

MPI_INFO_NULL, 0, MPI_COMM_SELF, &everyone,
MPI_ERRCODES_IGNORE);

/*
* Parallel code here. The communicator "everyone" can be used
* to communicate with the spawned processes, which have ranks 0,..
* MPI_UNIVERSE_SIZE-1 in the remote group of the intercommunicator
* "everyone".
*/

MPI_Finalize();
return 0;

}

/* worker */

#include "mpi.h"
int main(int argc, char *argv[])
{

int size;
MPI_Comm parent;
MPI_Init(&argc, &argv);
MPI_Comm_get_parent(&parent);
if (parent == MPI_COMM_NULL) error("No parent!");
MPI_Comm_remote_size(parent, &size);
if (size != 1) error("Something’s wrong with the parent");
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/*
* Parallel code here.
* The manager is represented as the process with rank 0 in (the remote
* group of) the parent communicator. If the workers need to communicate
* among themselves, they can use MPI_COMM_WORLD.
*/

MPI_Finalize();
return 0;

}

10.4 Establishing Communication

This section provides functions that establish communication between two sets of MPI
processes that do not share a communicator.

Some situations in which these functions are useful are:

1. Two parts of an application that are started independently need to communicate.

2. A visualization tool wants to attach to a running process.

3. A server wants to accept connections from multiple clients. Both clients and server
may be parallel programs.

In each of these situations, MPI must establish communication channels where none existed
before, and there is no parent/child relationship. The routines described in this section
establish communication between the two sets of processes by creating an MPI intercom-
municator, where the two groups of the intercommunicator are the original sets of processes.

Establishing contact between two groups of processes that do not share an existing
communicator is a collective but asymmetric process. One group of processes indicates its
willingness to accept connections from other groups of processes. We will call this group
the (parallel) server, even if this is not a client/server type of application. The other group
connects to the server; we will call it the client.

Advice to users. While the names client and server are used throughout this section,
MPI does not guarantee the traditional robustness of client server systems. The func-
tionality described in this section is intended to allow two cooperating parts of the
same application to communicate with one another. For instance, a client that gets a
segmentation fault and dies, or one that doesn’t participate in a collective operation
may cause a server to crash or hang. (End of advice to users.)

10.4.1 Names, Addresses, Ports, and All That

Almost all of the complexity in MPI client/server routines addresses the question “how
does the client find out how to contact the server?” The difficulty, of course, is that there
is no existing communication channel between them, yet they must somehow agree on a
rendezvous point where they will establish communication.
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Agreeing on a rendezvous point always involves a third party. The third party may
itself provide the rendezvous point or may communicate rendezvous information from server
to client. Complicating matters might be the fact that a client doesn’t really care what
server it contacts, only that it be able to get in touch with one that can handle its request.

Ideally, MPI can accommodate a wide variety of run-time systems while retaining the
ability to write simple portable code. The following should be compatible with MPI:

• The server resides at a well-known internet address host:port.

• The server prints out an address to the terminal, the user gives this address to the
client program.

• The server places the address information on a nameserver, where it can be retrieved
with an agreed-upon name.

• The server to which the client connects is actually a broker, acting as a middleman
between the client and the real server.

MPI does not require a nameserver, so not all implementations will be able to support
all of the above scenarios. However, MPI provides an optional nameserver interface, and is
compatible with external name servers.

A port_name is a system-supplied string that encodes a low-level network address at
which a server can be contacted. Typically this is an IP address and a port number, but
an implementation is free to use any protocol. The server establishes a port_name with
the MPI_OPEN_PORT routine. It accepts a connection to a given port with
MPI_COMM_ACCEPT. A client uses port_name to connect to the server.

By itself, the port_name mechanism is completely portable, but it may be clumsy
to use because of the necessity to communicate port_name to the client. It would be more
convenient if a server could specify that it be known by an application-supplied service_name
so that the client could connect to that service_name without knowing the port_name.

An MPI implementation may allow the server to publish a (port_name, service_name)
pair with MPI_PUBLISH_NAME and the client to retrieve the port name from the service
name with MPI_LOOKUP_NAME. This allows three levels of portability, with increasing
levels of functionality.

1. Applications that do not rely on the ability to publish names are the most portable.
Typically the port_name must be transferred “by hand” from server to client.

2. Applications that use the MPI_PUBLISH_NAME mechanism are completely portable
among implementations that provide this service. To be portable among all imple-
mentations, these applications should have a fall-back mechanism that can be used
when names are not published.

3. Applications may ignore MPI’s name publishing functionality and use their own mech-
anism (possibly system-supplied) to publish names. This allows arbitrary flexibility
but is not portable.
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10.4.2 Server Routines

A server makes itself available with two routines. First it must call MPI_OPEN_PORT to
establish a port at which it may be contacted. Secondly it must call MPI_COMM_ACCEPT
to accept connections from clients.

MPI_OPEN_PORT(info, port_name)

IN info implementation-specific information on how to estab-
lish an address (handle)

OUT port_name newly established port (string)

int MPI_Open_port(MPI_Info info, char *port_name)

MPI_OPEN_PORT(INFO, PORT_NAME, IERROR)
CHARACTER*(*) PORT_NAME
INTEGER INFO, IERROR

{void MPI::Open_port(const MPI::Info& info, char* port_name) (binding
deprecated, see Section 15.2) }

This function establishes a network address, encoded in the port_name string, at which
the server will be able to accept connections from clients. port_name is supplied by the
system, possibly using information in the info argument.

MPI copies a system-supplied port name into port_name. port_name identifies the newly
opened port and can be used by a client to contact the server. The maximum size string
that may be supplied by the system is MPI_MAX_PORT_NAME.

Advice to users. The system copies the port name into port_name. The application
must pass a buffer of sufficient size to hold this value. (End of advice to users.)

port_name is essentially a network address. It is unique within the communication
universe to which it belongs (determined by the implementation), and may be used by any
client within that communication universe. For instance, if it is an internet (host:port)
address, it will be unique on the internet. If it is a low level switch address on an IBM SP,
it will be unique to that SP.

Advice to implementors. These examples are not meant to constrain implementa-
tions. A port_name could, for instance, contain a user name or the name of a batch
job, as long as it is unique within some well-defined communication domain. The
larger the communication domain, the more useful MPI’s client/server functionality
will be. (End of advice to implementors.)

The precise form of the address is implementation-defined. For instance, an internet address
may be a host name or IP address, or anything that the implementation can decode into
an IP address. A port name may be reused after it is freed with MPI_CLOSE_PORT and
released by the system.

Advice to implementors. Since the user may type in port_name by hand, it is useful
to choose a form that is easily readable and does not have embedded spaces. (End of
advice to implementors.)
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info may be used to tell the implementation how to establish the address. It may, and
usually will, be MPI_INFO_NULL in order to get the implementation defaults.

MPI_CLOSE_PORT(port_name)

IN port_name a port (string)

int MPI_Close_port(char *port_name)

MPI_CLOSE_PORT(PORT_NAME, IERROR)
CHARACTER*(*) PORT_NAME
INTEGER IERROR

{void MPI::Close_port(const char* port_name) (binding deprecated, see
Section 15.2) }

This function releases the network address represented by port_name.

MPI_COMM_ACCEPT(port_name, info, root, comm, newcomm)

IN port_name port name (string, used only on root)

IN info implementation-dependent information (handle, used
only on root)

IN root rank in comm of root node (integer)

IN comm intracommunicator over which call is collective (han-
dle)

OUT newcomm intercommunicator with client as remote group (han-
dle)

int MPI_Comm_accept(char *port_name, MPI_Info info, int root,
MPI_Comm comm, MPI_Comm *newcomm)

MPI_COMM_ACCEPT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)
CHARACTER*(*) PORT_NAME
INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

{MPI::Intercomm MPI::Intracomm::Accept(const char* port_name,
const MPI::Info& info, int root) const (binding deprecated, see
Section 15.2) }

MPI_COMM_ACCEPT establishes communication with a client. It is collective over the
calling communicator. It returns an intercommunicator that allows communication with the
client.

The port_name must have been established through a call to MPI_OPEN_PORT.
info is a implementation-defined string that may allow fine control over the ACCEPT

call.
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10.4.3 Client Routines

There is only one routine on the client side.

MPI_COMM_CONNECT(port_name, info, root, comm, newcomm)

IN port_name network address (string, used only on root)

IN info implementation-dependent information (handle, used
only on root)

IN root rank in comm of root node (integer)

IN comm intracommunicator over which call is collective (han-
dle)

OUT newcomm intercommunicator with server as remote group (han-
dle)

int MPI_Comm_connect(char *port_name, MPI_Info info, int root,
MPI_Comm comm, MPI_Comm *newcomm)

MPI_COMM_CONNECT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)
CHARACTER*(*) PORT_NAME
INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

{MPI::Intercomm MPI::Intracomm::Connect(const char* port_name,
const MPI::Info& info, int root) const (binding deprecated, see
Section 15.2) }

This routine establishes communication with a server specified by port_name. It is
collective over the calling communicator and returns an intercommunicator in which the
remote group participated in an MPI_COMM_ACCEPT.

If the named port does not exist (or has been closed), MPI_COMM_CONNECT raises
an error of class MPI_ERR_PORT.

If the port exists, but does not have a pending MPI_COMM_ACCEPT, the connection
attempt will eventually time out after an implementation-defined time, or succeed when
the server calls MPI_COMM_ACCEPT. In the case of a time out, MPI_COMM_CONNECT
raises an error of class MPI_ERR_PORT.

Advice to implementors. The time out period may be arbitrarily short or long.
However, a high quality implementation will try to queue connection attempts so
that a server can handle simultaneous requests from several clients. A high quality
implementation may also provide a mechanism, through the info arguments to
MPI_OPEN_PORT, MPI_COMM_ACCEPT and/or MPI_COMM_CONNECT, for the
user to control timeout and queuing behavior. (End of advice to implementors.)

MPI provides no guarantee of fairness in servicing connection attempts. That is, connec-
tion attempts are not necessarily satisfied in the order they were initiated and competition
from other connection attempts may prevent a particular connection attempt from being
satisfied.

port_name is the address of the server. It must be the same as the name returned
by MPI_OPEN_PORT on the server. Some freedom is allowed here. If there are equivalent
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forms of port_name, an implementation may accept them as well. For instance, if port_name
is (hostname:port), an implementation may accept (ip_address:port) as well.

10.4.4 Name Publishing

The routines in this section provide a mechanism for publishing names. A (service_name,
port_name) pair is published by the server, and may be retrieved by a client using the
service_name only. An MPI implementation defines the scope of the service_name, that is,
the domain over which the service_name can be retrieved. If the domain is the empty
set, that is, if no client can retrieve the information, then we say that name publishing
is not supported. Implementations should document how the scope is determined. High-
quality implementations will give some control to users through the info arguments to name
publishing functions. Examples are given in the descriptions of individual functions.

MPI_PUBLISH_NAME(service_name, info, port_name)

IN service_name a service name to associate with the port (string)

IN info implementation-specific information (handle)

IN port_name a port name (string)

int MPI_Publish_name(char *service_name, MPI_Info info, char *port_name)

MPI_PUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)
INTEGER INFO, IERROR
CHARACTER*(*) SERVICE_NAME, PORT_NAME

{void MPI::Publish_name(const char* service_name, const MPI::Info& info,
const char* port_name) (binding deprecated, see Section 15.2) }

This routine publishes the pair (port_name, service_name) so that an application may
retrieve a system-supplied port_name using a well-known service_name.

The implementation must define the scope of a published service name, that is, the
domain over which the service name is unique, and conversely, the domain over which the
(port name, service name) pair may be retrieved. For instance, a service name may be
unique to a job (where job is defined by a distributed operating system or batch scheduler),
unique to a machine, or unique to a Kerberos realm. The scope may depend on the info
argument to MPI_PUBLISH_NAME.

MPI permits publishing more than one service_name for a single port_name. On the
other hand, if service_name has already been published within the scope determined by info,
the behavior of MPI_PUBLISH_NAME is undefined. An MPI implementation may, through
a mechanism in the info argument to MPI_PUBLISH_NAME, provide a way to allow multiple
servers with the same service in the same scope. In this case, an implementation-defined
policy will determine which of several port names is returned by MPI_LOOKUP_NAME.

Note that while service_name has a limited scope, determined by the implementation,
port_name always has global scope within the communication universe used by the imple-
mentation (i.e., it is globally unique).

port_name should be the name of a port established by MPI_OPEN_PORT and not yet
deleted by MPI_CLOSE_PORT. If it is not, the result is undefined.
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Advice to implementors. In some cases, an MPI implementation may use a name
service that a user can also access directly. In this case, a name published by MPI
could easily conflict with a name published by a user. In order to avoid such conflicts,
MPI implementations should mangle service names so that they are unlikely to conflict
with user code that makes use of the same service. Such name mangling will of course
be completely transparent to the user.

The following situation is problematic but unavoidable, if we want to allow implemen-
tations to use nameservers. Suppose there are multiple instances of “ocean” running
on a machine. If the scope of a service name is confined to a job, then multiple
oceans can coexist. If an implementation provides site-wide scope, however, multiple
instances are not possible as all calls to MPI_PUBLISH_NAME after the first may fail.
There is no universal solution to this.

To handle these situations, a high-quality implementation should make it possible to
limit the domain over which names are published. (End of advice to implementors.)

MPI_UNPUBLISH_NAME(service_name, info, port_name)

IN service_name a service name (string)

IN info implementation-specific information (handle)

IN port_name a port name (string)

int MPI_Unpublish_name(char *service_name, MPI_Info info, char *port_name)

MPI_UNPUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)
INTEGER INFO, IERROR
CHARACTER*(*) SERVICE_NAME, PORT_NAME

{void MPI::Unpublish_name(const char* service_name, const MPI::Info& info,
const char* port_name) (binding deprecated, see Section 15.2) }

This routine unpublishes a service name that has been previously published. Attempt-
ing to unpublish a name that has not been published or has already been unpublished is
erroneous and is indicated by the error class MPI_ERR_SERVICE.

All published names must be unpublished before the corresponding port is closed and
before the publishing process exits. The behavior of MPI_UNPUBLISH_NAME is implemen-
tation dependent when a process tries to unpublish a name that it did not publish.

If the info argument was used with MPI_PUBLISH_NAME to tell the implementation
how to publish names, the implementation may require that info passed to
MPI_UNPUBLISH_NAME contain information to tell the implementation how to unpublish
a name.
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MPI_LOOKUP_NAME(service_name, info, port_name)

IN service_name a service name (string)

IN info implementation-specific information (handle)

OUT port_name a port name (string)

int MPI_Lookup_name(char *service_name, MPI_Info info, char *port_name)

MPI_LOOKUP_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)
CHARACTER*(*) SERVICE_NAME, PORT_NAME
INTEGER INFO, IERROR

{void MPI::Lookup_name(const char* service_name, const MPI::Info& info,
char* port_name) (binding deprecated, see Section 15.2) }

This function retrieves a port_name published by MPI_PUBLISH_NAME with
service_name. If service_name has not been published, it raises an error in the error class
MPI_ERR_NAME. The application must supply a port_name buffer large enough to hold the
largest possible port name (see discussion above under MPI_OPEN_PORT).

If an implementation allows multiple entries with the same service_name within the
same scope, a particular port_name is chosen in a way determined by the implementation.

If the info argument was used with MPI_PUBLISH_NAME to tell the implementation
how to publish names, a similar info argument may be required for MPI_LOOKUP_NAME.

10.4.5 Reserved Key Values

The following key values are reserved. An implementation is not required to interpret these
key values, but if it does interpret the key value, it must provide the functionality described.

ip_port Value contains IP port number at which to establish a port. (Reserved for
MPI_OPEN_PORT only).

ip_address Value contains IP address at which to establish a port. If the address is not a
valid IP address of the host on which the MPI_OPEN_PORT call is made, the results
are undefined. (Reserved for MPI_OPEN_PORT only).

10.4.6 Client/Server Examples

Simplest Example — Completely Portable.

The following example shows the simplest way to use the client/server interface. It does
not use service names at all.

On the server side:

char myport[MPI_MAX_PORT_NAME];
MPI_Comm intercomm;
/* ... */
MPI_Open_port(MPI_INFO_NULL, myport);
printf("port name is: %s\n", myport);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



326 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

MPI_Comm_accept(myport, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);
/* do something with intercomm */

The server prints out the port name to the terminal and the user must type it in when
starting up the client (assuming the MPI implementation supports stdin such that this
works). On the client side:

MPI_Comm intercomm;
char name[MPI_MAX_PORT_NAME];
printf("enter port name: ");
gets(name);
MPI_Comm_connect(name, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);

Ocean/Atmosphere - Relies on Name Publishing

In this example, the “ocean” application is the “server” side of a coupled ocean-atmosphere
climate model. It assumes that the MPI implementation publishes names.

MPI_Open_port(MPI_INFO_NULL, port_name);
MPI_Publish_name("ocean", MPI_INFO_NULL, port_name);

MPI_Comm_accept(port_name, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);
/* do something with intercomm */
MPI_Unpublish_name("ocean", MPI_INFO_NULL, port_name);

On the client side:

MPI_Lookup_name("ocean", MPI_INFO_NULL, port_name);
MPI_Comm_connect( port_name, MPI_INFO_NULL, 0, MPI_COMM_SELF,

&intercomm);

Simple Client-Server Example.

This is a simple example; the server accepts only a single connection at a time and serves
that connection until the client requests to be disconnected. The server is a single process.

Here is the server. It accepts a single connection and then processes data until it
receives a message with tag 1. A message with tag 0 tells the server to exit.

#include "mpi.h"
int main( int argc, char **argv )
{

MPI_Comm client;
MPI_Status status;
char port_name[MPI_MAX_PORT_NAME];
double buf[MAX_DATA];
int size, again;

MPI_Init( &argc, &argv );
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MPI_Comm_size(MPI_COMM_WORLD, &size);
if (size != 1) error(FATAL, "Server too big");
MPI_Open_port(MPI_INFO_NULL, port_name);
printf("server available at %s\n",port_name);
while (1) {

MPI_Comm_accept( port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,
&client );

again = 1;
while (again) {

MPI_Recv( buf, MAX_DATA, MPI_DOUBLE,
MPI_ANY_SOURCE, MPI_ANY_TAG, client, &status );

switch (status.MPI_TAG) {
case 0: MPI_Comm_free( &client );

MPI_Close_port(port_name);
MPI_Finalize();
return 0;

case 1: MPI_Comm_disconnect( &client );
again = 0;
break;

case 2: /* do something */
...
default:

/* Unexpected message type */
MPI_Abort( MPI_COMM_WORLD, 1 );

}
}

}
}

Here is the client.

#include "mpi.h"
int main( int argc, char **argv )
{

MPI_Comm server;
double buf[MAX_DATA];
char port_name[MPI_MAX_PORT_NAME];

MPI_Init( &argc, &argv );
strcpy(port_name, argv[1] );/* assume server’s name is cmd-line arg */

MPI_Comm_connect( port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,
&server );

while (!done) {
tag = 2; /* Action to perform */
MPI_Send( buf, n, MPI_DOUBLE, 0, tag, server );
/* etc */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



328 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

}
MPI_Send( buf, 0, MPI_DOUBLE, 0, 1, server );
MPI_Comm_disconnect( &server );
MPI_Finalize();
return 0;

}

10.5 Other Functionality

10.5.1 Universe Size

Many “dynamic” MPI applications are expected to exist in a static runtime environment,
in which resources have been allocated before the application is run. When a user (or
possibly a batch system) runs one of these quasi-static applications, she will usually specify
a number of processes to start and a total number of processes that are expected. An
application simply needs to know how many slots there are, i.e., how many processes it
should spawn.

MPI provides an attribute on MPI_COMM_WORLD, MPI_UNIVERSE_SIZE, that allows
the application to obtain this information in a portable manner. This attribute indicates
the total number of processes that are expected. In Fortran, the attribute is the integer
value. In C, the attribute is a pointer to the integer value. An application typically subtracts
the size of MPI_COMM_WORLD from MPI_UNIVERSE_SIZE to find out how many processes it
should spawn. MPI_UNIVERSE_SIZE is initialized in MPI_INIT and is not changed by MPI. If
defined, it has the same value on all processes of MPI_COMM_WORLD. MPI_UNIVERSE_SIZE

is determined by the application startup mechanism in a way not specified by MPI. (The
size of MPI_COMM_WORLD is another example of such a parameter.)

Possibilities for how MPI_UNIVERSE_SIZE might be set include

• A -universe_size argument to a program that starts MPI processes.

• Automatic interaction with a batch scheduler to figure out how many processors have
been allocated to an application.

• An environment variable set by the user.

• Extra information passed to MPI_COMM_SPAWN through the info argument.

An implementation must document how MPI_UNIVERSE_SIZE is set. An implementation
may not support the ability to set MPI_UNIVERSE_SIZE, in which case the attribute
MPI_UNIVERSE_SIZE is not set.

MPI_UNIVERSE_SIZE is a recommendation, not necessarily a hard limit. For instance,
some implementations may allow an application to spawn 50 processes per processor, if
they are requested. However, it is likely that the user only wants to spawn one process per
processor.

MPI_UNIVERSE_SIZE is assumed to have been specified when an application was started,
and is in essence a portable mechanism to allow the user to pass to the application (through
the MPI process startup mechanism, such as mpiexec) a piece of critical runtime informa-
tion. Note that no interaction with the runtime environment is required. If the runtime
environment changes size while an application is running, MPI_UNIVERSE_SIZE is not up-
dated, and the application must find out about the change through direct communication
with the runtime system.
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10.5.2 Singleton MPI_INIT

A high-quality implementation will allow any process (including those not started with a
“parallel application” mechanism) to become an MPI process by calling MPI_INIT. Such
a process can then connect to other MPI processes using the MPI_COMM_ACCEPT and
MPI_COMM_CONNECT routines, or spawn other MPI processes. MPI does not mandate
this behavior, but strongly encourages it where technically feasible.

Advice to implementors. To start MPI processes belonging to the same
MPI_COMM_WORLD requires some special coordination. The processes must be started
at the “same” time, they must have a mechanism to establish communication, etc.
Either the user or the operating system must take special steps beyond simply starting
processes.

When an application enters MPI_INIT, clearly it must be able to determine if these
special steps were taken. If a process enters MPI_INIT and determines that no
special steps were taken (i.e., it has not been given the information to form an
MPI_COMM_WORLD with other processes) it succeeds and forms a singleton MPI pro-
gram, that is, one in which MPI_COMM_WORLD has size 1.

In some implementations, MPI may not be able to function without an “MPI environ-
ment.” For example, MPI may require that daemons be running or MPI may not be
able to work at all on the front-end of an MPP. In this case, an MPI implementation
may either

1. Create the environment (e.g., start a daemon) or

2. Raise an error if it cannot create the environment and the environment has not
been started independently.

A high-quality implementation will try to create a singleton MPI process and not raise
an error.

(End of advice to implementors.)

10.5.3 MPI_APPNUM

There is a predefined attribute MPI_APPNUM of MPI_COMM_WORLD. In Fortran, the at-
tribute is an integer value. In C, the attribute is a pointer to an integer value. If a process
was spawned with MPI_COMM_SPAWN_MULTIPLE, MPI_APPNUM is the command number
that generated the current process. Numbering starts from zero. If a process was spawned
with MPI_COMM_SPAWN, it will have MPI_APPNUM equal to zero.

Additionally, if the process was not started by a spawn call, but by an implementation-
specific startup mechanism that can handle multiple process specifications, MPI_APPNUM

should be set to the number of the corresponding process specification. In particular, if it
is started with

mpiexec spec0 [: spec1 : spec2 : ...]

MPI_APPNUM should be set to the number of the corresponding specification.
If an application was not spawned with MPI_COMM_SPAWN or

MPI_COMM_SPAWN_MULTIPLE, and MPI_APPNUM doesn’t make sense in the context of
the implementation-specific startup mechanism, MPI_APPNUM is not set.
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MPI implementations may optionally provide a mechanism to override the value of
MPI_APPNUM through the info argument. MPI reserves the following key for all SPAWN
calls.

appnum Value contains an integer that overrides the default value for MPI_APPNUM in the
child.

Rationale. When a single application is started, it is able to figure out how many pro-
cesses there are by looking at the size of MPI_COMM_WORLD. An application consisting
of multiple SPMD sub-applications has no way to find out how many sub-applications
there are and to which sub-application the process belongs. While there are ways to
figure it out in special cases, there is no general mechanism. MPI_APPNUM provides
such a general mechanism. (End of rationale.)

10.5.4 Releasing Connections

Before a client and server connect, they are independent MPI applications. An error in one
does not affect the other. After establishing a connection with MPI_COMM_CONNECT and
MPI_COMM_ACCEPT, an error in one may affect the other. It is desirable for a client and
server to be able to disconnect, so that an error in one will not affect the other. Similarly,
it might be desirable for a parent and child to disconnect, so that errors in the child do not
affect the parent, or vice-versa.

• Two processes are connected if there is a communication path (direct or indirect)
between them. More precisely:

1. Two processes are connected if
(a) they both belong to the same communicator (inter- or intra-, including

MPI_COMM_WORLD) or
(b) they have previously belonged to a communicator that was freed with

MPI_COMM_FREE instead of MPI_COMM_DISCONNECT or
(c) they both belong to the group of the same window or filehandle.

2. If A is connected to B and B to C, then A is connected to C.

• Two processes are disconnected (also independent) if they are not connected.

• By the above definitions, connectivity is a transitive property, and divides the uni-
verse of MPI processes into disconnected (independent) sets (equivalence classes) of
processes.

• Processes which are connected, but don’t share the same MPI_COMM_WORLD may be-
come disconnected (independent) if the communication path between them is broken
by using MPI_COMM_DISCONNECT.

The following additional rules apply to MPI routines in other chapters:

• MPI_FINALIZE is collective over a set of connected processes.

• MPI_ABORT does not abort independent processes. It may abort all processes in
the caller’s MPI_COMM_WORLD (ignoring its comm argument). Additionally, it may
abort connected processes as well, though it makes a “best attempt” to abort only
the processes in comm.
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• If a process terminates without calling MPI_FINALIZE, independent processes are not
affected but the effect on connected processes is not defined.

MPI_COMM_DISCONNECT(comm)

INOUT comm communicator (handle)

int MPI_Comm_disconnect(MPI_Comm *comm)

MPI_COMM_DISCONNECT(COMM, IERROR)
INTEGER COMM, IERROR

{void MPI::Comm::Disconnect() (binding deprecated, see Section 15.2) }

This function waits for all pending communication on comm to complete internally,
deallocates the communicator object, and sets the handle to MPI_COMM_NULL. It is a
collective operation.

It may not be called with the communicator MPI_COMM_WORLD or MPI_COMM_SELF.
MPI_COMM_DISCONNECT may be called only if all communication is complete and

matched, so that buffered data can be delivered to its destination. This requirement is the
same as for MPI_FINALIZE.

MPI_COMM_DISCONNECT has the same action as MPI_COMM_FREE, except that it
waits for pending communication to finish internally and enables the guarantee about the
behavior of disconnected processes.

Advice to users. To disconnect two processes you may need to call
MPI_COMM_DISCONNECT, MPI_WIN_FREE and MPI_FILE_CLOSE to remove all
communication paths between the two processes. Notes that it may be necessary
to disconnect several communicators (or to free several windows or files) before two
processes are completely independent. (End of advice to users.)

Rationale. It would be nice to be able to use MPI_COMM_FREE instead, but that
function explicitly does not wait for pending communication to complete. (End of
rationale.)

10.5.5 Another Way to Establish MPI Communication

MPI_COMM_JOIN(fd, intercomm)

IN fd socket file descriptor

OUT intercomm new intercommunicator (handle)

int MPI_Comm_join(int fd, MPI_Comm *intercomm)

MPI_COMM_JOIN(FD, INTERCOMM, IERROR)
INTEGER FD, INTERCOMM, IERROR

{static MPI::Intercomm MPI::Comm::Join(const int fd) (binding deprecated, see
Section 15.2) }
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MPI_COMM_JOIN is intended for MPI implementations that exist in an environment
supporting the Berkeley Socket interface [33, 37]. Implementations that exist in an environ-
ment not supporting Berkeley Sockets should provide the entry point for MPI_COMM_JOIN
and should return MPI_COMM_NULL.

This call creates an intercommunicator from the union of two MPI processes which are
connected by a socket. MPI_COMM_JOIN should normally succeed if the local and remote
processes have access to the same implementation-defined MPI communication universe.

Advice to users. An MPI implementation may require a specific communication
medium for MPI communication, such as a shared memory segment or a special switch.
In this case, it may not be possible for two processes to successfully join even if there
is a socket connecting them and they are using the same MPI implementation. (End
of advice to users.)

Advice to implementors. A high-quality implementation will attempt to establish
communication over a slow medium if its preferred one is not available. If implemen-
tations do not do this, they must document why they cannot do MPI communication
over the medium used by the socket (especially if the socket is a TCP connection).
(End of advice to implementors.)

fd is a file descriptor representing a socket of type SOCK_STREAM (a two-way reliable
byte-stream connection). Nonblocking I/O and asynchronous notification via SIGIO must
not be enabled for the socket. The socket must be in a connected state. The socket must
be quiescent when MPI_COMM_JOIN is called (see below). It is the responsibility of the
application to create the socket using standard socket API calls.

MPI_COMM_JOIN must be called by the process at each end of the socket. It does not
return until both processes have called MPI_COMM_JOIN. The two processes are referred
to as the local and remote processes.

MPI uses the socket to bootstrap creation of the intercommunicator, and for nothing
else. Upon return from MPI_COMM_JOIN, the file descriptor will be open and quiescent
(see below).

If MPI is unable to create an intercommunicator, but is able to leave the socket in its
original state, with no pending communication, it succeeds and sets intercomm to
MPI_COMM_NULL.

The socket must be quiescent before MPI_COMM_JOIN is called and after
MPI_COMM_JOIN returns. More specifically, on entry to MPI_COMM_JOIN, a read on the
socket will not read any data that was written to the socket before the remote process called
MPI_COMM_JOIN. On exit from MPI_COMM_JOIN, a read will not read any data that was
written to the socket before the remote process returned from MPI_COMM_JOIN. It is the
responsibility of the application to ensure the first condition, and the responsibility of the
MPI implementation to ensure the second. In a multithreaded application, the application
must ensure that one thread does not access the socket while another is calling
MPI_COMM_JOIN, or call MPI_COMM_JOIN concurrently.

Advice to implementors. MPI is free to use any available communication path(s)
for MPI messages in the new communicator; the socket is only used for the initial
handshaking. (End of advice to implementors.)
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MPI_COMM_JOIN uses non-MPI communication to do its work. The interaction of non-
MPI communication with pending MPI communication is not defined. Therefore, the result
of calling MPI_COMM_JOIN on two connected processes (see Section 10.5.4 on page 330 for
the definition of connected) is undefined.

The returned communicator may be used to establish MPI communication with addi-
tional processes, through the usual MPI communicator creation mechanisms.
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Chapter 11

One-Sided Communications

11.1 Introduction

Remote Memory Access (RMA) extends the communication mechanisms of MPI by allowing
one process to specify all communication parameters, both for the sending side and for the
receiving side. This mode of communication facilitates the coding of some applications with
dynamically changing data access patterns where the data distribution is fixed or slowly
changing. In such a case, each process can compute what data it needs to access or update
at other processes. However, processes may not know which data in their own memory
need to be accessed or updated by remote processes, and may not even know the identity of
these processes. Thus, the transfer parameters are all available only on one side. Regular
send/receive communication requires matching operations by sender and receiver. In order
to issue the matching operations, an application needs to distribute the transfer parameters.
This may require all processes to participate in a time consuming global computation, or
to periodically poll for potential communication requests to receive and act upon. The use
of RMA communication mechanisms avoids the need for global computations or explicit
polling. A generic example of this nature is the execution of an assignment of the form A =
B(map), where map is a permutation vector, and A, B and map are distributed in the same
manner.

Message-passing communication achieves two effects: communication of data from
sender to receiver; and synchronization of sender with receiver. The RMA design sepa-
rates these two functions. Three communication calls are provided: MPI_PUT (remote
write), MPI_GET (remote read) and MPI_ACCUMULATE (remote update). A larger num-
ber of synchronization calls are provided that support different synchronization styles. The
design is similar to that of weakly coherent memory systems: correct ordering of memory
accesses has to be imposed by the user, using synchronization calls; the implementation can
delay communication operations until the synchronization calls occur, for efficiency.

The design of the RMA functions allows implementors to take advantage, in many
cases, of fast communication mechanisms provided by various platforms, such as coherent or
noncoherent shared memory, DMA engines, hardware-supported put/get operations, com-
munication coprocessors, etc. The most frequently used RMA communication mechanisms
can be layered on top of message-passing. However, support for asynchronous communica-
tion agents (handlers, threads, etc.) is needed, for certain RMA functions, in a distributed
memory environment.

We shall denote by origin the process that performs the call, and by target the
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336 CHAPTER 11. ONE-SIDED COMMUNICATIONS

process in which the memory is accessed. Thus, in a put operation, source=origin and
destination=target; in a get operation, source=target and destination=origin.

11.2 Initialization

11.2.1 Window Creation

The initialization operation allows each process in an intracommunicator group to specify,
in a collective operation, a “window” in its memory that is made accessible to accesses by
remote processes. The call returns an opaque object that represents the group of processes
that own and access the set of windows, and the attributes of each window, as specified by
the initialization call.

MPI_WIN_CREATE(base, size, disp_unit, info, comm, win)

IN base initial address of window (choice)

IN size size of window in bytes (non-negative integer)

IN disp_unit local unit size for displacements, in bytes (positive in-
teger)

IN info info argument (handle)

IN comm communicator (handle)

OUT win window object returned by the call (handle)

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)

MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)
<type> BASE(*)
INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

{static MPI::Win MPI::Win::Create(const void* base, MPI::Aint size, int
disp_unit, const MPI::Info& info, const MPI::Intracomm& comm)
(binding deprecated, see Section 15.2) }

This is a collective call executed by all processes in the group of comm. It returns
a window object that can be used by these processes to perform RMA operations. Each
process specifies a window of existing memory that it exposes to RMA accesses by the
processes in the group of comm. The window consists of size bytes, starting at address base.
A process may elect to expose no memory by specifying size = 0.

The displacement unit argument is provided to facilitate address arithmetic in RMA
operations: the target displacement argument of an RMA operation is scaled by the factor
disp_unit specified by the target process, at window creation.

Rationale. The window size is specified using an address sized integer, so as to allow
windows that span more than 4 GB of address space. (Even if the physical memory
size is less than 4 GB, the address range may be larger than 4 GB, if addresses are
not contiguous.) (End of rationale.)
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Advice to users. Common choices for disp_unit are 1 (no scaling), and (in C syntax)
sizeof(type), for a window that consists of an array of elements of type type. The
later choice will allow one to use array indices in RMA calls, and have those scaled
correctly to byte displacements, even in a heterogeneous environment. (End of advice
to users.)

The info argument provides optimization hints to the runtime about the expected usage
pattern of the window. The following info key is predefined:

no_locks — if set to true, then the implementation may assume that the local window is
never locked (by a call to MPI_WIN_LOCK). This implies that this window is not used
for 3-party communication, and RMA can be implemented with no (less) asynchronous
agent activity at this process.

The various processes in the group of comm may specify completely different target
windows, in location, size, displacement units and info arguments. As long as all the get,
put and accumulate accesses to a particular process fit their specific target window this
should pose no problem. The same area in memory may appear in multiple windows, each
associated with a different window object. However, concurrent communications to distinct,
overlapping windows may lead to erroneous results.

Advice to users. A window can be created in any part of the process memory.
However, on some systems, the performance of windows in memory allocated by
MPI_ALLOC_MEM (Section 8.2, page 274) will be better. Also, on some systems,
performance is improved when window boundaries are aligned at “natural” boundaries
(word, double-word, cache line, page frame, etc.). (End of advice to users.)

Advice to implementors. In cases where RMA operations use different mechanisms
in different memory areas (e.g., load/store in a shared memory segment, and an asyn-
chronous handler in private memory), the MPI_WIN_CREATE call needs to figure out
which type of memory is used for the window. To do so, MPI maintains, internally, the
list of memory segments allocated by MPI_ALLOC_MEM, or by other, implementa-
tion specific, mechanisms, together with information on the type of memory segment
allocated. When a call to MPI_WIN_CREATE occurs, then MPI checks which segment
contains each window, and decides, accordingly, which mechanism to use for RMA
operations.

Vendors may provide additional, implementation-specific mechanisms to allocate or
to specify memory regions that are preferable for use in one-sided communication. In
particular, such mechanisms can be used to place static variables into such preferred
regions.

Implementors should document any performance impact of window alignment. (End
of advice to implementors.)

MPI_WIN_FREE(win)

INOUT win window object (handle)
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int MPI_Win_free(MPI_Win *win)

MPI_WIN_FREE(WIN, IERROR)
INTEGER WIN, IERROR

{void MPI::Win::Free() (binding deprecated, see Section 15.2) }

Frees the window object win and returns a null handle (equal to MPI_WIN_NULL). This
is a collective call executed by all processes in the group associated with
win. MPI_WIN_FREE(win) can be invoked by a process only after it has completed its
involvement in RMA communications on window win: i.e., the process has called
MPI_WIN_FENCE, or called MPI_WIN_WAIT to match a previous call to MPI_WIN_POST
or called MPI_WIN_COMPLETE to match a previous call to MPI_WIN_START or called
MPI_WIN_UNLOCK to match a previous call to MPI_WIN_LOCK. When the call returns,
the window memory can be freed.

Advice to implementors. MPI_WIN_FREE requires a barrier synchronization: no
process can return from free until all processes in the group of win called free. This, to
ensure that no process will attempt to access a remote window (e.g., with lock/unlock)
after it was freed. (End of advice to implementors.)

11.2.2 Window Attributes

The following three attributes are cached with a window, when the window is created.

MPI_WIN_BASE window base address.
MPI_WIN_SIZE window size, in bytes.
MPI_WIN_DISP_UNIT displacement unit associated with the window.

In C, calls to MPI_Win_get_attr(win, MPI_WIN_BASE, &base, &flag),
MPI_Win_get_attr(win, MPI_WIN_SIZE, &size, &flag) and
MPI_Win_get_attr(win, MPI_WIN_DISP_UNIT, &disp_unit, &flag) will return in
base a pointer to the start of the window win, and will return in size and disp_unit pointers
to the size and displacement unit of the window, respectively. And similarly, in C++.

In Fortran, calls to MPI_WIN_GET_ATTR(win, MPI_WIN_BASE, base, flag, ierror),
MPI_WIN_GET_ATTR(win, MPI_WIN_SIZE, size, flag, ierror) and
MPI_WIN_GET_ATTR(win, MPI_WIN_DISP_UNIT, disp_unit, flag, ierror) will return in
base, size and disp_unit the (integer representation of) the base address, the size and the
displacement unit of the window win, respectively. (The window attribute access functions
are defined in Section 6.7.3, page 230.)

The other “window attribute,” namely the group of processes attached to the window,
can be retrieved using the call below.

MPI_WIN_GET_GROUP(win, group)

IN win window object (handle)

OUT group group of processes which share access to the window
(handle)

int MPI_Win_get_group(MPI_Win win, MPI_Group *group)
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MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)
INTEGER WIN, GROUP, IERROR

{MPI::Group MPI::Win::Get_group() const (binding deprecated, see Section 15.2) }

MPI_WIN_GET_GROUP returns a duplicate of the group of the communicator used to
create the window. associated with win. The group is returned in group.

11.3 Communication Calls

MPI supports three RMA communication calls: MPI_PUT transfers data from the caller
memory (origin) to the target memory; MPI_GET transfers data from the target memory
to the caller memory; and MPI_ACCUMULATE updates locations in the target memory,
e.g. by adding to these locations values sent from the caller memory. These operations
are nonblocking: the call initiates the transfer, but the transfer may continue after the
call returns. The transfer is completed, both at the origin and at the target, when a
subsequent synchronization call is issued by the caller on the involved window object. These
synchronization calls are described in Section 11.4, page 347.

The local communication buffer of an RMA call should not be updated, and the local
communication buffer of a get call should not be accessed after the RMA call, until the
subsequent synchronization call completes.

It is erroneous to have concurrent conflicting accesses to the same memory location in a
window; if a location is updated by a put or accumulate operation, then this location cannot
be accessed by a load or another RMA operation until the updating operation has completed
at the target. There is one exception to this rule; namely, the same location can be updated
by several concurrent accumulate calls, the outcome being as if these updates occurred in
some order. In addition, a window cannot concurrently be updated by a put or accumulate
operation and by a local store operation. This, even if these two updates access different
locations in the window. The last restriction enables more efficient implementations of RMA
operations on many systems. These restrictions are described in more detail in Section 11.7,
page 363.

The calls use general datatype arguments to specify communication buffers at the origin
and at the target. Thus, a transfer operation may also gather data at the source and scatter
it at the destination. However, all arguments specifying both communication buffers are
provided by the caller.

For all three calls, the target process may be identical with the origin process; i.e., a
process may use an RMA operation to move data in its memory.

Rationale. The choice of supporting “self-communication” is the same as for message-
passing. It simplifies some coding, and is very useful with accumulate operations, to
allow atomic updates of local variables. (End of rationale.)

MPI_PROC_NULL is a valid target rank in the MPI RMA calls MPI_ACCUMULATE,
MPI_GET, and MPI_PUT. The effect is the same as for MPI_PROC_NULL in MPI point-
to-point communication. After any RMA operation with rank MPI_PROC_NULL, it is still
necessary to finish the RMA epoch with the synchronization method that started the epoch.
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11.3.1 Put

The execution of a put operation is similar to the execution of a send by the origin process
and a matching receive by the target process. The obvious difference is that all arguments
are provided by one call — the call executed by the origin process.

MPI_PUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win)

IN origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (non-negative inte-
ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to target buffer
(non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-
ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

int MPI_Put(void *origin_addr, int origin_count, MPI_Datatype
origin_datatype, int target_rank, MPI_Aint target_disp, int
target_count, MPI_Datatype target_datatype, MPI_Win win)

MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,
TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)
INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP
INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
TARGET_DATATYPE, WIN, IERROR

{void MPI::Win::Put(const void* origin_addr, int origin_count, const
MPI::Datatype& origin_datatype, int target_rank, MPI::Aint
target_disp, int target_count, const MPI::Datatype&
target_datatype) const (binding deprecated, see Section 15.2) }

Transfers origin_count successive entries of the type specified by the origin_datatype,
starting at address origin_addr on the origin node to the target node specified by the
win, target_rank pair. The data are written in the target buffer at address target_addr =
window_base + target_disp×disp_unit, where window_base and disp_unit are the base address
and window displacement unit specified at window initialization, by the target process.

The target buffer is specified by the arguments target_count and target_datatype.
The data transfer is the same as that which would occur if the origin process executed

a send operation with arguments origin_addr, origin_count, origin_datatype, target_rank, tag,
comm, and the target process executed a receive operation with arguments target_addr,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



11.3. COMMUNICATION CALLS 341

target_count, target_datatype, source, tag, comm, where target_addr is the target buffer
address computed as explained above, and comm is a communicator for the group of win.

The communication must satisfy the same constraints as for a similar message-passing
communication. The target_datatype may not specify overlapping entries in the target
buffer. The message sent must fit, without truncation, in the target buffer. Furthermore,
the target buffer must fit in the target window.

The target_datatype argument is a handle to a datatype object defined at the origin
process. However, this object is interpreted at the target process: the outcome is as if the
target datatype object was defined at the target process, by the same sequence of calls
used to define it at the origin process. The target datatype must contain only relative
displacements, not absolute addresses. The same holds for get and accumulate.

Advice to users. The target_datatype argument is a handle to a datatype object that
is defined at the origin process, even though it defines a data layout in the target
process memory. This causes no problems in a homogeneous environment, or in a
heterogeneous environment, if only portable datatypes are used (portable datatypes
are defined in Section 2.4, page 11).

The performance of a put transfer can be significantly affected, on some systems, from
the choice of window location and the shape and location of the origin and target
buffer: transfers to a target window in memory allocated by MPI_ALLOC_MEM may
be much faster on shared memory systems; transfers from contiguous buffers will be
faster on most, if not all, systems; the alignment of the communication buffers may
also impact performance. (End of advice to users.)

Advice to implementors. A high-quality implementation will attempt to prevent
remote accesses to memory outside the window that was exposed by the process.
This, both for debugging purposes, and for protection with client-server codes that
use RMA. I.e., a high-quality implementation will check, if possible, window bounds
on each RMA call, and raise an MPI exception at the origin call if an out-of-bound
situation occurred. Note that the condition can be checked at the origin. Of course,
the added safety achieved by such checks has to be weighed against the added cost of
such checks. (End of advice to implementors.)
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11.3.2 Get

MPI_GET(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win)

OUT origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (non-negative inte-
ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from window start to the beginning of
the target buffer (non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-
ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype
origin_datatype, int target_rank, MPI_Aint target_disp, int
target_count, MPI_Datatype target_datatype, MPI_Win win)

MPI_GET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,
TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)
INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP
INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
TARGET_DATATYPE, WIN, IERROR

{void MPI::Win::Get(void *origin_addr, int origin_count, const
MPI::Datatype& origin_datatype, int target_rank, MPI::Aint
target_disp, int target_count, const MPI::Datatype&
target_datatype) const (binding deprecated, see Section 15.2) }

Similar to MPI_PUT, except that the direction of data transfer is reversed. Data
are copied from the target memory to the origin. The origin_datatype may not specify
overlapping entries in the origin buffer. The target buffer must be contained within the
target window, and the copied data must fit, without truncation, in the origin buffer.

11.3.3 Examples

Example 11.1 We show how to implement the generic indirect assignment A = B(map),
where A, B and map have the same distribution, and map is a permutation. To simplify, we
assume a block distribution with equal size blocks.

SUBROUTINE MAPVALS(A, B, map, m, comm, p)
USE MPI
INTEGER m, map(m), comm, p
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11.3. COMMUNICATION CALLS 343

REAL A(m), B(m)

INTEGER otype(p), oindex(m), & ! used to construct origin datatypes
ttype(p), tindex(m), & ! used to construct target datatypes
count(p), total(p), &
win, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

! This part does the work that depends on the locations of B.
! Can be reused while this does not change

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)
CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

! This part does the work that depends on the value of map and
! the locations of the arrays.
! Can be reused while these do not change

! Compute number of entries to be received from each process

DO i=1,p
count(i) = 0

END DO
DO i=1,m
j = map(i)/m+1
count(j) = count(j)+1

END DO

total(1) = 0
DO i=2,p
total(i) = total(i-1) + count(i-1)

END DO

DO i=1,p
count(i) = 0

END DO

! compute origin and target indices of entries.
! entry i at current process is received from location
! k at process (j-1), where map(i) = (j-1)*m + (k-1),
! j = 1..p and k = 1..m

DO i=1,m
j = map(i)/m+1
k = MOD(map(i),m)+1
count(j) = count(j)+1
oindex(total(j) + count(j)) = i
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344 CHAPTER 11. ONE-SIDED COMMUNICATIONS

tindex(total(j) + count(j)) = k
END DO

! create origin and target datatypes for each get operation
DO i=1,p
CALL MPI_TYPE_CREATE_INDEXED_BLOCK(count(i), 1, oindex(total(i)+1), &

MPI_REAL, otype(i), ierr)
CALL MPI_TYPE_COMMIT(otype(i), ierr)
CALL MPI_TYPE_CREATE_INDEXED_BLOCK(count(i), 1, tindex(total(i)+1), &

MPI_REAL, ttype(i), ierr)
CALL MPI_TYPE_COMMIT(ttype(i), ierr)

END DO

! this part does the assignment itself
CALL MPI_WIN_FENCE(0, win, ierr)
DO i=1,p
CALL MPI_GET(A, 1, otype(i), i-1, 0, 1, ttype(i), win, ierr)

END DO
CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)
DO i=1,p
CALL MPI_TYPE_FREE(otype(i), ierr)
CALL MPI_TYPE_FREE(ttype(i), ierr)

END DO
RETURN
END

Example 11.2 A simpler version can be written that does not require that a datatype
be built for the target buffer. But, one then needs a separate get call for each entry, as
illustrated below. This code is much simpler, but usually much less efficient, for large arrays.

SUBROUTINE MAPVALS(A, B, map, m, comm, p)
USE MPI
INTEGER m, map(m), comm, p
REAL A(m), B(m)
INTEGER win, ierr
INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)
CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)
DO i=1,m
j = map(i)/m
k = MOD(map(i),m)
CALL MPI_GET(A(i), 1, MPI_REAL, j, k, 1, MPI_REAL, win, ierr)
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END DO
CALL MPI_WIN_FENCE(0, win, ierr)
CALL MPI_WIN_FREE(win, ierr)
RETURN
END

11.3.4 Accumulate Functions

It is often useful in a put operation to combine the data moved to the target process with the
data that resides at that process, rather then replacing the data there. This will allow, for
example, the accumulation of a sum by having all involved processes add their contribution
to the sum variable in the memory of one process.

MPI_ACCUMULATE(origin_addr, origin_count, origin_datatype, target_rank, target_disp, tar-
get_count, target_datatype, op, win)

IN origin_addr initial address of buffer (choice)

IN origin_count number of entries in buffer (non-negative integer)

IN origin_datatype datatype of each buffer entry (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to beginning of tar-
get buffer (non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-
ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN op reduce operation (handle)

IN win window object (handle)

int MPI_Accumulate(void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,
TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*)
INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP
INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE,TARGET_RANK, TARGET_COUNT,
TARGET_DATATYPE, OP, WIN, IERROR

{void MPI::Win::Accumulate(const void* origin_addr, int origin_count, const
MPI::Datatype& origin_datatype, int target_rank, MPI::Aint
target_disp, int target_count, const MPI::Datatype&
target_datatype, const MPI::Op& op) const (binding deprecated, see
Section 15.2) }
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Accumulate the contents of the origin buffer (as defined by origin_addr, origin_count and
origin_datatype) to the buffer specified by arguments target_count and target_datatype, at
offset target_disp, in the target window specified by target_rank and win, using the operation
op. This is like MPI_PUT except that data is combined into the target area instead of
overwriting it.

Any of the predefined operations for MPI_REDUCE can be used. User-defined functions
cannot be used. For example, if op is MPI_SUM, each element of the origin buffer is added
to the corresponding element in the target, replacing the former value in the target.

Each datatype argument must be a predefined datatype or a derived datatype, where
all basic components are of the same predefined datatype. Both datatype arguments must
be constructed from the same predefined datatype. The operation op applies to elements of
that predefined type. target_datatype must not specify overlapping entries, and the target
buffer must fit in the target window.

A new predefined operation, MPI_REPLACE, is defined. It corresponds to the associative
function f(a, b) = b; i.e., the current value in the target memory is replaced by the value
supplied by the origin.

MPI_REPLACE can be used only in MPI_ACCUMULATE, not in collective reduction
operations, such as MPI_REDUCE and others.

Advice to users. MPI_PUT is a special case of MPI_ACCUMULATE, with the op-
eration MPI_REPLACE. Note, however, that MPI_PUT and MPI_ACCUMULATE have
different constraints on concurrent updates. (End of advice to users.)

Example 11.3 We want to compute B(j) =
∑

map(i)=j A(i). The arrays A, B and map are
distributed in the same manner. We write the simple version.

SUBROUTINE SUM(A, B, map, m, comm, p)
USE MPI
INTEGER m, map(m), comm, p, win, ierr
REAL A(m), B(m)
INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, sizeofreal

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, sizeofreal, ierr)
CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)
DO i=1,m
j = map(i)/m
k = MOD(map(i),m)
CALL MPI_ACCUMULATE(A(i), 1, MPI_REAL, j, k, 1, MPI_REAL, &

MPI_SUM, win, ierr)
END DO
CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)
RETURN
END
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11.4. SYNCHRONIZATION CALLS 347

This code is identical to the code in Example 11.2, page 344, except that a call to
get has been replaced by a call to accumulate. (Note that, if map is one-to-one, then the
code computes B = A(map−1), which is the reverse assignment to the one computed in
that previous example.) In a similar manner, we can replace in Example 11.1, page 342,
the call to get by a call to accumulate, thus performing the computation with only one
communication between any two processes.

11.4 Synchronization Calls

RMA communications fall in two categories:

• active target communication, where data is moved from the memory of one process
to the memory of another, and both are explicitly involved in the communication. This
communication pattern is similar to message passing, except that all the data transfer
arguments are provided by one process, and the second process only participates in
the synchronization.

• passive target communication, where data is moved from the memory of one process
to the memory of another, and only the origin process is explicitly involved in the
transfer. Thus, two origin processes may communicate by accessing the same location
in a target window. The process that owns the target window may be distinct from
the two communicating processes, in which case it does not participate explicitly in
the communication. This communication paradigm is closest to a shared memory
model, where shared data can be accessed by all processes, irrespective of location.

RMA communication calls with argument win must occur at a process only within
an access epoch for win. Such an epoch starts with an RMA synchronization call on
win; it proceeds with zero or more RMA communication calls (MPI_PUT,
MPI_GET or MPI_ACCUMULATE) on win; it completes with another synchronization call
on win. This allows users to amortize one synchronization with multiple data transfers and
provide implementors more flexibility in the implementation of RMA operations.

Distinct access epochs for win at the same process must be disjoint. On the other hand,
epochs pertaining to different win arguments may overlap. Local operations or other MPI
calls may also occur during an epoch.

In active target communication, a target window can be accessed by RMA operations
only within an exposure epoch. Such an epoch is started and completed by RMA syn-
chronization calls executed by the target process. Distinct exposure epochs at a process on
the same window must be disjoint, but such an exposure epoch may overlap with exposure
epochs on other windows or with access epochs for the same or other win arguments. There
is a one-to-one matching between access epochs at origin processes and exposure epochs
on target processes: RMA operations issued by an origin process for a target window will
access that target window during the same exposure epoch if and only if they were issued
during the same access epoch.

In passive target communication the target process does not execute RMA synchro-
nization calls, and there is no concept of an exposure epoch.

MPI provides three synchronization mechanisms:

1. The MPI_WIN_FENCE collective synchronization call supports a simple synchroniza-
tion pattern that is often used in parallel computations: namely a loosely-synchronous
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348 CHAPTER 11. ONE-SIDED COMMUNICATIONS

model, where global computation phases alternate with global communication phases.
This mechanism is most useful for loosely synchronous algorithms where the graph
of communicating processes changes very frequently, or where each process communi-
cates with many others.

This call is used for active target communication. An access epoch at an origin
process or an exposure epoch at a target process are started and completed by calls to
MPI_WIN_FENCE. A process can access windows at all processes in the group of win
during such an access epoch, and the local window can be accessed by all processes
in the group of win during such an exposure epoch.

2. The four functions MPI_WIN_START, MPI_WIN_COMPLETE, MPI_WIN_POST and
MPI_WIN_WAIT can be used to restrict synchronization to the minimum: only pairs
of communicating processes synchronize, and they do so only when a synchronization
is needed to order correctly RMA accesses to a window with respect to local accesses
to that same window. This mechanism may be more efficient when each process
communicates with few (logical) neighbors, and the communication graph is fixed or
changes infrequently.

These calls are used for active target communication. An access epoch is started
at the origin process by a call to MPI_WIN_START and is terminated by a call to
MPI_WIN_COMPLETE. The start call has a group argument that specifies the group
of target processes for that epoch. An exposure epoch is started at the target process
by a call to MPI_WIN_POST and is completed by a call to MPI_WIN_WAIT. The post
call has a group argument that specifies the set of origin processes for that epoch.

3. Finally, shared and exclusive locks are provided by the two functions MPI_WIN_LOCK
and MPI_WIN_UNLOCK. Lock synchronization is useful for MPI applications that
emulate a shared memory model via MPI calls; e.g., in a “billboard” model, where
processes can, at random times, access or update different parts of the billboard.

These two calls provide passive target communication. An access epoch is started by
a call to MPI_WIN_LOCK and terminated by a call to MPI_WIN_UNLOCK. Only one
target window can be accessed during that epoch with win.

Figure 11.1 illustrates the general synchronization pattern for active target communi-
cation. The synchronization between post and start ensures that the put call of the origin
process does not start until the target process exposes the window (with the post call);
the target process will expose the window only after preceding local accesses to the window
have completed. The synchronization between complete and wait ensures that the put call
of the origin process completes before the window is unexposed (with the wait call). The
target process will execute following local accesses to the target window only after the wait
returned.

Figure 11.1 shows operations occurring in the natural temporal order implied by the
synchronizations: the post occurs before the matching start, and complete occurs before
the matching wait. However, such strong synchronization is more than needed for correct
ordering of window accesses. The semantics of MPI calls allow weak synchronization, as
illustrated in Figure 11.2. The access to the target window is delayed until the window is ex-
posed, after the post. However the start may complete earlier; the put and complete may
also terminate earlier, if put data is buffered by the implementation. The synchronization
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Figure 11.1: Active target communication. Dashed arrows represent synchronizations (or-
dering of events).
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Figure 11.3: Passive target communication. Dashed arrows represent synchronizations
(ordering of events).

calls order correctly window accesses, but do not necessarily synchronize other operations.
This weaker synchronization semantic allows for more efficient implementations.

Figure 11.3 illustrates the general synchronization pattern for passive target commu-
nication. The first origin process communicates data to the second origin process, through
the memory of the target process; the target process is not explicitly involved in the com-
munication. The lock and unlock calls ensure that the two RMA accesses do not occur
concurrently. However, they do not ensure that the put by origin 1 will precede the get by
origin 2.
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11.4.1 Fence

MPI_WIN_FENCE(assert, win)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_fence(int assert, MPI_Win win)

MPI_WIN_FENCE(ASSERT, WIN, IERROR)
INTEGER ASSERT, WIN, IERROR

{void MPI::Win::Fence(int assert) const (binding deprecated, see Section 15.2) }

The MPI call MPI_WIN_FENCE(assert, win) synchronizes RMA calls on win. The call
is collective on the group of win. All RMA operations on win originating at a given process
and started before the fence call will complete at that process before the fence call returns.
They will be completed at their target before the fence call returns at the target. RMA
operations on win started by a process after the fence call returns will access their target
window only after MPI_WIN_FENCE has been called by the target process.

The call completes an RMA access epoch if it was preceded by another fence call and
the local process issued RMA communication calls on win between these two calls. The call
completes an RMA exposure epoch if it was preceded by another fence call and the local
window was the target of RMA accesses between these two calls. The call starts an RMA
access epoch if it is followed by another fence call and by RMA communication calls issued
between these two fence calls. The call starts an exposure epoch if it is followed by another
fence call and the local window is the target of RMA accesses between these two fence calls.
Thus, the fence call is equivalent to calls to a subset of post, start, complete, wait.

A fence call usually entails a barrier synchronization: a process completes a call to
MPI_WIN_FENCE only after all other processes in the group entered their matching call.
However, a call to MPI_WIN_FENCE that is known not to end any epoch (in particular, a
call with assert = MPI_MODE_NOPRECEDE) does not necessarily act as a barrier.

The assert argument is used to provide assertions on the context of the call that may
be used for various optimizations. This is described in Section 11.4.4. A value of assert =
0 is always valid.

Advice to users. Calls to MPI_WIN_FENCE should both precede and follow calls
to put, get or accumulate that are synchronized with fence calls. (End of advice to
users.)
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11.4.2 General Active Target Synchronization

MPI_WIN_START(group, assert, win)

IN group group of target processes (handle)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)
INTEGER GROUP, ASSERT, WIN, IERROR

{void MPI::Win::Start(const MPI::Group& group, int assert) const (binding
deprecated, see Section 15.2) }

Starts an RMA access epoch for win. RMA calls issued on win during this epoch must
access only windows at processes in group. Each process in group must issue a matching
call to MPI_WIN_POST. RMA accesses to each target window will be delayed, if necessary,
until the target process executed the matching call to MPI_WIN_POST. MPI_WIN_START
is allowed to block until the corresponding MPI_WIN_POST calls are executed, but is not
required to.

The assert argument is used to provide assertions on the context of the call that may
be used for various optimizations. This is described in Section 11.4.4. A value of assert =
0 is always valid.

MPI_WIN_COMPLETE(win)

IN win window object (handle)

int MPI_Win_complete(MPI_Win win)

MPI_WIN_COMPLETE(WIN, IERROR)
INTEGER WIN, IERROR

{void MPI::Win::Complete() const (binding deprecated, see Section 15.2) }

Completes an RMA access epoch on win started by a call to MPI_WIN_START. All
RMA communication calls issued on win during this epoch will have completed at the origin
when the call returns.

MPI_WIN_COMPLETE enforces completion of preceding RMA calls at the origin, but
not at the target. A put or accumulate call may not have completed at the target when it
has completed at the origin.

Consider the sequence of calls in the example below.

Example 11.4 MPI_Win_start(group, flag, win);
MPI_Put(...,win);
MPI_Win_complete(win);
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The call to MPI_WIN_COMPLETE does not return until the put call has completed
at the origin; and the target window will be accessed by the put operation only after the
call to MPI_WIN_START has matched a call to MPI_WIN_POST by the target process.
This still leaves much choice to implementors. The call to MPI_WIN_START can block
until the matching call to MPI_WIN_POST occurs at all target processes. One can also
have implementations where the call to MPI_WIN_START is nonblocking, but the call to
MPI_PUT blocks until the matching call to MPI_WIN_POST occurred; or implementations
where the first two calls are nonblocking, but the call to MPI_WIN_COMPLETE blocks
until the call to MPI_WIN_POST occurred; or even implementations where all three calls
can complete before any target process called MPI_WIN_POST — the data put must be
buffered, in this last case, so as to allow the put to complete at the origin ahead of its
completion at the target. However, once the call to MPI_WIN_POST is issued, the sequence
above must complete, without further dependencies.

MPI_WIN_POST(group, assert, win)

IN group group of origin processes (handle)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)
INTEGER GROUP, ASSERT, WIN, IERROR

{void MPI::Win::Post(const MPI::Group& group, int assert) const (binding
deprecated, see Section 15.2) }

Starts an RMA exposure epoch for the local window associated with win. Only processes
in group should access the window with RMA calls on win during this epoch. Each process
in group must issue a matching call to MPI_WIN_START. MPI_WIN_POST does not block.

MPI_WIN_WAIT(win)

IN win window object (handle)

int MPI_Win_wait(MPI_Win win)

MPI_WIN_WAIT(WIN, IERROR)
INTEGER WIN, IERROR

{void MPI::Win::Wait() const (binding deprecated, see Section 15.2) }

Completes an RMA exposure epoch started by a call to MPI_WIN_POST on win. This
call matches calls to MPI_WIN_COMPLETE(win) issued by each of the origin processes that
were granted access to the window during this epoch. The call to MPI_WIN_WAIT will block
until all matching calls to MPI_WIN_COMPLETE have occurred. This guarantees that all
these origin processes have completed their RMA accesses to the local window. When the
call returns, all these RMA accesses will have completed at the target window.
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PROCESS 0 PROCESS 1 PROCESS 2

post(0,3)

PROCESS 3
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put(2)

complete()

start(1,2)
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start(2)

complete()

put(2)

Figure 11.4: Active target communication. Dashed arrows represent synchronizations and
solid arrows represent data transfer.

Figure 11.4 illustrates the use of these four functions. Process 0 puts data in the
windows of processes 1 and 2 and process 3 puts data in the window of process 2. Each
start call lists the ranks of the processes whose windows will be accessed; each post call lists
the ranks of the processes that access the local window. The figure illustrates a possible
timing for the events, assuming strong synchronization; in a weak synchronization, the start,
put or complete calls may occur ahead of the matching post calls.

MPI_WIN_TEST(win, flag)

IN win window object (handle)

OUT flag success flag (logical)

int MPI_Win_test(MPI_Win win, int *flag)

MPI_WIN_TEST(WIN, FLAG, IERROR)
INTEGER WIN, IERROR
LOGICAL FLAG

{bool MPI::Win::Test() const (binding deprecated, see Section 15.2) }

This is the nonblocking version of MPI_WIN_WAIT. It returns flag = true if all accesses
to the local window by the group to which it was exposed by the corresponding
MPI_WIN_POST call have been completed as signalled by matching MPI_WIN_COMPLETE
calls, and flag = false otherwise. In the former case MPI_WIN_WAIT would have returned
immediately. The effect of return of MPI_WIN_TEST with flag = true is the same as the
effect of a return of MPI_WIN_WAIT. If flag = false is returned, then the call has no visible
effect.

MPI_WIN_TEST should be invoked only where MPI_WIN_WAIT can be invoked. Once
the call has returned flag = true, it must not be invoked anew, until the window is posted
anew.

Assume that window win is associated with a “hidden” communicator wincomm, used
for communication by the processes of win. The rules for matching of post and start calls
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356 CHAPTER 11. ONE-SIDED COMMUNICATIONS

and for matching complete and wait call can be derived from the rules for matching sends
and receives, by considering the following (partial) model implementation.

MPI_WIN_POST(group,0,win) initiate a nonblocking send with tag tag0 to each process
in group, using wincomm. No need to wait for the completion of these sends.

MPI_WIN_START(group,0,win) initiate a nonblocking receive with tag tag0 from each
process in group, using wincomm. An RMA access to a window in target process i is
delayed until the receive from i is completed.

MPI_WIN_COMPLETE(win) initiate a nonblocking send with tag tag1 to each process
in the group of the preceding start call. No need to wait for the completion of these
sends.

MPI_WIN_WAIT(win) initiate a nonblocking receive with tag tag1 from each process in
the group of the preceding post call. Wait for the completion of all receives.

No races can occur in a correct program: each of the sends matches a unique receive,
and vice-versa.

Rationale. The design for general active target synchronization requires the user to
provide complete information on the communication pattern, at each end of a com-
munication link: each origin specifies a list of targets, and each target specifies a list
of origins. This provides maximum flexibility (hence, efficiency) for the implementor:
each synchronization can be initiated by either side, since each “knows” the identity of
the other. This also provides maximum protection from possible races. On the other
hand, the design requires more information than RMA needs, in general: in general,
it is sufficient for the origin to know the rank of the target, but not vice versa. Users
that want more “anonymous” communication will be required to use the fence or lock
mechanisms. (End of rationale.)

Advice to users. Assume a communication pattern that is represented by a di-
rected graph G = < V,E >, where V = {0, . . . , n − 1} and ij ∈ E if origin
process i accesses the window at target process j. Then each process i issues a
call to MPI_WIN_POST(ingroupi, . . . ), followed by a call to
MPI_WIN_START(outgroupi,. . . ), where outgroupi = {j : ij ∈ E} and ingroupi =
{j : ji ∈ E}. A call is a noop, and can be skipped, if the group argument is empty.
After the communications calls, each process that issued a start will issue a complete.
Finally, each process that issued a post will issue a wait.

Note that each process may call with a group argument that has different members.
(End of advice to users.)
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11.4.3 Lock

MPI_WIN_LOCK(lock_type, rank, assert, win)

IN lock_type either MPI_LOCK_EXCLUSIVE or
MPI_LOCK_SHARED (state)

IN rank rank of locked window (non-negative integer)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)
INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR

{void MPI::Win::Lock(int lock_type, int rank, int assert) const (binding
deprecated, see Section 15.2) }

Starts an RMA access epoch. Only the window at the process with rank rank can be
accessed by RMA operations on win during that epoch.

MPI_WIN_UNLOCK(rank, win)

IN rank rank of window (non-negative integer)

IN win window object (handle)

int MPI_Win_unlock(int rank, MPI_Win win)

MPI_WIN_UNLOCK(RANK, WIN, IERROR)
INTEGER RANK, WIN, IERROR

{void MPI::Win::Unlock(int rank) const (binding deprecated, see Section 15.2) }

Completes an RMA access epoch started by a call to MPI_WIN_LOCK(...,win). RMA
operations issued during this period will have completed both at the origin and at the target
when the call returns.

Locks are used to protect accesses to the locked target window effected by RMA calls
issued between the lock and unlock call, and to protect local load/store accesses to a locked
local window executed between the lock and unlock call. Accesses that are protected by
an exclusive lock will not be concurrent at the window site with other accesses to the same
window that are lock protected. Accesses that are protected by a shared lock will not be
concurrent at the window site with accesses protected by an exclusive lock to the same
window.

It is erroneous to have a window locked and exposed (in an exposure epoch) concur-
rently. I.e., a process may not call MPI_WIN_LOCK to lock a target window if the target
process has called MPI_WIN_POST and has not yet called MPI_WIN_WAIT; it is erroneous
to call MPI_WIN_POST while the local window is locked.
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358 CHAPTER 11. ONE-SIDED COMMUNICATIONS

Rationale. An alternative is to require MPI to enforce mutual exclusion between
exposure epochs and locking periods. But this would entail additional overheads
when locks or active target synchronization do not interact in support of those rare
interactions between the two mechanisms. The programming style that we encourage
here is that a set of windows is used with only one synchronization mechanism at
a time, with shifts from one mechanism to another being rare and involving global
synchronization. (End of rationale.)

Advice to users. Users need to use explicit synchronization code in order to enforce
mutual exclusion between locking periods and exposure epochs on a window. (End of
advice to users.)

Implementors may restrict the use of RMA communication that is synchronized by lock
calls to windows in memory allocated by MPI_ALLOC_MEM (Section 8.2, page 274). Locks
can be used portably only in such memory.

Rationale. The implementation of passive target communication when memory is
not shared requires an asynchronous agent. Such an agent can be implemented more
easily, and can achieve better performance, if restricted to specially allocated memory.
It can be avoided altogether if shared memory is used. It seems natural to impose
restrictions that allows one to use shared memory for 3-rd party communication in
shared memory machines.

The downside of this decision is that passive target communication cannot be used
without taking advantage of nonstandard Fortran features: namely, the availability
of C-like pointers; these are not supported by some Fortran compilers (g77 and Win-
dows/NT compilers, at the time of writing). Also, passive target communication
cannot be portably targeted to COMMON blocks, or other statically declared Fortran
arrays. (End of rationale.)

Consider the sequence of calls in the example below.

Example 11.5

MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, assert, win)
MPI_Put(..., rank, ..., win)
MPI_Win_unlock(rank, win)

The call to MPI_WIN_UNLOCK will not return until the put transfer has completed at
the origin and at the target. This still leaves much freedom to implementors. The call to
MPI_WIN_LOCK may block until an exclusive lock on the window is acquired; or, the call
MPI_WIN_LOCK may not block, while the call to MPI_PUT blocks until a lock is acquired;
or, the first two calls may not block, while MPI_WIN_UNLOCK blocks until a lock is acquired
— the update of the target window is then postponed until the call to MPI_WIN_UNLOCK
occurs. However, if the call to MPI_WIN_LOCK is used to lock a local window, then the call
must block until the lock is acquired, since the lock may protect local load/store accesses
to the window issued after the lock call returns.
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11.4. SYNCHRONIZATION CALLS 359

11.4.4 Assertions

The assert argument in the calls MPI_WIN_POST, MPI_WIN_START, MPI_WIN_FENCE
and MPI_WIN_LOCK is used to provide assertions on the context of the call that may be
used to optimize performance. The assert argument does not change program semantics
if it provides correct information on the program — it is erroneous to provides incorrect
information. Users may always provide assert = 0 to indicate a general case, where no
guarantees are made.

Advice to users. Many implementations may not take advantage of the information
in assert; some of the information is relevant only for noncoherent, shared memory ma-
chines. Users should consult their implementation manual to find which information
is useful on each system. On the other hand, applications that provide correct asser-
tions whenever applicable are portable and will take advantage of assertion specific
optimizations, whenever available. (End of advice to users.)

Advice to implementors. Implementations can always ignore the
assert argument. Implementors should document which assert values are significant
on their implementation. (End of advice to implementors.)

assert is the bit-vector OR of zero or more of the following integer constants:
MPI_MODE_NOCHECK, MPI_MODE_NOSTORE, MPI_MODE_NOPUT,
MPI_MODE_NOPRECEDE and MPI_MODE_NOSUCCEED. The significant options are listed
below, for each call.

Advice to users. C/C++ users can use bit vector or (|) to combine these constants;
Fortran 90 users can use the bit-vector IOR intrinsic. Fortran 77 users can use (non-
portably) bit vector IOR on systems that support it. Alternatively, Fortran users can
portably use integer addition to OR the constants (each constant should appear at
most once in the addition!). (End of advice to users.)

MPI_WIN_START:

MPI_MODE_NOCHECK — the matching calls to MPI_WIN_POST have already com-
pleted on all target processes when the call to MPI_WIN_START is made. The
nocheck option can be specified in a start call if and only if it is specified in
each matching post call. This is similar to the optimization of “ready-send” that
may save a handshake when the handshake is implicit in the code. (However,
ready-send is matched by a regular receive, whereas both start and post must
specify the nocheck option.)

MPI_WIN_POST:

MPI_MODE_NOCHECK — the matching calls to MPI_WIN_START have not yet oc-
curred on any origin processes when the call to MPI_WIN_POST is made. The
nocheck option can be specified by a post call if and only if it is specified by each
matching start call.

MPI_MODE_NOSTORE — the local window was not updated by local stores (or local
get or receive calls) since last synchronization. This may avoid the need for cache
synchronization at the post call.
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MPI_MODE_NOPUT — the local window will not be updated by put or accumulate
calls after the post call, until the ensuing (wait) synchronization. This may avoid
the need for cache synchronization at the wait call.

MPI_WIN_FENCE:

MPI_MODE_NOSTORE — the local window was not updated by local stores (or local
get or receive calls) since last synchronization.

MPI_MODE_NOPUT — the local window will not be updated by put or accumulate
calls after the fence call, until the ensuing (fence) synchronization.

MPI_MODE_NOPRECEDE — the fence does not complete any sequence of locally issued
RMA calls. If this assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPI_MODE_NOSUCCEED — the fence does not start any sequence of locally issued
RMA calls. If the assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPI_WIN_LOCK:

MPI_MODE_NOCHECK — no other process holds, or will attempt to acquire a con-
flicting lock, while the caller holds the window lock. This is useful when mutual
exclusion is achieved by other means, but the coherence operations that may be
attached to the lock and unlock calls are still required.

Advice to users. Note that the nostore and noprecede flags provide information on
what happened before the call; the noput and nosucceed flags provide information on
what will happen after the call. (End of advice to users.)

11.4.5 Miscellaneous Clarifications

Once an RMA routine completes, it is safe to free any opaque objects passed as argument
to that routine. For example, the datatype argument of a MPI_PUT call can be freed as
soon as the call returns, even though the communication may not be complete.

As in message-passing, datatypes must be committed before they can be used in RMA
communication.

11.5 Examples

Example 11.6 The following example shows a generic loosely synchronous, iterative code,
using fence synchronization. The window at each process consists of array A, which contains
the origin and target buffers of the put calls.

...
while(!converged(A)){
update(A);
MPI_Win_fence(MPI_MODE_NOPRECEDE, win);
for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],
todisp[i], 1, totype[i], win);
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MPI_Win_fence((MPI_MODE_NOSTORE | MPI_MODE_NOSUCCEED), win);
}

The same code could be written with get, rather than put. Note that, during the commu-
nication phase, each window is concurrently read (as origin buffer of puts) and written (as
target buffer of puts). This is OK, provided that there is no overlap between the target
buffer of a put and another communication buffer.

Example 11.7 Same generic example, with more computation/communication overlap.
We assume that the update phase is broken in two subphases: the first, where the “bound-
ary,” which is involved in communication, is updated, and the second, where the “core,”
which neither use nor provide communicated data, is updated.

...
while(!converged(A)){
update_boundary(A);
MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), win);
for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],
fromdisp[i], 1, fromtype[i], win);

update_core(A);
MPI_Win_fence(MPI_MODE_NOSUCCEED, win);
}

The get communication can be concurrent with the core update, since they do not access the
same locations, and the local update of the origin buffer by the get call can be concurrent
with the local update of the core by the update_core call. In order to get similar overlap
with put communication we would need to use separate windows for the core and for the
boundary. This is required because we do not allow local stores to be concurrent with puts
on the same, or on overlapping, windows.

Example 11.8 Same code as in Example 11.6, rewritten using post-start-complete-wait.

...
while(!converged(A)){
update(A);
MPI_Win_post(fromgroup, 0, win);
MPI_Win_start(togroup, 0, win);
for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],
todisp[i], 1, totype[i], win);

MPI_Win_complete(win);
MPI_Win_wait(win);
}

Example 11.9 Same example, with split phases, as in Example 11.7.

...
while(!converged(A)){
update_boundary(A);
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MPI_Win_post(togroup, MPI_MODE_NOPUT, win);
MPI_Win_start(fromgroup, 0, win);
for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],
fromdisp[i], 1, fromtype[i], win);

update_core(A);
MPI_Win_complete(win);
MPI_Win_wait(win);
}

Example 11.10 A checkerboard, or double buffer communication pattern, that allows
more computation/communication overlap. Array A0 is updated using values of array A1,
and vice versa. We assume that communication is symmetric: if process A gets data from
process B, then process B gets data from process A. Window wini consists of array Ai.

...
if (!converged(A0,A1))
MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);

MPI_Barrier(comm0);
/* the barrier is needed because the start call inside the
loop uses the nocheck option */
while(!converged(A0, A1)){
/* communication on A0 and computation on A1 */
update2(A1, A0); /* local update of A1 that depends on A0 (and A1) */
MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win0);
for(i=0; i < neighbors; i++)

MPI_Get(&tobuf0[i], 1, totype0[i], neighbor[i],
fromdisp0[i], 1, fromtype0[i], win0);

update1(A1); /* local update of A1 that is
concurrent with communication that updates A0 */

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win1);
MPI_Win_complete(win0);
MPI_Win_wait(win0);

/* communication on A1 and computation on A0 */
update2(A0, A1); /* local update of A0 that depends on A1 (and A0)*/
MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win1);
for(i=0; i < neighbors; i++)

MPI_Get(&tobuf1[i], 1, totype1[i], neighbor[i],
fromdisp1[i], 1, fromtype1[i], win1);

update1(A0); /* local update of A0 that depends on A0 only,
concurrent with communication that updates A1 */

if (!converged(A0,A1))
MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);

MPI_Win_complete(win1);
MPI_Win_wait(win1);
}

A process posts the local window associated with win0 before it completes RMA accesses
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to the remote windows associated with win1. When the wait(win1) call returns, then all
neighbors of the calling process have posted the windows associated with win0. Conversely,
when the wait(win0) call returns, then all neighbors of the calling process have posted the
windows associated with win1. Therefore, the nocheck option can be used with the calls to
MPI_WIN_START.

Put calls can be used, instead of get calls, if the area of array A0 (resp. A1) used by
the update(A1, A0) (resp. update(A0, A1)) call is disjoint from the area modified by the
RMA communication. On some systems, a put call may be more efficient than a get call,
as it requires information exchange only in one direction.

11.6 Error Handling

11.6.1 Error Handlers

Errors occurring during calls to MPI_WIN_CREATE(...,comm,...) cause the error handler
currently associated with comm to be invoked. All other RMA calls have an input win
argument. When an error occurs during such a call, the error handler currently associated
with win is invoked.

The default error handler associated with win is MPI_ERRORS_ARE_FATAL. Users may
change this default by explicitly associating a new error handler with win (see Section 8.3,
page 276).

11.6.2 Error Classes

The following error classes for one-sided communication are defined

MPI_ERR_WIN invalid win argument
MPI_ERR_BASE invalid base argument
MPI_ERR_SIZE invalid size argument
MPI_ERR_DISP invalid disp argument
MPI_ERR_LOCKTYPE invalid locktype argument
MPI_ERR_ASSERT invalid assert argument
MPI_ERR_RMA_CONFLICT conflicting accesses to window
MPI_ERR_RMA_SYNC wrong synchronization of RMA calls

Table 11.1: Error classes in one-sided communication routines

11.7 Semantics and Correctness

The semantics of RMA operations is best understood by assuming that the system maintains
a separate public copy of each window, in addition to the original location in process memory
(the private window copy). There is only one instance of each variable in process memory,
but a distinct public copy of the variable for each window that contains it. A load accesses
the instance in process memory (this includes MPI sends). A store accesses and updates
the instance in process memory (this includes MPI receives), but the update may affect
other public copies of the same locations. A get on a window accesses the public copy of
that window. A put or accumulate on a window accesses and updates the public copy of
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?   ?   ?   ?   ?

?   ?   ?   ?   ?

?   ?   ?   ?   ?

?   ?   ?   ?   ?

public window copy

STORE LOAD

process memory

PUTPUT GET

Window RMA Update Local Update

STORE

public window copy

Figure 11.5: Schematic description of window

that window, but the update may affect the private copy of the same locations in process
memory, and public copies of other overlapping windows. This is illustrated in Figure 11.5.

The following rules specify the latest time at which an operation must complete at the
origin or the target. The update performed by a get call in the origin process memory is
visible when the get operation is complete at the origin (or earlier); the update performed
by a put or accumulate call in the public copy of the target window is visible when the put
or accumulate has completed at the target (or earlier). The rules also specify the latest
time at which an update of one window copy becomes visible in another overlapping copy.

1. An RMA operation is completed at the origin by the ensuing call to
MPI_WIN_COMPLETE, MPI_WIN_FENCE or MPI_WIN_UNLOCK that synchronizes
this access at the origin.

2. If an RMA operation is completed at the origin by a call to MPI_WIN_FENCE then
the operation is completed at the target by the matching call to MPI_WIN_FENCE by
the target process.

3. If an RMA operation is completed at the origin by a call to MPI_WIN_COMPLETE
then the operation is completed at the target by the matching call to MPI_WIN_WAIT
by the target process.

4. If an RMA operation is completed at the origin by a call to MPI_WIN_UNLOCK then
the operation is completed at the target by that same call to MPI_WIN_UNLOCK.

5. An update of a location in a private window copy in process memory becomes visible
in the public window copy at latest when an ensuing call to MPI_WIN_POST,
MPI_WIN_FENCE, or MPI_WIN_UNLOCK is executed on that window by the window
owner.
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6. An update by a put or accumulate call to a public window copy becomes visible in the
private copy in process memory at latest when an ensuing call to MPI_WIN_WAIT,
MPI_WIN_FENCE, or MPI_WIN_LOCK is executed on that window by the window
owner.

The MPI_WIN_FENCE or MPI_WIN_WAIT call that completes the transfer from public
copy to private copy (6) is the same call that completes the put or accumulate operation in
the window copy (2, 3). If a put or accumulate access was synchronized with a lock, then
the update of the public window copy is complete as soon as the updating process executed
MPI_WIN_UNLOCK. On the other hand, the update of private copy in the process memory
may be delayed until the target process executes a synchronization call on that window
(6). Thus, updates to process memory can always be delayed until the process executes a
suitable synchronization call. Updates to a public window copy can also be delayed until
the window owner executes a synchronization call, if fences or post-start-complete-wait
synchronization is used. Only when lock synchronization is used does it becomes necessary
to update the public window copy, even if the window owner does not execute any related
synchronization call.

The rules above also define, by implication, when an update to a public window copy
becomes visible in another overlapping public window copy. Consider, for example, two
overlapping windows, win1 and win2. A call to MPI_WIN_FENCE(0, win1) by the window
owner makes visible in the process memory previous updates to window win1 by remote
processes. A subsequent call to MPI_WIN_FENCE(0, win2) makes these updates visible in
the public copy of win2.

A correct program must obey the following rules.

1. A location in a window must not be accessed locally once an update to that location
has started, until the update becomes visible in the private window copy in process
memory.

2. A location in a window must not be accessed as a target of an RMA operation once
an update to that location has started, until the update becomes visible in the public
window copy. There is one exception to this rule, in the case where the same variable
is updated by two concurrent accumulates that use the same operation, with the same
predefined datatype, on the same window.

3. A put or accumulate must not access a target window once a local update or a put or
accumulate update to another (overlapping) target window have started on a location
in the target window, until the update becomes visible in the public copy of the
window. Conversely, a local update in process memory to a location in a window
must not start once a put or accumulate update to that target window has started,
until the put or accumulate update becomes visible in process memory. In both
cases, the restriction applies to operations even if they access disjoint locations in the
window.

A program is erroneous if it violates these rules.

Rationale. The last constraint on correct RMA accesses may seem unduly restric-
tive, as it forbids concurrent accesses to nonoverlapping locations in a window. The
reason for this constraint is that, on some architectures, explicit coherence restoring

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48
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operations may be needed at synchronization points. A different operation may be
needed for locations that were locally updated by stores and for locations that were
remotely updated by put or accumulate operations. Without this constraint, the MPI
library will have to track precisely which locations in a window were updated by a
put or accumulate call. The additional overhead of maintaining such information is
considered prohibitive. (End of rationale.)

Advice to users. A user can write correct programs by following the following rules:

fence: During each period between fence calls, each window is either updated by put
or accumulate calls, or updated by local stores, but not both. Locations updated
by put or accumulate calls should not be accessed during the same period (with
the exception of concurrent updates to the same location by accumulate calls).
Locations accessed by get calls should not be updated during the same period.

post-start-complete-wait: A window should not be updated locally while being
posted, if it is being updated by put or accumulate calls. Locations updated
by put or accumulate calls should not be accessed while the window is posted
(with the exception of concurrent updates to the same location by accumulate
calls). Locations accessed by get calls should not be updated while the window
is posted.
With the post-start synchronization, the target process can tell the origin process
that its window is now ready for RMA access; with the complete-wait synchro-
nization, the origin process can tell the target process that it has finished its
RMA accesses to the window.

lock: Updates to the window are protected by exclusive locks if they may conflict.
Nonconflicting accesses (such as read-only accesses or accumulate accesses) are
protected by shared locks, both for local accesses and for RMA accesses.

changing window or synchronization mode: One can change synchronization
mode, or change the window used to access a location that belongs to two over-
lapping windows, when the process memory and the window copy are guaranteed
to have the same values. This is true after a local call to MPI_WIN_FENCE, if
RMA accesses to the window are synchronized with fences; after a local call to
MPI_WIN_WAIT, if the accesses are synchronized with post-start-complete-wait;
after the call at the origin (local or remote) to MPI_WIN_UNLOCK if the accesses
are synchronized with locks.

In addition, a process should not access the local buffer of a get operation until the
operation is complete, and should not update the local buffer of a put or accumulate
operation until that operation is complete.

The RMA synchronization operations define when updates are guaranteed to become
visible in public and private windows. Updates may become visible earlier, but such
behavior is implementation dependent. (End of advice to users.)

The semantics are illustrated by the following examples:

Example 11.11 Rule 5:
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Process A: Process B:
window location X

MPI_Win_lock(EXCLUSIVE,B)
store X /* local update to private copy of B */
MPI_Win_unlock(B)
/* now visible in public window copy */

MPI_Barrier MPI_Barrier

MPI_Win_lock(EXCLUSIVE,B)
MPI_Get(X) /* ok, read from public window */
MPI_Win_unlock(B)

Example 11.12 Rule 6:

Process A: Process B:
window location X

MPI_Win_lock(EXCLUSIVE,B)
MPI_Put(X) /* update to public window */
MPI_Win_unlock(B)

MPI_Barrier MPI_Barrier

MPI_Win_lock(EXCLUSIVE,B)
/* now visible in private copy of B */
load X
MPI_Win_unlock(B)

Note that the private copy of X has not necessarily been updated after the barrier, so
omitting the lock-unlock at process B may lead to the load returning an obsolete value.

Example 11.13 The rules do not guarantee that process A in the following sequence will
see the value of X as updated by the local store by B before the lock.

Process A: Process B:
window location X

store X /* update to private copy of B */
MPI_Win_lock(SHARED,B)

MPI_Barrier MPI_Barrier

MPI_Win_lock(SHARED,B)
MPI_Get(X) /* X may not be in public window copy */
MPI_Win_unlock(B)

MPI_Win_unlock(B)
/* update on X now visible in public window */

Example 11.14 In the following sequence
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Process A: Process B:
window location X
window location Y

store Y
MPI_Win_post(A,B) /* Y visible in public window */
MPI_Win_start(A) MPI_Win_start(A)

store X /* update to private window */

MPI_Win_complete MPI_Win_complete
MPI_Win_wait
/* update on X may not yet visible in public window */

MPI_Barrier MPI_Barrier

MPI_Win_lock(EXCLUSIVE,A)
MPI_Get(X) /* may return an obsolete value */
MPI_Get(Y)
MPI_Win_unlock(A)

it is not guaranteed that process B reads the value of X as per the local update by process
A, because neither MPI_WIN_WAIT nor MPI_WIN_COMPLETE calls by process A ensure
visibility in the public window copy. To allow B to read the value of X stored by A the
local store must be replaced by a local MPI_PUT that updates the public window copy.
Note that by this replacement X may become visible in the private copy in process memory
of A only after the MPI_WIN_WAIT call in process A. The update on Y made before the
MPI_WIN_POST call is visible in the public window after the MPI_WIN_POST call and
therefore correctly gotten by process B. The MPI_GET(Y) call could be moved to the epoch
started by the MPI_WIN_START operation, and process B would still get the value stored
by A.

Example 11.15 Finally, in the following sequence

Process A: Process B:
window location X

MPI_Win_lock(EXCLUSIVE,B)
MPI_Put(X) /* update to public window */
MPI_Win_unlock(B)

MPI_Barrier MPI_Barrier

MPI_Win_post(B)
MPI_Win_start(B)

load X /* access to private window */
/* may return an obsolete value */
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11.7. SEMANTICS AND CORRECTNESS 369

MPI_Win_complete
MPI_Win_wait

rules (5,6) do not guarantee that the private copy of X at B has been updated before
the load takes place. To ensure that the value put by process A is read, the local load
must be replaced with a local MPI_GET operation, or must be placed after the call to
MPI_WIN_WAIT.

11.7.1 Atomicity

The outcome of concurrent accumulates to the same location, with the same operation and
predefined datatype, is as if the accumulates where done at that location in some serial
order. On the other hand, if two locations are both updated by two accumulate calls, then
the updates may occur in reverse order at the two locations. Thus, there is no guarantee
that the entire call to MPI_ACCUMULATE is executed atomically. The effect of this lack
of atomicity is limited: The previous correctness conditions imply that a location updated
by a call to MPI_ACCUMULATE, cannot be accessed by load or an RMA call other than
accumulate, until the MPI_ACCUMULATE call has completed (at the target). Different
interleavings can lead to different results only to the extent that computer arithmetics are
not truly associative or commutative.

11.7.2 Progress

One-sided communication has the same progress requirements as point-to-point communi-
cation: once a communication is enabled, then it is guaranteed to complete. RMA calls
must have local semantics, except when required for synchronization with other RMA calls.

There is some fuzziness in the definition of the time when a RMA communication
becomes enabled. This fuzziness provides to the implementor more flexibility than with
point-to-point communication. Access to a target window becomes enabled once the corre-
sponding synchronization (such as MPI_WIN_FENCE or MPI_WIN_POST) has executed. On
the origin process, an RMA communication may become enabled as soon as the correspond-
ing put, get or accumulate call has executed, or as late as when the ensuing synchronization
call is issued. Once the communication is enabled both at the origin and at the target, the
communication must complete.

Consider the code fragment in Example 11.4, on page 353. Some of the calls may block
if the target window is not posted. However, if the target window is posted, then the code
fragment must complete. The data transfer may start as soon as the put call occur, but
may be delayed until the ensuing complete call occurs.

Consider the code fragment in Example 11.5, on page 358. Some of the calls may block
if another process holds a conflicting lock. However, if no conflicting lock is held, then the
code fragment must complete.

Consider the code illustrated in Figure 11.6. Each process updates the window of
the other process using a put operation, then accesses its own window. The post calls are
nonblocking, and should complete. Once the post calls occur, RMA access to the windows is
enabled, so that each process should complete the sequence of calls start-put-complete. Once
these are done, the wait calls should complete at both processes. Thus, this communication
should not deadlock, irrespective of the amount of data transferred.
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PROCESS 0

post(1)

start(1)

put(1)

complete

wait

loadload

PROCESS 1

post(0)

start(0)

put(0)

complete

wait

Figure 11.6: Symmetric communication
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complete

PROCESS 1

post

send

wait

PROCESS 0

Figure 11.7: Deadlock situation

Assume, in the last example, that the order of the post and start calls is reversed, at
each process. Then, the code may deadlock, as each process may block on the start call,
waiting for the matching post to occur. Similarly, the program will deadlock, if the order
of the complete and wait calls is reversed, at each process.

The following two examples illustrate the fact that the synchronization between com-
plete and wait is not symmetric: the wait call blocks until the complete executes, but not
vice-versa. Consider the code illustrated in Figure 11.7. This code will deadlock: the wait
of process 1 blocks until process 0 calls complete, and the receive of process 0 blocks until
process 1 calls send. Consider, on the other hand, the code illustrated in Figure 11.8. This
code will not deadlock. Once process 1 calls post, then the sequence start, put, complete
on process 0 can proceed to completion. Process 0 will reach the send call, allowing the

put

complete

send

start

PROCESS 1

post

recv

wait

PROCESS 0

Figure 11.8: No deadlock
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receive call of process 1 to complete.

Rationale. MPI implementations must guarantee that a process makes progress on all
enabled communications it participates in, while blocked on an MPI call. This is true
for send-receive communication and applies to RMA communication as well. Thus, in
the example in Figure 11.8, the put and complete calls of process 0 should complete
while process 1 is blocked on the receive call. This may require the involvement of
process 1, e.g., to transfer the data put, while it is blocked on the receive call.

A similar issue is whether such progress must occur while a process is busy comput-
ing, or blocked in a non-MPI call. Suppose that in the last example the send-receive
pair is replaced by a write-to-socket/read-from-socket pair. Then MPI does not spec-
ify whether deadlock is avoided. Suppose that the blocking receive of process 1 is
replaced by a very long compute loop. Then, according to one interpretation of the
MPI standard, process 0 must return from the complete call after a bounded delay,
even if process 1 does not reach any MPI call in this period of time. According to
another interpretation, the complete call may block until process 1 reaches the wait
call, or reaches another MPI call. The qualitative behavior is the same, under both
interpretations, unless a process is caught in an infinite compute loop, in which case
the difference may not matter. However, the quantitative expectations are different.
Different MPI implementations reflect these different interpretations. While this am-
biguity is unfortunate, it does not seem to affect many real codes. The MPI forum
decided not to decide which interpretation of the standard is the correct one, since the
issue is very contentious, and a decision would have much impact on implementors
but less impact on users. (End of rationale.)

11.7.3 Registers and Compiler Optimizations

Advice to users. All the material in this section is an advice to users. (End of advice
to users.)

A coherence problem exists between variables kept in registers and the memory value
of these variables. An RMA call may access a variable in memory (or cache), while the
up-to-date value of this variable is in register. A get will not return the latest variable
value, and a put may be overwritten when the register is stored back in memory.

The problem is illustrated by the following code:

Source of Process 1 Source of Process 2 Executed in Process 2
bbbb = 777 buff = 999 reg_A:=999
call MPI_WIN_FENCE call MPI_WIN_FENCE
call MPI_PUT(bbbb stop appl. thread
into buff of process 2) buff:=777 in PUT handler

continue appl. thread
call MPI_WIN_FENCE call MPI_WIN_FENCE

ccc = buff ccc:=reg_A

In this example, variable buff is allocated in the register reg_A and therefore ccc will
have the old value of buff and not the new value 777.

This problem, which also afflicts in some cases send/receive communication, is discussed
more at length in Section 16.2.2.
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MPI implementations will avoid this problem for standard conforming C programs.
Many Fortran compilers will avoid this problem, without disabling compiler optimizations.
However, in order to avoid register coherence problems in a completely portable manner,
users should restrict their use of RMA windows to variables stored in COMMON blocks, or to
variables that were declared VOLATILE (while VOLATILE is not a standard Fortran declara-
tion, it is supported by many Fortran compilers). Details and an additional solution are
discussed in Section 16.2.2, “A Problem with Register Optimization,” on page 485. See also,
“Problems Due to Data Copying and Sequence Association,” on page 482, for additional
Fortran problems.
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Chapter 12

External Interfaces

12.1 Introduction

This chapter begins with calls used to create generalized requests, which allow users to
create new nonblocking operations with an interface similar to what is present in MPI. This
can be used to layer new functionality on top of MPI. Next, Section 12.3 deals with setting
the information found in status. This is needed for generalized requests.

The chapter continues, in Section 12.4, with a discussion of how threads are to be
handled in MPI. Although thread compliance is not required, the standard specifies how
threads are to work if they are provided.

12.2 Generalized Requests

The goal of generalized requests is to allow users to define new nonblocking operations.
Such an outstanding nonblocking operation is represented by a (generalized) request. A
fundamental property of nonblocking operations is that progress toward the completion of
this operation occurs asynchronously, i.e., concurrently with normal program execution.
Typically, this requires execution of code concurrently with the execution of the user code,
e.g., in a separate thread or in a signal handler. Operating systems provide a variety of
mechanisms in support of concurrent execution. MPI does not attempt to standardize or
replace these mechanisms: it is assumed programmers who wish to define new asynchronous
operations will use the mechanisms provided by the underlying operating system. Thus,
the calls in this section only provide a means for defining the effect of MPI calls such as
MPI_WAIT or MPI_CANCEL when they apply to generalized requests, and for signaling to
MPI the completion of a generalized operation.

Rationale. It is tempting to also define an MPI standard mechanism for achieving
concurrent execution of user-defined nonblocking operations. However, it is very dif-
ficult to define such a mechanism without consideration of the specific mechanisms
used in the operating system. The Forum feels that concurrency mechanisms are a
proper part of the underlying operating system and should not be standardized by
MPI; the MPI standard should only deal with the interaction of such mechanisms with
MPI. (End of rationale.)

For a regular request, the operation associated with the request is performed by the
MPI implementation, and the operation completes without intervention by the application.
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374 CHAPTER 12. EXTERNAL INTERFACES

For a generalized request, the operation associated with the request is performed by the
application; therefore, the application must notify MPI when the operation completes. This
is done by making a call to MPI_GREQUEST_COMPLETE. MPI maintains the “completion”
status of generalized requests. Any other request state has to be maintained by the user.

A new generalized request is started with

MPI_GREQUEST_START(query_fn, free_fn, cancel_fn, extra_state, request)

IN query_fn callback function invoked when request status is queried
(function)

IN free_fn callback function invoked when request is freed (func-
tion)

IN cancel_fn callback function invoked when request is cancelled
(function)

IN extra_state extra state

OUT request generalized request (handle)

int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,
MPI_Grequest_free_function *free_fn,
MPI_Grequest_cancel_function *cancel_fn, void *extra_state,
MPI_Request *request)

MPI_GREQUEST_START(QUERY_FN, FREE_FN, CANCEL_FN, EXTRA_STATE, REQUEST,
IERROR)

INTEGER REQUEST, IERROR
EXTERNAL QUERY_FN, FREE_FN, CANCEL_FN
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

{static MPI::Grequest
MPI::Grequest::Start(const MPI::Grequest::Query_function*
query_fn, const MPI::Grequest::Free_function* free_fn,
const MPI::Grequest::Cancel_function* cancel_fn,
void *extra_state) (binding deprecated, see Section 15.2) }

Advice to users. Note that a generalized request belongs, in C++, to the class
MPI::Grequest, which is a derived class of MPI::Request. It is of the same type as
regular requests, in C and Fortran. (End of advice to users.)

The call starts a generalized request and returns a handle to it in request.
The syntax and meaning of the callback functions are listed below. All callback func-

tions are passed the extra_state argument that was associated with the request by the
starting call MPI_GREQUEST_START. This can be used to maintain user-defined state for
the request.

In C, the query function is

typedef int MPI_Grequest_query_function(void *extra_state,
MPI_Status *status);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



12.2. GENERALIZED REQUESTS 375

in Fortran

SUBROUTINE GREQUEST_QUERY_FUNCTION(EXTRA_STATE, STATUS, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

and in C++

{typedef int MPI::Grequest::Query_function(void* extra_state,
MPI::Status& status); (binding deprecated, see Section 15.2) }

query_fn function computes the status that should be returned for the generalized
request. The status also includes information about successful/unsuccessful cancellation of
the request (result to be returned by MPI_TEST_CANCELLED).

query_fn callback is invoked by the MPI_{WAIT|TEST}{ANY|SOME|ALL} call that
completed the generalized request associated with this callback. The callback function is
also invoked by calls to MPI_REQUEST_GET_STATUS, if the request is complete when
the call occurs. In both cases, the callback is passed a reference to the corresponding
status variable passed by the user to the MPI call; the status set by the callback function
is returned by the MPI call. If the user provided MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE to the MPI function that causes query_fn to be called, then MPI
will pass a valid status object to query_fn, and this status will be ignored upon return of the
callback function. Note that query_fn is invoked only after MPI_GREQUEST_COMPLETE
is called on the request; it may be invoked several times for the same generalized request,
e.g., if the user calls MPI_REQUEST_GET_STATUS several times for this request. Note also
that a call to MPI_{WAIT|TEST}{SOME|ALL} may cause multiple invocations of query_fn
callback functions, one for each generalized request that is completed by the MPI call. The
order of these invocations is not specified by MPI.

In C, the free function is

typedef int MPI_Grequest_free_function(void *extra_state);

and in Fortran

SUBROUTINE GREQUEST_FREE_FUNCTION(EXTRA_STATE, IERROR)
INTEGER IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

and in C++

{typedef int MPI::Grequest::Free_function(void* extra_state); (binding
deprecated, see Section 15.2) }

free_fn function is invoked to clean up user-allocated resources when the generalized
request is freed.

free_fn callback is invoked by the MPI_{WAIT|TEST}{ANY|SOME|ALL} call that com-
pleted the generalized request associated with this callback. free_fn is invoked after the call
to query_fn for the same request. However, if the MPI call completed multiple generalized
requests, the order in which free_fn callback functions are invoked is not specified by MPI.

free_fn callback is also invoked for generalized requests that are freed by a call to
MPI_REQUEST_FREE (no call to WAIT_{WAIT|TEST}{ANY|SOME|ALL} will occur for
such a request). In this case, the callback function will be called either in the MPI call
MPI_REQUEST_FREE(request), or in the MPI call MPI_GREQUEST_COMPLETE(request),
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376 CHAPTER 12. EXTERNAL INTERFACES

whichever happens last, i.e., in this case the actual freeing code is executed as soon as both
calls MPI_REQUEST_FREE and MPI_GREQUEST_COMPLETE have occurred. The request
is not deallocated until after free_fn completes. Note that free_fn will be invoked only once
per request by a correct program.

Advice to users. Calling MPI_REQUEST_FREE(request) will cause the request handle
to be set to MPI_REQUEST_NULL. This handle to the generalized request is no longer
valid. However, user copies of this handle are valid until after free_fn completes since
MPI does not deallocate the object until then. Since free_fn is not called until after
MPI_GREQUEST_COMPLETE, the user copy of the handle can be used to make this
call. Users should note that MPI will deallocate the object after free_fn executes. At
this point, user copies of the request handle no longer point to a valid request. MPI
will not set user copies to MPI_REQUEST_NULL in this case, so it is up to the user to
avoid accessing this stale handle. This is a special case where MPI defers deallocating
the object until a later time that is known by the user. (End of advice to users.)

In C, the cancel function is
typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);

in Fortran

SUBROUTINE GREQUEST_CANCEL_FUNCTION(EXTRA_STATE, COMPLETE, IERROR)
INTEGER IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
LOGICAL COMPLETE

and in C++

{typedef int MPI::Grequest::Cancel_function(void* extra_state,
bool complete); (binding deprecated, see Section 15.2) }

cancel_fn function is invoked to start the cancelation of a generalized request. It is
called by MPI_CANCEL(request). MPI passes to the callback function complete=true if
MPI_GREQUEST_COMPLETE was already called on the request, and
complete=false otherwise.

All callback functions return an error code. The code is passed back and dealt with as
appropriate for the error code by the MPI function that invoked the callback function. For
example, if error codes are returned then the error code returned by the callback function
will be returned by the MPI function that invoked the callback function. In the case of
an MPI_{WAIT|TEST}{ANY} call that invokes both query_fn and free_fn, the MPI call will
return the error code returned by the last callback, namely free_fn. If one or more of the
requests in a call to MPI_{WAIT|TEST}{SOME|ALL} failed, then the MPI call will return
MPI_ERR_IN_STATUS. In such a case, if the MPI call was passed an array of statuses, then
MPI will return in each of the statuses that correspond to a completed generalized request
the error code returned by the corresponding invocation of its free_fn callback function.
However, if the MPI function was passed MPI_STATUSES_IGNORE, then the individual error
codes returned by each callback functions will be lost.

Advice to users. query_fn must not set the error field of status since query_fn may
be called by MPI_WAIT or MPI_TEST, in which case the error field of status should
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12.2. GENERALIZED REQUESTS 377

not change. The MPI library knows the “context” in which query_fn is invoked and
can decide correctly when to put in the error field of status the returned error code.
(End of advice to users.)

MPI_GREQUEST_COMPLETE(request)

INOUT request generalized request (handle)

int MPI_Grequest_complete(MPI_Request request)

MPI_GREQUEST_COMPLETE(REQUEST, IERROR)
INTEGER REQUEST, IERROR

{void MPI::Grequest::Complete() (binding deprecated, see Section 15.2) }

The call informs MPI that the operations represented by the generalized request request
are complete (see definitions in Section 2.4). A call to MPI_WAIT(request, status) will
return and a call to MPI_TEST(request, flag, status) will return flag=true only after a call
to MPI_GREQUEST_COMPLETE has declared that these operations are complete.

MPI imposes no restrictions on the code executed by the callback functions. However,
new nonblocking operations should be defined so that the general semantic rules about MPI
calls such as MPI_TEST, MPI_REQUEST_FREE, or MPI_CANCEL still hold. For example,
all these calls are supposed to be local and nonblocking. Therefore, the callback functions
query_fn, free_fn, or cancel_fn should invoke blocking MPI communication calls only if the
context is such that these calls are guaranteed to return in finite time. Once MPI_CANCEL
is invoked, the cancelled operation should complete in finite time, irrespective of the state of
other processes (the operation has acquired “local” semantics). It should either succeed, or
fail without side-effects. The user should guarantee these same properties for newly defined
operations.

Advice to implementors. A call to MPI_GREQUEST_COMPLETE may unblock a
blocked user process/thread. The MPI library should ensure that the blocked user
computation will resume. (End of advice to implementors.)

12.2.1 Examples

Example 12.1 This example shows the code for a user-defined reduce operation on an int
using a binary tree: each non-root node receives two messages, sums them, and sends them
up. We assume that no status is returned and that the operation cannot be cancelled.

typedef struct {
MPI_Comm comm;
int tag;
int root;
int valin;
int *valout;
MPI_Request request;
} ARGS;
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int myreduce(MPI_Comm comm, int tag, int root,
int valin, int *valout, MPI_Request *request)

{
ARGS *args;
pthread_t thread;

/* start request */
MPI_Grequest_start(query_fn, free_fn, cancel_fn, NULL, request);

args = (ARGS*)malloc(sizeof(ARGS));
args->comm = comm;
args->tag = tag;
args->root = root;
args->valin = valin;
args->valout = valout;
args->request = *request;

/* spawn thread to handle request */
/* The availability of the pthread_create call is system dependent */
pthread_create(&thread, NULL, reduce_thread, args);

return MPI_SUCCESS;
}

/* thread code */
void* reduce_thread(void *ptr)
{

int lchild, rchild, parent, lval, rval, val;
MPI_Request req[2];
ARGS *args;

args = (ARGS*)ptr;

/* compute left,right child and parent in tree; set
to MPI_PROC_NULL if does not exist */

/* code not shown */
...

MPI_Irecv(&lval, 1, MPI_INT, lchild, args->tag, args->comm, &req[0]);
MPI_Irecv(&rval, 1, MPI_INT, rchild, args->tag, args->comm, &req[1]);
MPI_Waitall(2, req, MPI_STATUSES_IGNORE);
val = lval + args->valin + rval;
MPI_Send( &val, 1, MPI_INT, parent, args->tag, args->comm );
if (parent == MPI_PROC_NULL) *(args->valout) = val;
MPI_Grequest_complete((args->request));
free(ptr);
return(NULL);
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12.3. ASSOCIATING INFORMATION WITH STATUS 379

}

int query_fn(void *extra_state, MPI_Status *status)
{

/* always send just one int */
MPI_Status_set_elements(status, MPI_INT, 1);
/* can never cancel so always true */
MPI_Status_set_cancelled(status, 0);
/* choose not to return a value for this */
status->MPI_SOURCE = MPI_UNDEFINED;
/* tag has no meaning for this generalized request */
status->MPI_TAG = MPI_UNDEFINED;
/* this generalized request never fails */
return MPI_SUCCESS;

}

int free_fn(void *extra_state)
{

/* this generalized request does not need to do any freeing */
/* as a result it never fails here */
return MPI_SUCCESS;

}

int cancel_fn(void *extra_state, int complete)
{

/* This generalized request does not support cancelling.
Abort if not already done. If done then treat as if cancel failed.*/

if (!complete) {
fprintf(stderr,

"Cannot cancel generalized request - aborting program\n");
MPI_Abort(MPI_COMM_WORLD, 99);
}

return MPI_SUCCESS;
}

12.3 Associating Information with Status

MPI supports several different types of requests besides those for point-to-point operations.
These range from MPI calls for I/O to generalized requests. It is desirable to allow these
calls use the same request mechanism. This allows one to wait or test on different types of
requests. However, MPI_{TEST|WAIT}{ANY|SOME|ALL} returns a status with information
about the request. With the generalization of requests, one needs to define what information
will be returned in the status object.

Each MPI call fills in the appropriate fields in the status object. Any unused fields will
have undefined values. A call to MPI_{TEST|WAIT}{ANY|SOME|ALL} can modify any of
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the fields in the status object. Specifically, it can modify fields that are undefined. The
fields with meaningful value for a given request are defined in the sections with the new
request.

Generalized requests raise additional considerations. Here, the user provides the func-
tions to deal with the request. Unlike other MPI calls, the user needs to provide the infor-
mation to be returned in status. The status argument is provided directly to the callback
function where the status needs to be set. Users can directly set the values in 3 of the 5
status values. The count and cancel fields are opaque. To overcome this, these calls are
provided:

MPI_STATUS_SET_ELEMENTS(status, datatype, count)

INOUT status status with which to associate count (Status)

IN datatype datatype associated with count (handle)

IN count number of elements to associate with status (integer)

int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype datatype,
int count)

MPI_STATUS_SET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

{void MPI::Status::Set_elements(const MPI::Datatype& datatype, int count)
(binding deprecated, see Section 15.2) }

This call modifies the opaque part of status so that a call to MPI_GET_ELEMENTS
will return count. MPI_GET_COUNT will return a compatible value.

Rationale. The number of elements is set instead of the count because the former
can deal with a nonintegral number of datatypes. (End of rationale.)

A subsequent call to MPI_GET_COUNT(status, datatype, count) or to
MPI_GET_ELEMENTS(status, datatype, count) must use a datatype argument that has the
same type signature as the datatype argument that was used in the call to
MPI_STATUS_SET_ELEMENTS.

Rationale. This is similar to the restriction that holds when count is set by a receive
operation: in that case, the calls to MPI_GET_COUNT and MPI_GET_ELEMENTS
must use a datatype with the same signature as the datatype used in the receive call.
(End of rationale.)

MPI_STATUS_SET_CANCELLED(status, flag)

INOUT status status with which to associate cancel flag (Status)

IN flag if true indicates request was cancelled (logical)

int MPI_Status_set_cancelled(MPI_Status *status, int flag)
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12.4. MPI AND THREADS 381

MPI_STATUS_SET_CANCELLED(STATUS, FLAG, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

{void MPI::Status::Set_cancelled(bool flag) (binding deprecated, see Section 15.2)
}

If flag is set to true then a subsequent call to MPI_TEST_CANCELLED(status, flag) will
also return flag = true, otherwise it will return false.

Advice to users. Users are advised not to reuse the status fields for values other
than those for which they were intended. Doing so may lead to unexpected results
when using the status object. For example, calling MPI_GET_ELEMENTS may cause
an error if the value is out of range or it may be impossible to detect such an error.
The extra_state argument provided with a generalized request can be used to return
information that does not logically belong in status. Furthermore, modifying the
values in a status set internally by MPI, e.g., MPI_RECV, may lead to unpredictable
results and is strongly discouraged. (End of advice to users.)

12.4 MPI and Threads

This section specifies the interaction between MPI calls and threads. The section lists
minimal requirements for thread compliant MPI implementations and defines functions
that can be used for initializing the thread environment. MPI may be implemented in
environments where threads are not supported or perform poorly. Therefore, it is not
required that all MPI implementations fulfill all the requirements specified in this section.

This section generally assumes a thread package similar to POSIX threads [29], but the
syntax and semantics of thread calls are not specified here — these are beyond the scope
of this document.

12.4.1 General

In a thread-compliant implementation, an MPI process is a process that may be multi-
threaded. Each thread can issue MPI calls; however, threads are not separately addressable:
a rank in a send or receive call identifies a process, not a thread. A message sent to a process
can be received by any thread in this process.

Rationale. This model corresponds to the POSIX model of interprocess communica-
tion: the fact that a process is multi-threaded, rather than single-threaded, does not
affect the external interface of this process. MPI implementations where MPI ‘pro-
cesses’ are POSIX threads inside a single POSIX process are not thread-compliant by
this definition (indeed, their “processes” are single-threaded). (End of rationale.)

Advice to users. It is the user’s responsibility to prevent races when threads within
the same application post conflicting communication calls. The user can make sure
that two threads in the same process will not issue conflicting communication calls by
using distinct communicators at each thread. (End of advice to users.)

The two main requirements for a thread-compliant implementation are listed below.
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1. All MPI calls are thread-safe, i.e., two concurrently running threads may make MPI
calls and the outcome will be as if the calls executed in some order, even if their
execution is interleaved.

2. Blocking MPI calls will block the calling thread only, allowing another thread to
execute, if available. The calling thread will be blocked until the event on which it
is waiting occurs. Once the blocked communication is enabled and can proceed, then
the call will complete and the thread will be marked runnable, within a finite time.
A blocked thread will not prevent progress of other runnable threads on the same
process, and will not prevent them from executing MPI calls.

Example 12.2 Process 0 consists of two threads. The first thread executes a blocking send
call MPI_Send(buff1, count, type, 0, 0, comm), whereas the second thread executes a blocking
receive call MPI_Recv(buff2, count, type, 0, 0, comm, &status), i.e., the first thread sends a
message that is received by the second thread. This communication should always succeed.
According to the first requirement, the execution will correspond to some interleaving of
the two calls. According to the second requirement, a call can only block the calling thread
and cannot prevent progress of the other thread. If the send call went ahead of the receive
call, then the sending thread may block, but this will not prevent the receiving thread from
executing. Thus, the receive call will occur. Once both calls occur, the communication is
enabled and both calls will complete. On the other hand, a single-threaded process that
posts a send, followed by a matching receive, may deadlock. The progress requirement for
multithreaded implementations is stronger, as a blocked call cannot prevent progress in
other threads.

Advice to implementors. MPI calls can be made thread-safe by executing only one at
a time, e.g., by protecting MPI code with one process-global lock. However, blocked
operations cannot hold the lock, as this would prevent progress of other threads in
the process. The lock is held only for the duration of an atomic, locally-completing
suboperation such as posting a send or completing a send, and is released in between.
Finer locks can provide more concurrency, at the expense of higher locking overheads.
Concurrency can also be achieved by having some of the MPI protocol executed by
separate server threads. (End of advice to implementors.)

12.4.2 Clarifications

Initialization and Completion The call to MPI_FINALIZE should occur on the same thread
that initialized MPI. We call this thread the main thread. The call should occur only after
all the process threads have completed their MPI calls, and have no pending communications
or I/O operations.

Rationale. This constraint simplifies implementation. (End of rationale.)

Multiple threads completing the same request. A program where two threads block, waiting
on the same request, is erroneous. Similarly, the same request cannot appear in the array of
requests of two concurrent MPI_{WAIT|TEST}{ANY|SOME|ALL} calls. In MPI, a request
can only be completed once. Any combination of wait or test which violates this rule is
erroneous.
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12.4. MPI AND THREADS 383

Rationale. This is consistent with the view that a multithreaded execution cor-
responds to an interleaving of the MPI calls. In a single threaded implementa-
tion, once a wait is posted on a request the request handle will be nullified be-
fore it is possible to post a second wait on the same handle. With threads, an
MPI_WAIT{ANY|SOME|ALL} may be blocked without having nullified its request(s)
so it becomes the user’s responsibility to avoid using the same request in an MPI_WAIT
on another thread. This constraint also simplifies implementation, as only one thread
will be blocked on any communication or I/O event. (End of rationale.)

Probe A receive call that uses source and tag values returned by a preceding call to
MPI_PROBE or MPI_IPROBE will receive the message matched by the probe call only
if there was no other matching receive after the probe and before that receive. In a multi-
threaded environment, it is up to the user to enforce this condition using suitable mutual
exclusion logic. This can be enforced by making sure that each communicator is used by
only one thread on each process.

Collective calls Matching of collective calls on a communicator, window, or file handle is
done according to the order in which the calls are issued at each process. If concurrent
threads issue such calls on the same communicator, window or file handle, it is up to the
user to make sure the calls are correctly ordered, using interthread synchronization.

Advice to users. With three concurrent threads in each MPI process of a communica-
tor comm, it is allowed that thread A in each MPI process calls a collective operation
on comm, thread B calls a file operation on an existing filehandle that was formerly
opened on comm, and thread C invokes one-sided operations on an existing window
handle that was also formerly created on comm. (End of advice to users.)

Rationale. As already specified in MPI_FILE_OPEN and MPI_WIN_CREATE, a file
handle and a window handle inherit only the group of processes of the underlying
communicator, but not the communicator itself. Accesses to communicators, window
handles and file handles cannot affect one another. (End of rationale.)

Advice to implementors. Advice to implementors. If the implementation of file or
window operations internally uses MPI communication then a duplicated communi-
cator may be cached on the file or window object. (End of advice to implementors.)

Exception handlers An exception handler does not necessarily execute in the context of the
thread that made the exception-raising MPI call; the exception handler may be executed
by a thread that is distinct from the thread that will return the error code.

Rationale. The MPI implementation may be multithreaded, so that part of the
communication protocol may execute on a thread that is distinct from the thread
that made the MPI call. The design allows the exception handler to be executed on
the thread where the exception occurred. (End of rationale.)

Interaction with signals and cancellations The outcome is undefined if a thread that executes
an MPI call is cancelled (by another thread), or if a thread catches a signal while executing
an MPI call. However, a thread of an MPI process may terminate, and may catch signals or
be cancelled by another thread when not executing MPI calls.
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384 CHAPTER 12. EXTERNAL INTERFACES

Rationale. Few C library functions are signal safe, and many have cancellation points
— points where the thread executing them may be cancelled. The above restriction
simplifies implementation (no need for the MPI library to be “async-cancel-safe” or
“async-signal-safe.” (End of rationale.)

Advice to users. Users can catch signals in separate, non-MPI threads (e.g., by
masking signals on MPI calling threads, and unmasking them in one or more non-MPI
threads). A good programming practice is to have a distinct thread blocked in a
call to sigwait for each user expected signal that may occur. Users must not catch
signals used by the MPI implementation; as each MPI implementation is required to
document the signals used internally, users can avoid these signals. (End of advice to
users.)

Advice to implementors. The MPI library should not invoke library calls that are
not thread safe, if multiple threads execute. (End of advice to implementors.)

12.4.3 Initialization

The following function may be used to initialize MPI, and initialize the MPI thread envi-
ronment, instead of MPI_INIT.

MPI_INIT_THREAD(required, provided)

IN required desired level of thread support (integer)

OUT provided provided level of thread support (integer)

int MPI_Init_thread(int *argc, char *((*argv)[]), int required,
int *provided)

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)
INTEGER REQUIRED, PROVIDED, IERROR

{int MPI::Init_thread(int& argc, char**& argv, int required) (binding
deprecated, see Section 15.2) }

{int MPI::Init_thread(int required) (binding deprecated, see Section 15.2) }

Advice to users. In C and C++, the passing of argc and argv is optional. In C, this is
accomplished by passing the appropriate null pointer. In C++, this is accomplished
with two separate bindings to cover these two cases. This is as with MPI_INIT as
discussed in Section 8.7. (End of advice to users.)

This call initializes MPI in the same way that a call to MPI_INIT would. In addition,
it initializes the thread environment. The argument required is used to specify the desired
level of thread support. The possible values are listed in increasing order of thread support.

MPI_THREAD_SINGLE Only one thread will execute.

MPI_THREAD_FUNNELED The process may be multi-threaded, but the application must
ensure that only the main thread makes MPI calls (for the definition of main thread,
see MPI_IS_THREAD_MAIN on page 386).
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12.4. MPI AND THREADS 385

MPI_THREAD_SERIALIZED The process may be multi-threaded, and multiple threads may
make MPI calls, but only one at a time: MPI calls are not made concurrently from
two distinct threads (all MPI calls are “serialized”).

MPI_THREAD_MULTIPLE Multiple threads may call MPI, with no restrictions.

These values are monotonic; i.e., MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED <
MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE.

Different processes in MPI_COMM_WORLD may require different levels of thread sup-
port.

The call returns in provided information about the actual level of thread support that
will be provided by MPI. It can be one of the four values listed above.

The level(s) of thread support that can be provided by MPI_INIT_THREAD will depend
on the implementation, and may depend on information provided by the user before the
program started to execute (e.g., with arguments to mpiexec). If possible, the call will
return provided = required. Failing this, the call will return the least supported level such
that provided > required (thus providing a stronger level of support than required by the
user). Finally, if the user requirement cannot be satisfied, then the call will return in
provided the highest supported level.

A thread compliant MPI implementation will be able to return provided
= MPI_THREAD_MULTIPLE. Such an implementation may always return provided
= MPI_THREAD_MULTIPLE, irrespective of the value of required. At the other extreme,
an MPI library that is not thread compliant may always return
provided = MPI_THREAD_SINGLE, irrespective of the value of required.

A call to MPI_INIT has the same effect as a call to MPI_INIT_THREAD with a required
= MPI_THREAD_SINGLE.

Vendors may provide (implementation dependent) means to specify the level(s) of
thread support available when the MPI program is started, e.g., with arguments to mpiexec.
This will affect the outcome of calls to MPI_INIT and MPI_INIT_THREAD. Suppose, for
example, that an MPI program has been started so that only MPI_THREAD_MULTIPLE is
available. Then MPI_INIT_THREAD will return provided = MPI_THREAD_MULTIPLE, ir-
respective of the value of required; a call to MPI_INIT will also initialize the MPI thread
support level to MPI_THREAD_MULTIPLE. Suppose, on the other hand, that an MPI pro-
gram has been started so that all four levels of thread support are available. Then, a call to
MPI_INIT_THREAD will return provided = required; on the other hand, a call to MPI_INIT
will initialize the MPI thread support level to MPI_THREAD_SINGLE.

Rationale. Various optimizations are possible when MPI code is executed single-
threaded, or is executed on multiple threads, but not concurrently: mutual exclusion
code may be omitted. Furthermore, if only one thread executes, then the MPI library
can use library functions that are not thread safe, without risking conflicts with user
threads. Also, the model of one communication thread, multiple computation threads
fits many applications well, e.g., if the process code is a sequential Fortran/C/C++
program with MPI calls that has been parallelized by a compiler for execution on an
SMP node, in a cluster of SMPs, then the process computation is multi-threaded, but
MPI calls will likely execute on a single thread.

The design accommodates a static specification of the thread support level, for en-
vironments that require static binding of libraries, and for compatibility for current
multi-threaded MPI codes. (End of rationale.)
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386 CHAPTER 12. EXTERNAL INTERFACES

Advice to implementors. If provided is not MPI_THREAD_SINGLE then the MPI library
should not invoke C/ C++/Fortran library calls that are not thread safe, e.g., in an
environment where malloc is not thread safe, then malloc should not be used by the
MPI library.

Some implementors may want to use different MPI libraries for different levels of thread
support. They can do so using dynamic linking and selecting which library will be
linked when MPI_INIT_THREAD is invoked. If this is not possible, then optimizations
for lower levels of thread support will occur only when the level of thread support
required is specified at link time. (End of advice to implementors.)

The following function can be used to query the current level of thread support.

MPI_QUERY_THREAD(provided)

OUT provided provided level of thread support (integer)

int MPI_Query_thread(int *provided)

MPI_QUERY_THREAD(PROVIDED, IERROR)
INTEGER PROVIDED, IERROR

{int MPI::Query_thread() (binding deprecated, see Section 15.2) }

The call returns in provided the current level of thread support. This will be the value
returned in provided by MPI_INIT_THREAD, if MPI was initialized by a call to
MPI_INIT_THREAD().

MPI_IS_THREAD_MAIN(flag)

OUT flag true if calling thread is main thread, false otherwise
(logical)

int MPI_Is_thread_main(int *flag)

MPI_IS_THREAD_MAIN(FLAG, IERROR)
LOGICAL FLAG
INTEGER IERROR

{bool MPI::Is_thread_main() (binding deprecated, see Section 15.2) }

This function can be called by a thread to find out whether it is the main thread (the
thread that called MPI_INIT or MPI_INIT_THREAD).

All routines listed in this section must be supported by all MPI implementations.

Rationale. MPI libraries are required to provide these calls even if they do not support
threads, so that portable code that contains invocations to these functions be able to
link correctly. MPI_INIT continues to be supported so as to provide compatibility
with current MPI codes. (End of rationale.)

Advice to users. It is possible to spawn threads before MPI is initialized, but no
MPI call other than MPI_INITIALIZED should be executed by these threads, until
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12.4. MPI AND THREADS 387

MPI_INIT_THREAD is invoked by one thread (which, thereby, becomes the main
thread). In particular, it is possible to enter the MPI execution with a multi-threaded
process.

The level of thread support provided is a global property of the MPI process that can
be specified only once, when MPI is initialized on that process (or before). Portable
third party libraries have to be written so as to accommodate any provided level of
thread support. Otherwise, their usage will be restricted to specific level(s) of thread
support. If such a library can run only with specific level(s) of thread support, e.g.,
only with MPI_THREAD_MULTIPLE, then MPI_QUERY_THREAD can be used to check
whether the user initialized MPI to the correct level of thread support and, if not,
raise an exception. (End of advice to users.)
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Chapter 13

I/O

13.1 Introduction

POSIX provides a model of a widely portable file system, but the portability and optimiza-
tion needed for parallel I/O cannot be achieved with the POSIX interface.

The significant optimizations required for efficiency (e.g., grouping [35], collective
buffering [6, 13, 36, 39, 46], and disk-directed I/O [31]) can only be implemented if the par-
allel I/O system provides a high-level interface supporting partitioning of file data among
processes and a collective interface supporting complete transfers of global data structures
between process memories and files. In addition, further efficiencies can be gained via sup-
port for asynchronous I/O, strided accesses, and control over physical file layout on storage
devices (disks). The I/O environment described in this chapter provides these facilities.

Instead of defining I/O access modes to express the common patterns for accessing a
shared file (broadcast, reduction, scatter, gather), we chose another approach in which data
partitioning is expressed using derived datatypes. Compared to a limited set of predefined
access patterns, this approach has the advantage of added flexibility and expressiveness.

13.1.1 Definitions

file An MPI file is an ordered collection of typed data items. MPI supports random or
sequential access to any integral set of these items. A file is opened collectively by a
group of processes. All collective I/O calls on a file are collective over this group.

displacement A file displacement is an absolute byte position relative to the beginning of
a file. The displacement defines the location where a view begins. Note that a “file
displacement” is distinct from a “typemap displacement.”

etype An etype (elementary datatype) is the unit of data access and positioning. It can
be any MPI predefined or derived datatype. Derived etypes can be constructed using
any of the MPI datatype constructor routines, provided all resulting typemap displace-
ments are non-negative and monotonically nondecreasing. Data access is performed in
etype units, reading or writing whole data items of type etype. Offsets are expressed
as a count of etypes; file pointers point to the beginning of etypes. Depending on
context, the term “etype” is used to describe one of three aspects of an elementary
datatype: a particular MPI type, a data item of that type, or the extent of that type.
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390 CHAPTER 13. I/O

filetype A filetype is the basis for partitioning a file among processes and defines a template
for accessing the file. A filetype is either a single etype or a derived MPI datatype
constructed from multiple instances of the same etype. In addition, the extent of any
hole in the filetype must be a multiple of the etype’s extent. The displacements in the
typemap of the filetype are not required to be distinct, but they must be non-negative
and monotonically nondecreasing.

view A view defines the current set of data visible and accessible from an open file as an
ordered set of etypes. Each process has its own view of the file, defined by three
quantities: a displacement, an etype, and a filetype. The pattern described by a
filetype is repeated, beginning at the displacement, to define the view. The pattern
of repetition is defined to be the same pattern that MPI_TYPE_CONTIGUOUS would
produce if it were passed the filetype and an arbitrarily large count. Figure 13.1 shows
how the tiling works; note that the filetype in this example must have explicit lower
and upper bounds set in order for the initial and final holes to be repeated in the
view. Views can be changed by the user during program execution. The default view
is a linear byte stream (displacement is zero, etype and filetype equal to MPI_BYTE).

...

etype

filetype

displacement

holes

tiling a file with the filetype:

accessible data

Figure 13.1: Etypes and filetypes

A group of processes can use complementary views to achieve a global data distribution
such as a scatter/gather pattern (see Figure 13.2).

process 0 filetype

...

etype

process 1 filetype

process 2 filetype
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tiling a file with the filetypes:

Figure 13.2: Partitioning a file among parallel processes

offset An offset is a position in the file relative to the current view, expressed as a count of
etypes. Holes in the view’s filetype are skipped when calculating this position. Offset 0
is the location of the first etype visible in the view (after skipping the displacement and
any initial holes in the view). For example, an offset of 2 for process 1 in Figure 13.2
is the position of the 8th etype in the file after the displacement. An “explicit offset”
is an offset that is used as a formal parameter in explicit data access routines.
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13.2. FILE MANIPULATION 391

file size and end of file The size of an MPI file is measured in bytes from the beginning
of the file. A newly created file has a size of zero bytes. Using the size as an absolute
displacement gives the position of the byte immediately following the last byte in the
file. For any given view, the end of file is the offset of the first etype accessible in the
current view starting after the last byte in the file.

file pointer A file pointer is an implicit offset maintained by MPI. “Individual file pointers”
are file pointers that are local to each process that opened the file. A “shared file
pointer” is a file pointer that is shared by the group of processes that opened the file.

file handle A file handle is an opaque object created by MPI_FILE_OPEN and freed by
MPI_FILE_CLOSE. All operations on an open file reference the file through the file
handle.

13.2 File Manipulation

13.2.1 Opening a File

MPI_FILE_OPEN(comm, filename, amode, info, fh)

IN comm communicator (handle)

IN filename name of file to open (string)

IN amode file access mode (integer)

IN info info object (handle)

OUT fh new file handle (handle)

int MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info,
MPI_File *fh)

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)
CHARACTER*(*) FILENAME
INTEGER COMM, AMODE, INFO, FH, IERROR

{static MPI::File MPI::File::Open(const MPI::Intracomm& comm,
const char* filename, int amode, const MPI::Info& info)
(binding deprecated, see Section 15.2) }

MPI_FILE_OPEN opens the file identified by the file name filename on all processes in
the comm communicator group. MPI_FILE_OPEN is a collective routine: all processes must
provide the same value for amode, and all processes must provide filenames that reference
the same file. (Values for info may vary.) comm must be an intracommunicator; it is
erroneous to pass an intercommunicator to MPI_FILE_OPEN. Errors in MPI_FILE_OPEN
are raised using the default file error handler (see Section 13.7, page 447). A process can
open a file independently of other processes by using the MPI_COMM_SELF communicator.
The file handle returned, fh, can be subsequently used to access the file until the file is
closed using MPI_FILE_CLOSE. Before calling MPI_FINALIZE, the user is required to close
(via MPI_FILE_CLOSE) all files that were opened with MPI_FILE_OPEN. Note that the
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392 CHAPTER 13. I/O

communicator comm is unaffected by MPI_FILE_OPEN and continues to be usable in all
MPI routines (e.g., MPI_SEND). Furthermore, the use of comm will not interfere with I/O
behavior.

The format for specifying the file name in the filename argument is implementation
dependent and must be documented by the implementation.

Advice to implementors. An implementation may require that filename include a
string or strings specifying additional information about the file. Examples include
the type of filesystem (e.g., a prefix of ufs:), a remote hostname (e.g., a prefix of
machine.univ.edu:), or a file password (e.g., a suffix of /PASSWORD=SECRET).
(End of advice to implementors.)

Advice to users. On some implementations of MPI, the file namespace may not be
identical from all processes of all applications. For example, “/tmp/foo” may denote
different files on different processes, or a single file may have many names, dependent
on process location. The user is responsible for ensuring that a single file is referenced
by the filename argument, as it may be impossible for an implementation to detect
this type of namespace error. (End of advice to users.)

Initially, all processes view the file as a linear byte stream, and each process views data
in its own native representation (no data representation conversion is performed). (POSIX
files are linear byte streams in the native representation.) The file view can be changed via
the MPI_FILE_SET_VIEW routine.

The following access modes are supported (specified in amode, a bit vector OR of the
following integer constants):

• MPI_MODE_RDONLY — read only,

• MPI_MODE_RDWR — reading and writing,

• MPI_MODE_WRONLY — write only,

• MPI_MODE_CREATE — create the file if it does not exist,

• MPI_MODE_EXCL — error if creating file that already exists,

• MPI_MODE_DELETE_ON_CLOSE — delete file on close,

• MPI_MODE_UNIQUE_OPEN — file will not be concurrently opened elsewhere,

• MPI_MODE_SEQUENTIAL — file will only be accessed sequentially,

• MPI_MODE_APPEND — set initial position of all file pointers to end of file.

Advice to users. C/C++ users can use bit vector OR (|) to combine these constants;
Fortran 90 users can use the bit vector IOR intrinsic. Fortran 77 users can use (non-
portably) bit vector IOR on systems that support it. Alternatively, Fortran users can
portably use integer addition to OR the constants (each constant should appear at
most once in the addition.). (End of advice to users.)

Advice to implementors. The values of these constants must be defined such that
the bitwise OR and the sum of any distinct set of these constants is equivalent. (End
of advice to implementors.)
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13.2. FILE MANIPULATION 393

The modes MPI_MODE_RDONLY, MPI_MODE_RDWR, MPI_MODE_WRONLY,
MPI_MODE_CREATE, and MPI_MODE_EXCL have identical semantics to their POSIX counter-
parts [29]. Exactly one of MPI_MODE_RDONLY, MPI_MODE_RDWR, or MPI_MODE_WRONLY,
must be specified. It is erroneous to specify MPI_MODE_CREATE or MPI_MODE_EXCL in
conjunction with MPI_MODE_RDONLY; it is erroneous to specify MPI_MODE_SEQUENTIAL

together with MPI_MODE_RDWR.
The MPI_MODE_DELETE_ON_CLOSE mode causes the file to be deleted (equivalent to

performing an MPI_FILE_DELETE) when the file is closed.
The MPI_MODE_UNIQUE_OPEN mode allows an implementation to optimize access by

eliminating the overhead of file locking. It is erroneous to open a file in this mode unless
the file will not be concurrently opened elsewhere.

Advice to users. For MPI_MODE_UNIQUE_OPEN, not opened elsewhere includes both
inside and outside the MPI environment. In particular, one needs to be aware of
potential external events which may open files (e.g., automated backup facilities).
When MPI_MODE_UNIQUE_OPEN is specified, the user is responsible for ensuring that
no such external events take place. (End of advice to users.)

The MPI_MODE_SEQUENTIAL mode allows an implementation to optimize access to
some sequential devices (tapes and network streams). It is erroneous to attempt nonse-
quential access to a file that has been opened in this mode.

Specifying MPI_MODE_APPEND only guarantees that all shared and individual file
pointers are positioned at the initial end of file when MPI_FILE_OPEN returns. Subsequent
positioning of file pointers is application dependent. In particular, the implementation does
not ensure that all writes are appended.

Errors related to the access mode are raised in the class MPI_ERR_AMODE.
The info argument is used to provide information regarding file access patterns and file

system specifics (see Section 13.2.8, page 398). The constant MPI_INFO_NULL can be used
when no info needs to be specified.

Advice to users. Some file attributes are inherently implementation dependent (e.g.,
file permissions). These attributes must be set using either the info argument or
facilities outside the scope of MPI. (End of advice to users.)

Files are opened by default using nonatomic mode file consistency semantics (see Sec-
tion 13.6.1, page 437). The more stringent atomic mode consistency semantics, required for
atomicity of conflicting accesses, can be set using MPI_FILE_SET_ATOMICITY.

13.2.2 Closing a File

MPI_FILE_CLOSE(fh)

INOUT fh file handle (handle)

int MPI_File_close(MPI_File *fh)

MPI_FILE_CLOSE(FH, IERROR)
INTEGER FH, IERROR
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394 CHAPTER 13. I/O

{void MPI::File::Close() (binding deprecated, see Section 15.2) }

MPI_FILE_CLOSE first synchronizes file state (equivalent to performing an
MPI_FILE_SYNC), then closes the file associated with fh. The file is deleted if it was
opened with access mode MPI_MODE_DELETE_ON_CLOSE (equivalent to performing an
MPI_FILE_DELETE). MPI_FILE_CLOSE is a collective routine.

Advice to users. If the file is deleted on close, and there are other processes currently
accessing the file, the status of the file and the behavior of future accesses by these
processes are implementation dependent. (End of advice to users.)

The user is responsible for ensuring that all outstanding nonblocking requests and
split collective operations associated with fh made by a process have completed before that
process calls MPI_FILE_CLOSE.

The MPI_FILE_CLOSE routine deallocates the file handle object and sets fh to
MPI_FILE_NULL.

13.2.3 Deleting a File

MPI_FILE_DELETE(filename, info)

IN filename name of file to delete (string)

IN info info object (handle)

int MPI_File_delete(char *filename, MPI_Info info)

MPI_FILE_DELETE(FILENAME, INFO, IERROR)
CHARACTER*(*) FILENAME
INTEGER INFO, IERROR

{static void MPI::File::Delete(const char* filename, const MPI::Info& info)
(binding deprecated, see Section 15.2) }

MPI_FILE_DELETE deletes the file identified by the file name filename. If the file does
not exist, MPI_FILE_DELETE raises an error in the class MPI_ERR_NO_SUCH_FILE.

The info argument can be used to provide information regarding file system specifics
(see Section 13.2.8, page 398). The constant MPI_INFO_NULL refers to the null info, and
can be used when no info needs to be specified.

If a process currently has the file open, the behavior of any access to the file (as well
as the behavior of any outstanding accesses) is implementation dependent. In addition,
whether an open file is deleted or not is also implementation dependent. If the file is not
deleted, an error in the class MPI_ERR_FILE_IN_USE or MPI_ERR_ACCESS will be raised.
Errors are raised using the default error handler (see Section 13.7, page 447).
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13.2.4 Resizing a File

MPI_FILE_SET_SIZE(fh, size)

INOUT fh file handle (handle)

IN size size to truncate or expand file (integer)

int MPI_File_set_size(MPI_File fh, MPI_Offset size)

MPI_FILE_SET_SIZE(FH, SIZE, IERROR)
INTEGER FH, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) SIZE

{void MPI::File::Set_size(MPI::Offset size) (binding deprecated, see Section 15.2)
}

MPI_FILE_SET_SIZE resizes the file associated with the file handle fh. size is measured
in bytes from the beginning of the file. MPI_FILE_SET_SIZE is collective; all processes in
the group must pass identical values for size.

If size is smaller than the current file size, the file is truncated at the position defined
by size. The implementation is free to deallocate file blocks located beyond this position.

If size is larger than the current file size, the file size becomes size. Regions of the file
that have been previously written are unaffected. The values of data in the new regions in
the file (those locations with displacements between old file size and size) are undefined. It is
implementation dependent whether the MPI_FILE_SET_SIZE routine allocates file space—
use MPI_FILE_PREALLOCATE to force file space to be reserved.

MPI_FILE_SET_SIZE does not affect the individual file pointers or the shared file
pointer. If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is
erroneous to call this routine.

Advice to users. It is possible for the file pointers to point beyond the end of file
after a MPI_FILE_SET_SIZE operation truncates a file. This is legal, and equivalent
to seeking beyond the current end of file. (End of advice to users.)

All nonblocking requests and split collective operations on fh must be completed before
calling MPI_FILE_SET_SIZE. Otherwise, calling MPI_FILE_SET_SIZE is erroneous. As far
as consistency semantics are concerned, MPI_FILE_SET_SIZE is a write operation that
conflicts with operations that access bytes at displacements between the old and new file
sizes (see Section 13.6.1, page 437).

13.2.5 Preallocating Space for a File

MPI_FILE_PREALLOCATE(fh, size)

INOUT fh file handle (handle)

IN size size to preallocate file (integer)
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int MPI_File_preallocate(MPI_File fh, MPI_Offset size)

MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)
INTEGER FH, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) SIZE

{void MPI::File::Preallocate(MPI::Offset size) (binding deprecated, see
Section 15.2) }

MPI_FILE_PREALLOCATE ensures that storage space is allocated for the first size bytes
of the file associated with fh. MPI_FILE_PREALLOCATE is collective; all processes in the
group must pass identical values for size. Regions of the file that have previously been
written are unaffected. For newly allocated regions of the file, MPI_FILE_PREALLOCATE
has the same effect as writing undefined data. If size is larger than the current file size, the
file size increases to size. If size is less than or equal to the current file size, the file size is
unchanged.

The treatment of file pointers, pending nonblocking accesses, and file consistency is the
same as with MPI_FILE_SET_SIZE. If MPI_MODE_SEQUENTIAL mode was specified when
the file was opened, it is erroneous to call this routine.

Advice to users. In some implementations, file preallocation may be expensive. (End
of advice to users.)

13.2.6 Querying the Size of a File

MPI_FILE_GET_SIZE(fh, size)

IN fh file handle (handle)

OUT size size of the file in bytes (integer)

int MPI_File_get_size(MPI_File fh, MPI_Offset *size)

MPI_FILE_GET_SIZE(FH, SIZE, IERROR)
INTEGER FH, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) SIZE

{MPI::Offset MPI::File::Get_size() const (binding deprecated, see Section 15.2) }

MPI_FILE_GET_SIZE returns, in size, the current size in bytes of the file associated with
the file handle fh. As far as consistency semantics are concerned, MPI_FILE_GET_SIZE is a
data access operation (see Section 13.6.1, page 437).
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13.2.7 Querying File Parameters

MPI_FILE_GET_GROUP(fh, group)

IN fh file handle (handle)

OUT group group which opened the file (handle)

int MPI_File_get_group(MPI_File fh, MPI_Group *group)

MPI_FILE_GET_GROUP(FH, GROUP, IERROR)
INTEGER FH, GROUP, IERROR

{MPI::Group MPI::File::Get_group() const (binding deprecated, see Section 15.2) }

MPI_FILE_GET_GROUP returns a duplicate of the group of the communicator used to
open the file associated with fh. The group is returned in group. The user is responsible for
freeing group.

MPI_FILE_GET_AMODE(fh, amode)

IN fh file handle (handle)

OUT amode file access mode used to open the file (integer)

int MPI_File_get_amode(MPI_File fh, int *amode)

MPI_FILE_GET_AMODE(FH, AMODE, IERROR)
INTEGER FH, AMODE, IERROR

{int MPI::File::Get_amode() const (binding deprecated, see Section 15.2) }

MPI_FILE_GET_AMODE returns, in amode, the access mode of the file associated with
fh.

Example 13.1 In Fortran 77, decoding an amode bit vector will require a routine such as
the following:

SUBROUTINE BIT_QUERY(TEST_BIT, MAX_BIT, AMODE, BIT_FOUND)
!
! TEST IF THE INPUT TEST_BIT IS SET IN THE INPUT AMODE
! IF SET, RETURN 1 IN BIT_FOUND, 0 OTHERWISE
!

INTEGER TEST_BIT, AMODE, BIT_FOUND, CP_AMODE, HIFOUND
BIT_FOUND = 0
CP_AMODE = AMODE

100 CONTINUE
LBIT = 0
HIFOUND = 0
DO 20 L = MAX_BIT, 0, -1

MATCHER = 2**L
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IF (CP_AMODE .GE. MATCHER .AND. HIFOUND .EQ. 0) THEN
HIFOUND = 1
LBIT = MATCHER
CP_AMODE = CP_AMODE - MATCHER

END IF
20 CONTINUE

IF (HIFOUND .EQ. 1 .AND. LBIT .EQ. TEST_BIT) BIT_FOUND = 1
IF (BIT_FOUND .EQ. 0 .AND. HIFOUND .EQ. 1 .AND. &

CP_AMODE .GT. 0) GO TO 100
END

This routine could be called successively to decode amode, one bit at a time. For
example, the following code fragment would check for MPI_MODE_RDONLY.

CALL BIT_QUERY(MPI_MODE_RDONLY, 30, AMODE, BIT_FOUND)
IF (BIT_FOUND .EQ. 1) THEN

PRINT *, ’ FOUND READ-ONLY BIT IN AMODE=’, AMODE
ELSE

PRINT *, ’ READ-ONLY BIT NOT FOUND IN AMODE=’, AMODE
END IF

13.2.8 File Info

Hints specified via info (see Section 9, page 299) allow a user to provide information such
as file access patterns and file system specifics to direct optimization. Providing hints may
enable an implementation to deliver increased I/O performance or minimize the use of
system resources. However, hints do not change the semantics of any of the I/O interfaces.
In other words, an implementation is free to ignore all hints. Hints are specified on a per
file basis, in MPI_FILE_OPEN, MPI_FILE_DELETE, MPI_FILE_SET_VIEW, and
MPI_FILE_SET_INFO, via the opaque info object. When an info object that specifies a
subset of valid hints is passed to MPI_FILE_SET_VIEW or MPI_FILE_SET_INFO, there will
be no effect on previously set or defaulted hints that the info does not specify.

Advice to implementors. It may happen that a program is coded with hints for one
system, and later executes on another system that does not support these hints. In
general, unsupported hints should simply be ignored. Needless to say, no hint can be
mandatory. However, for each hint used by a specific implementation, a default value
must be provided when the user does not specify a value for this hint. (End of advice
to implementors.)

MPI_FILE_SET_INFO(fh, info)

INOUT fh file handle (handle)

IN info info object (handle)

int MPI_File_set_info(MPI_File fh, MPI_Info info)

MPI_FILE_SET_INFO(FH, INFO, IERROR)
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INTEGER FH, INFO, IERROR

{void MPI::File::Set_info(const MPI::Info& info) (binding deprecated, see
Section 15.2) }

MPI_FILE_SET_INFO sets new values for the hints of the file associated with
fh. MPI_FILE_SET_INFO is a collective routine. The info object may be different on each
process, but any info entries that an implementation requires to be the same on all processes
must appear with the same value in each process’s info object.

Advice to users. Many info items that an implementation can use when it creates or
opens a file cannot easily be changed once the file has been created or opened. Thus,
an implementation may ignore hints issued in this call that it would have accepted in
an open call. (End of advice to users.)

MPI_FILE_GET_INFO(fh, info_used)

IN fh file handle (handle)

OUT info_used new info object (handle)

int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)

MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)
INTEGER FH, INFO_USED, IERROR

{MPI::Info MPI::File::Get_info() const (binding deprecated, see Section 15.2) }

MPI_FILE_GET_INFO returns a new info object containing the hints of the file associ-
ated with fh. The current setting of all hints actually used by the system related to this open
file is returned in info_used. If no such hints exist, a handle to a newly created info object
is returned that contains no key/value pair. The user is responsible for freeing info_used
via MPI_INFO_FREE.

Advice to users. The info object returned in info_used will contain all hints currently
active for this file. This set of hints may be greater or smaller than the set of hints
passed in to MPI_FILE_OPEN, MPI_FILE_SET_VIEW, and MPI_FILE_SET_INFO, as
the system may not recognize some hints set by the user, and may recognize other
hints that the user has not set. (End of advice to users.)

Reserved File Hints

Some potentially useful hints (info key values) are outlined below. The following key values
are reserved. An implementation is not required to interpret these key values, but if it does
interpret the key value, it must provide the functionality described. (For more details on
“info,” see Section 9, page 299.)

These hints mainly affect access patterns and the layout of data on parallel I/O devices.
For each hint name introduced, we describe the purpose of the hint, and the type of the hint
value. The “[SAME]” annotation specifies that the hint values provided by all participating
processes must be identical; otherwise the program is erroneous. In addition, some hints are
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context dependent, and are only used by an implementation at specific times (e.g., file_perm

is only useful during file creation).

access_style (comma separated list of strings): This hint specifies the manner in which
the file will be accessed until the file is closed or until the access_style key value is
altered. The hint value is a comma separated list of the following: read_once, write_once,
read_mostly, write_mostly, sequential, reverse_sequential, and random.

collective_buffering (boolean) [SAME]: This hint specifies whether the application may
benefit from collective buffering. Collective buffering is an optimization performed
on collective accesses. Accesses to the file are performed on behalf of all processes in
the group by a number of target nodes. These target nodes coalesce small requests
into large disk accesses. Legal values for this key are true and false. Collective buffering
parameters are further directed via additional hints: cb_block_size, cb_buffer_size, and
cb_nodes.

cb_block_size (integer) [SAME]: This hint specifies the block size to be used for collective
buffering file access. Target nodes access data in chunks of this size. The chunks are
distributed among target nodes in a round-robin (CYCLIC) pattern.

cb_buffer_size (integer) [SAME]: This hint specifies the total buffer space that can be used
for collective buffering on each target node, usually a multiple of cb_block_size.

cb_nodes (integer) [SAME]: This hint specifies the number of target nodes to be used for
collective buffering.

chunked (comma separated list of integers) [SAME]: This hint specifies that the file
consists of a multidimentional array that is often accessed by subarrays. The value
for this hint is a comma separated list of array dimensions, starting from the most
significant one (for an array stored in row-major order, as in C, the most significant
dimension is the first one; for an array stored in column-major order, as in Fortran, the
most significant dimension is the last one, and array dimensions should be reversed).

chunked_item (comma separated list of integers) [SAME]: This hint specifies the size
of each array entry, in bytes.

chunked_size (comma separated list of integers) [SAME]: This hint specifies the di-
mensions of the subarrays. This is a comma separated list of array dimensions, starting
from the most significant one.

filename (string): This hint specifies the file name used when the file was opened. If the
implementation is capable of returning the file name of an open file, it will be returned
using this key by MPI_FILE_GET_INFO. This key is ignored when passed to
MPI_FILE_OPEN, MPI_FILE_SET_VIEW, MPI_FILE_SET_INFO, and
MPI_FILE_DELETE.

file_perm (string) [SAME]: This hint specifies the file permissions to use for file creation.
Setting this hint is only useful when passed to MPI_FILE_OPEN with an amode that
includes MPI_MODE_CREATE. The set of legal values for this key is implementation
dependent.
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13.3. FILE VIEWS 401

io_node_list (comma separated list of strings) [SAME]: This hint specifies the list of
I/O devices that should be used to store the file. This hint is most relevant when the
file is created.

nb_proc (integer) [SAME]: This hint specifies the number of parallel processes that will
typically be assigned to run programs that access this file. This hint is most relevant
when the file is created.

num_io_nodes (integer) [SAME]: This hint specifies the number of I/O devices in the
system. This hint is most relevant when the file is created.

striping_factor (integer) [SAME]: This hint specifies the number of I/O devices that the
file should be striped across, and is relevant only when the file is created.

striping_unit (integer) [SAME]: This hint specifies the suggested striping unit to be used
for this file. The striping unit is the amount of consecutive data assigned to one I/O
device before progressing to the next device, when striping across a number of devices.
It is expressed in bytes. This hint is relevant only when the file is created.

13.3 File Views

MPI_FILE_SET_VIEW(fh, disp, etype, filetype, datarep, info)

INOUT fh file handle (handle)

IN disp displacement (integer)

IN etype elementary datatype (handle)

IN filetype filetype (handle)

IN datarep data representation (string)

IN info info object (handle)

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
MPI_Datatype filetype, char *datarep, MPI_Info info)

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)
INTEGER FH, ETYPE, FILETYPE, INFO, IERROR
CHARACTER*(*) DATAREP
INTEGER(KIND=MPI_OFFSET_KIND) DISP

{void MPI::File::Set_view(MPI::Offset disp, const MPI::Datatype& etype,
const MPI::Datatype& filetype, const char* datarep,
const MPI::Info& info) (binding deprecated, see Section 15.2) }

The MPI_FILE_SET_VIEW routine changes the process’s view of the data in the file.
The start of the view is set to disp; the type of data is set to etype; the distribution of data
to processes is set to filetype; and the representation of data in the file is set to datarep.
In addition, MPI_FILE_SET_VIEW resets the individual file pointers and the shared file
pointer to zero. MPI_FILE_SET_VIEW is collective; the values for datarep and the extents
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of etype in the file data representation must be identical on all processes in the group; values
for disp, filetype, and info may vary. The datatypes passed in etype and filetype must be
committed.

The etype always specifies the data layout in the file. If etype is a portable datatype
(see Section 2.4, page 11), the extent of etype is computed by scaling any displacements in
the datatype to match the file data representation. If etype is not a portable datatype, no
scaling is done when computing the extent of etype. The user must be careful when using
nonportable etypes in heterogeneous environments; see Section 13.5.1, page 430 for further
details.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, the special
displacement MPI_DISPLACEMENT_CURRENT must be passed in disp. This sets the displace-
ment to the current position of the shared file pointer. MPI_DISPLACEMENT_CURRENT is
invalid unless the amode for the file has MPI_MODE_SEQUENTIAL set.

Rationale. For some sequential files, such as those corresponding to magnetic tapes
or streaming network connections, the displacement may not be meaningful.
MPI_DISPLACEMENT_CURRENT allows the view to be changed for these types of files.
(End of rationale.)

Advice to implementors. It is expected that a call to MPI_FILE_SET_VIEW will
immediately follow MPI_FILE_OPEN in numerous instances. A high-quality imple-
mentation will ensure that this behavior is efficient. (End of advice to implementors.)

The disp displacement argument specifies the position (absolute offset in bytes from
the beginning of the file) where the view begins.

Advice to users. disp can be used to skip headers or when the file includes a sequence
of data segments that are to be accessed in different patterns (see Figure 13.3). Sep-
arate views, each using a different displacement and filetype, can be used to access
each segment.
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Figure 13.3: Displacements

(End of advice to users.)

An etype (elementary datatype) is the unit of data access and positioning. It can be
any MPI predefined or derived datatype. Derived etypes can be constructed by using any
of the MPI datatype constructor routines, provided all resulting typemap displacements are
non-negative and monotonically nondecreasing. Data access is performed in etype units,
reading or writing whole data items of type etype. Offsets are expressed as a count of etypes;
file pointers point to the beginning of etypes.
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Advice to users. In order to ensure interoperability in a heterogeneous environment,
additional restrictions must be observed when constructing the etype (see Section 13.5,
page 428). (End of advice to users.)

A filetype is either a single etype or a derived MPI datatype constructed from multiple
instances of the same etype. In addition, the extent of any hole in the filetype must be
a multiple of the etype’s extent. These displacements are not required to be distinct, but
they cannot be negative, and they must be monotonically nondecreasing.

If the file is opened for writing, neither the etype nor the filetype is permitted to contain
overlapping regions. This restriction is equivalent to the “datatype used in a receive cannot
specify overlapping regions” restriction for communication. Note that filetypes from different
processes may still overlap each other.

If filetype has holes in it, then the data in the holes is inaccessible to the calling process.
However, the disp, etype and filetype arguments can be changed via future calls to
MPI_FILE_SET_VIEW to access a different part of the file.

It is erroneous to use absolute addresses in the construction of the etype and filetype.
The info argument is used to provide information regarding file access patterns and

file system specifics to direct optimization (see Section 13.2.8, page 398). The constant
MPI_INFO_NULL refers to the null info and can be used when no info needs to be specified.

The datarep argument is a string that specifies the representation of data in the file.
See the file interoperability section (Section 13.5, page 428) for details and a discussion of
valid values.

The user is responsible for ensuring that all nonblocking requests and split collective
operations on fh have been completed before calling MPI_FILE_SET_VIEW—otherwise, the
call to MPI_FILE_SET_VIEW is erroneous.

MPI_FILE_GET_VIEW(fh, disp, etype, filetype, datarep)

IN fh file handle (handle)

OUT disp displacement (integer)

OUT etype elementary datatype (handle)

OUT filetype filetype (handle)

OUT datarep data representation (string)

int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,
MPI_Datatype *filetype, char *datarep)

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)
INTEGER FH, ETYPE, FILETYPE, IERROR
CHARACTER*(*) DATAREP
INTEGER(KIND=MPI_OFFSET_KIND) DISP

{void MPI::File::Get_view(MPI::Offset& disp, MPI::Datatype& etype,
MPI::Datatype& filetype, char* datarep) const (binding
deprecated, see Section 15.2) }

MPI_FILE_GET_VIEW returns the process’s view of the data in the file. The current
value of the displacement is returned in disp. The etype and filetype are new datatypes with
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typemaps equal to the typemaps of the current etype and filetype, respectively.
The data representation is returned in datarep. The user is responsible for ensuring

that datarep is large enough to hold the returned data representation string. The length of
a data representation string is limited to the value of MPI_MAX_DATAREP_STRING.

In addition, if a portable datatype was used to set the current view, then the corre-
sponding datatype returned by MPI_FILE_GET_VIEW is also a portable datatype. If etype
or filetype are derived datatypes, the user is responsible for freeing them. The etype and
filetype returned are both in a committed state.

13.4 Data Access

13.4.1 Data Access Routines

Data is moved between files and processes by issuing read and write calls. There are three
orthogonal aspects to data access: positioning (explicit offset vs. implicit file pointer),
synchronism (blocking vs. nonblocking and split collective), and coordination (noncollective
vs. collective). The following combinations of these data access routines, including two types
of file pointers (individual and shared) are provided in Table 13.1.

positioning synchronism coordination
noncollective collective

explicit blocking MPI_FILE_READ_AT MPI_FILE_READ_AT_ALL
offsets MPI_FILE_WRITE_AT MPI_FILE_WRITE_AT_ALL

nonblocking & MPI_FILE_IREAD_AT MPI_FILE_READ_AT_ALL_BEGIN
split collective MPI_FILE_READ_AT_ALL_END

MPI_FILE_IWRITE_AT MPI_FILE_WRITE_AT_ALL_BEGIN
MPI_FILE_WRITE_AT_ALL_END

individual blocking MPI_FILE_READ MPI_FILE_READ_ALL
file pointers MPI_FILE_WRITE MPI_FILE_WRITE_ALL

nonblocking & MPI_FILE_IREAD MPI_FILE_READ_ALL_BEGIN
split collective MPI_FILE_READ_ALL_END

MPI_FILE_IWRITE MPI_FILE_WRITE_ALL_BEGIN
MPI_FILE_WRITE_ALL_END

shared blocking MPI_FILE_READ_SHARED MPI_FILE_READ_ORDERED
file pointer MPI_FILE_WRITE_SHARED MPI_FILE_WRITE_ORDERED

nonblocking & MPI_FILE_IREAD_SHARED MPI_FILE_READ_ORDERED_BEGIN
split collective MPI_FILE_READ_ORDERED_END

MPI_FILE_IWRITE_SHARED MPI_FILE_WRITE_ORDERED_BEGIN
MPI_FILE_WRITE_ORDERED_END

Table 13.1: Data access routines

POSIX read()/fread() and write()/fwrite() are blocking, noncollective operations and
use individual file pointers. The MPI equivalents are MPI_FILE_READ and
MPI_FILE_WRITE.

Implementations of data access routines may buffer data to improve performance. This
does not affect reads, as the data is always available in the user’s buffer after a read operation
completes. For writes, however, the MPI_FILE_SYNC routine provides the only guarantee
that data has been transferred to the storage device.
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Positioning

MPI provides three types of positioning for data access routines: explicit offsets, individual
file pointers, and shared file pointers. The different positioning methods may be mixed
within the same program and do not affect each other.

The data access routines that accept explicit offsets contain _AT in their name (e.g.,
MPI_FILE_WRITE_AT). Explicit offset operations perform data access at the file position
given directly as an argument—no file pointer is used nor updated. Note that this is not
equivalent to an atomic seek-and-read or seek-and-write operation, as no “seek” is issued.
Operations with explicit offsets are described in Section 13.4.2, page 407.

The names of the individual file pointer routines contain no positional qualifier (e.g.,
MPI_FILE_WRITE). Operations with individual file pointers are described in Section 13.4.3,
page 410. The data access routines that use shared file pointers contain _SHARED or
_ORDERED in their name (e.g., MPI_FILE_WRITE_SHARED). Operations with shared file
pointers are described in Section 13.4.4, page 416.

The main semantic issues with MPI-maintained file pointers are how and when they are
updated by I/O operations. In general, each I/O operation leaves the file pointer pointing to
the next data item after the last one that is accessed by the operation. In a nonblocking or
split collective operation, the pointer is updated by the call that initiates the I/O, possibly
before the access completes.

More formally,

new_file_offset = old_file_offset +
elements(datatype)
elements(etype)

× count

where count is the number of datatype items to be accessed, elements(X) is the number of
predefined datatypes in the typemap of X, and old_file_offset is the value of the implicit
offset before the call. The file position, new_file_offset , is in terms of a count of etypes
relative to the current view.

Synchronism

MPI supports blocking and nonblocking I/O routines.
A blocking I/O call will not return until the I/O request is completed.
A nonblocking I/O call initiates an I/O operation, but does not wait for it to complete.

Given suitable hardware, this allows the transfer of data out/in the user’s buffer to proceed
concurrently with computation. A separate request complete call (MPI_WAIT, MPI_TEST,
or any of their variants) is needed to complete the I/O request, i.e., to confirm that the data
has been read or written and that it is safe for the user to reuse the buffer. The nonblocking
versions of the routines are named MPI_FILE_IXXX, where the I stands for immediate.

It is erroneous to access the local buffer of a nonblocking data access operation, or to
use that buffer as the source or target of other communications, between the initiation and
completion of the operation.

The split collective routines support a restricted form of “nonblocking” operations for
collective data access (see Section 13.4.5, page 421).

Coordination

Every noncollective data access routine MPI_FILE_XXX has a collective counterpart. For
most routines, this counterpart is MPI_FILE_XXX_ALL or a pair of MPI_FILE_XXX_BEGIN
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and MPI_FILE_XXX_END. The counterparts to the MPI_FILE_XXX_SHARED routines are
MPI_FILE_XXX_ORDERED.

The completion of a noncollective call only depends on the activity of the calling pro-
cess. However, the completion of a collective call (which must be called by all members of
the process group) may depend on the activity of the other processes participating in the
collective call. See Section 13.6.4, page 441, for rules on semantics of collective calls.

Collective operations may perform much better than their noncollective counterparts,
as global data accesses have significant potential for automatic optimization.

Data Access Conventions

Data is moved between files and processes by calling read and write routines. Read routines
move data from a file into memory. Write routines move data from memory into a file. The
file is designated by a file handle, fh. The location of the file data is specified by an offset
into the current view. The data in memory is specified by a triple: buf, count, and datatype.
Upon completion, the amount of data accessed by the calling process is returned in a status.

An offset designates the starting position in the file for an access. The offset is always in
etype units relative to the current view. Explicit offset routines pass offset as an argument
(negative values are erroneous). The file pointer routines use implicit offsets maintained by
MPI.

A data access routine attempts to transfer (read or write) count data items of type
datatype between the user’s buffer buf and the file. The datatype passed to the routine
must be a committed datatype. The layout of data in memory corresponding to buf, count,
datatype is interpreted the same way as in MPI communication functions; see Section 3.2.2
on page 27 and Section 4.1.11 on page 101. The data is accessed from those parts of the
file specified by the current view (Section 13.3, page 401). The type signature of datatype
must match the type signature of some number of contiguous copies of the etype of the
current view. As in a receive, it is erroneous to specify a datatype for reading that contains
overlapping regions (areas of memory which would be stored into more than once).

The nonblocking data access routines indicate that MPI can start a data access and
associate a request handle, request, with the I/O operation. Nonblocking operations are
completed via MPI_TEST, MPI_WAIT, or any of their variants.

Data access operations, when completed, return the amount of data accessed in status.

Advice to users. To prevent problems with the argument copying and register opti-
mization done by Fortran compilers, please note the hints in subsections “Problems
Due to Data Copying and Sequence Association,” and “A Problem with Register
Optimization” in Section 16.2.2, pages 482 and 485. (End of advice to users.)

For blocking routines, status is returned directly. For nonblocking routines and split
collective routines, status is returned when the operation is completed. The number of
datatype entries and predefined elements accessed by the calling process can be extracted
from status by using MPI_GET_COUNT and MPI_GET_ELEMENTS, respectively. The inter-
pretation of the MPI_ERROR field is the same as for other operations — normally undefined,
but meaningful if an MPI routine returns MPI_ERR_IN_STATUS. The user can pass (in C
and Fortran) MPI_STATUS_IGNORE in the status argument if the return value of this argu-
ment is not needed. In C++, the status argument is optional. The status can be passed
to MPI_TEST_CANCELLED to determine if the operation was cancelled. All other fields of
status are undefined.
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When reading, a program can detect the end of file by noting that the amount of data
read is less than the amount requested. Writing past the end of file increases the file size.
The amount of data accessed will be the amount requested, unless an error is raised (or a
read reaches the end of file).

13.4.2 Data Access with Explicit Offsets

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to
call the routines in this section.

MPI_FILE_READ_AT(fh, offset, buf, count, datatype, status)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

{void MPI::File::Read_at(MPI::Offset offset, void* buf, int count,
const MPI::Datatype& datatype, MPI::Status& status) (binding
deprecated, see Section 15.2) }

{void MPI::File::Read_at(MPI::Offset offset, void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_READ_AT reads a file beginning at the position specified by offset.

MPI_FILE_READ_AT_ALL(fh, offset, buf, count, datatype, status)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)
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int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

{void MPI::File::Read_at_all(MPI::Offset offset, void* buf, int count,
const MPI::Datatype& datatype, MPI::Status& status) (binding
deprecated, see Section 15.2) }

{void MPI::File::Read_at_all(MPI::Offset offset, void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_READ_AT_ALL is a collective version of the blocking MPI_FILE_READ_AT
interface.

MPI_FILE_WRITE_AT(fh, offset, buf, count, datatype, status)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

{void MPI::File::Write_at(MPI::Offset offset, const void* buf, int count,
const MPI::Datatype& datatype, MPI::Status& status) (binding
deprecated, see Section 15.2) }

{void MPI::File::Write_at(MPI::Offset offset, const void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_WRITE_AT writes a file beginning at the position specified by offset.
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MPI_FILE_WRITE_AT_ALL(fh, offset, buf, count, datatype, status)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

{void MPI::File::Write_at_all(MPI::Offset offset, const void* buf,
int count, const MPI::Datatype& datatype, MPI::Status& status)
(binding deprecated, see Section 15.2) }

{void MPI::File::Write_at_all(MPI::Offset offset, const void* buf,
int count, const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_WRITE_AT_ALL is a collective version of the blocking
MPI_FILE_WRITE_AT interface.

MPI_FILE_IREAD_AT(fh, offset, buf, count, datatype, request)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

{MPI::Request MPI::File::Iread_at(MPI::Offset offset, void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



410 CHAPTER 13. I/O

MPI_FILE_IREAD_AT is a nonblocking version of the MPI_FILE_READ_AT interface.

MPI_FILE_IWRITE_AT(fh, offset, buf, count, datatype, request)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

{MPI::Request MPI::File::Iwrite_at(MPI::Offset offset, const void* buf,
int count, const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_IWRITE_AT is a nonblocking version of the MPI_FILE_WRITE_AT interface.

13.4.3 Data Access with Individual File Pointers

MPI maintains one individual file pointer per process per file handle. The current value
of this pointer implicitly specifies the offset in the data access routines described in this
section. These routines only use and update the individual file pointers maintained by MPI.
The shared file pointer is not used nor updated.

The individual file pointer routines have the same semantics as the data access with
explicit offset routines described in Section 13.4.2, page 407, with the following modification:

• the offset is defined to be the current value of the MPI-maintained individual file
pointer.

After an individual file pointer operation is initiated, the individual file pointer is updated
to point to the next etype after the last one that will be accessed. The file pointer is updated
relative to the current view of the file.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous
to call the routines in this section, with the exception of MPI_FILE_GET_BYTE_OFFSET.
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MPI_FILE_READ(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
MPI_Status *status)

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

{void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype,
MPI::Status& status) (binding deprecated, see Section 15.2) }

{void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype)
(binding deprecated, see Section 15.2) }

MPI_FILE_READ reads a file using the individual file pointer.

Example 13.2 The following Fortran code fragment is an example of reading a file until
the end of file is reached:

! Read a preexisting input file until all data has been read.
! Call routine "process_input" if all requested data is read.
! The Fortran 90 "exit" statement exits the loop.

integer bufsize, numread, totprocessed, status(MPI_STATUS_SIZE)
parameter (bufsize=100)
real localbuffer(bufsize)

call MPI_FILE_OPEN( MPI_COMM_WORLD, ’myoldfile’, &
MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr )

call MPI_FILE_SET_VIEW( myfh, 0, MPI_REAL, MPI_REAL, ’native’, &
MPI_INFO_NULL, ierr )

totprocessed = 0
do

call MPI_FILE_READ( myfh, localbuffer, bufsize, MPI_REAL, &
status, ierr )

call MPI_GET_COUNT( status, MPI_REAL, numread, ierr )
call process_input( localbuffer, numread )
totprocessed = totprocessed + numread
if ( numread < bufsize ) exit

enddo

write(6,1001) numread, bufsize, totprocessed
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1001 format( "No more data: read", I3, "and expected", I3, &
"Processed total of", I6, "before terminating job." )

call MPI_FILE_CLOSE( myfh, ierr )

MPI_FILE_READ_ALL(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_all(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

{void MPI::File::Read_all(void* buf, int count,
const MPI::Datatype& datatype, MPI::Status& status) (binding
deprecated, see Section 15.2) }

{void MPI::File::Read_all(void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_READ_ALL is a collective version of the blocking MPI_FILE_READ interface.

MPI_FILE_WRITE(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
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{void MPI::File::Write(const void* buf, int count,
const MPI::Datatype& datatype, MPI::Status& status) (binding
deprecated, see Section 15.2) }

{void MPI::File::Write(const void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_WRITE writes a file using the individual file pointer.

MPI_FILE_WRITE_ALL(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_all(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

{void MPI::File::Write_all(const void* buf, int count,
const MPI::Datatype& datatype, MPI::Status& status) (binding
deprecated, see Section 15.2) }

{void MPI::File::Write_all(const void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_WRITE_ALL is a collective version of the blocking MPI_FILE_WRITE inter-
face.

MPI_FILE_IREAD(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
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<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

{MPI::Request MPI::File::Iread(void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_IREAD is a nonblocking version of the MPI_FILE_READ interface.

Example 13.3 The following Fortran code fragment illustrates file pointer update seman-
tics:

! Read the first twenty real words in a file into two local
! buffers. Note that when the first MPI_FILE_IREAD returns,
! the file pointer has been updated to point to the
! eleventh real word in the file.

integer bufsize, req1, req2
integer, dimension(MPI_STATUS_SIZE) :: status1, status2
parameter (bufsize=10)
real buf1(bufsize), buf2(bufsize)

call MPI_FILE_OPEN( MPI_COMM_WORLD, ’myoldfile’, &
MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr )

call MPI_FILE_SET_VIEW( myfh, 0, MPI_REAL, MPI_REAL, ’native’, &
MPI_INFO_NULL, ierr )

call MPI_FILE_IREAD( myfh, buf1, bufsize, MPI_REAL, &
req1, ierr )

call MPI_FILE_IREAD( myfh, buf2, bufsize, MPI_REAL, &
req2, ierr )

call MPI_WAIT( req1, status1, ierr )
call MPI_WAIT( req2, status2, ierr )

call MPI_FILE_CLOSE( myfh, ierr )

MPI_FILE_IWRITE(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)
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MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

{MPI::Request MPI::File::Iwrite(const void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_IWRITE is a nonblocking version of the MPI_FILE_WRITE interface.

MPI_FILE_SEEK(fh, offset, whence)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN whence update mode (state)

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)
INTEGER FH, WHENCE, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

{void MPI::File::Seek(MPI::Offset offset, int whence) (binding deprecated, see
Section 15.2) }

MPI_FILE_SEEK updates the individual file pointer according to whence, which has the
following possible values:

• MPI_SEEK_SET: the pointer is set to offset

• MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

• MPI_SEEK_END: the pointer is set to the end of file plus offset

The offset can be negative, which allows seeking backwards. It is erroneous to seek to
a negative position in the view.

MPI_FILE_GET_POSITION(fh, offset)

IN fh file handle (handle)

OUT offset offset of individual pointer (integer)

int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)

MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)
INTEGER FH, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

{MPI::Offset MPI::File::Get_position() const (binding deprecated, see
Section 15.2) }
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MPI_FILE_GET_POSITION returns, in offset, the current position of the individual file
pointer in etype units relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK using
whence = MPI_SEEK_SET to return to the current position. To set the displacement to
the current file pointer position, first convert offset into an absolute byte position using
MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with the resulting
displacement. (End of advice to users.)

MPI_FILE_GET_BYTE_OFFSET(fh, offset, disp)

IN fh file handle (handle)

IN offset offset (integer)

OUT disp absolute byte position of offset (integer)

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,
MPI_Offset *disp)

MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)
INTEGER FH, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, DISP

{MPI::Offset MPI::File::Get_byte_offset(const MPI::Offset disp) const
(binding deprecated, see Section 15.2) }

MPI_FILE_GET_BYTE_OFFSET converts a view-relative offset into an absolute byte
position. The absolute byte position (from the beginning of the file) of offset relative to the
current view of fh is returned in disp.

13.4.4 Data Access with Shared File Pointers

MPI maintains exactly one shared file pointer per collective MPI_FILE_OPEN (shared among
processes in the communicator group). The current value of this pointer implicitly specifies
the offset in the data access routines described in this section. These routines only use and
update the shared file pointer maintained by MPI. The individual file pointers are not used
nor updated.

The shared file pointer routines have the same semantics as the data access with explicit
offset routines described in Section 13.4.2, page 407, with the following modifications:

• the offset is defined to be the current value of the MPI-maintained shared file pointer,

• the effect of multiple calls to shared file pointer routines is defined to behave as if the
calls were serialized, and

• the use of shared file pointer routines is erroneous unless all processes use the same
file view.

For the noncollective shared file pointer routines, the serialization ordering is not determin-
istic. The user needs to use other synchronization means to enforce a specific order.
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After a shared file pointer operation is initiated, the shared file pointer is updated to
point to the next etype after the last one that will be accessed. The file pointer is updated
relative to the current view of the file.

Noncollective Operations

MPI_FILE_READ_SHARED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

{void MPI::File::Read_shared(void* buf, int count,
const MPI::Datatype& datatype, MPI::Status& status) (binding
deprecated, see Section 15.2) }

{void MPI::File::Read_shared(void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_READ_SHARED reads a file using the shared file pointer.

MPI_FILE_WRITE_SHARED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
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{void MPI::File::Write_shared(const void* buf, int count,
const MPI::Datatype& datatype, MPI::Status& status) (binding
deprecated, see Section 15.2) }

{void MPI::File::Write_shared(const void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_WRITE_SHARED writes a file using the shared file pointer.

MPI_FILE_IREAD_SHARED(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

{MPI::Request MPI::File::Iread_shared(void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_IREAD_SHARED is a nonblocking version of the MPI_FILE_READ_SHARED
interface.

MPI_FILE_IWRITE_SHARED(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



13.4. DATA ACCESS 419

{MPI::Request MPI::File::Iwrite_shared(const void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_IWRITE_SHARED is a nonblocking version of the
MPI_FILE_WRITE_SHARED interface.

Collective Operations

The semantics of a collective access using a shared file pointer is that the accesses to the
file will be in the order determined by the ranks of the processes within the group. For each
process, the location in the file at which data is accessed is the position at which the shared
file pointer would be after all processes whose ranks within the group less than that of this
process had accessed their data. In addition, in order to prevent subsequent shared offset
accesses by the same processes from interfering with this collective access, the call might
return only after all the processes within the group have initiated their accesses. When the
call returns, the shared file pointer points to the next etype accessible, according to the file
view used by all processes, after the last etype requested.

Advice to users. There may be some programs in which all processes in the group
need to access the file using the shared file pointer, but the program may not re-
quire that data be accessed in order of process rank. In such programs, using the
shared ordered routines (e.g., MPI_FILE_WRITE_ORDERED rather than
MPI_FILE_WRITE_SHARED) may enable an implementation to optimize access, im-
proving performance. (End of advice to users.)

Advice to implementors. Accesses to the data requested by all processes do not have
to be serialized. Once all processes have issued their requests, locations within the file
for all accesses can be computed, and accesses can proceed independently from each
other, possibly in parallel. (End of advice to implementors.)

MPI_FILE_READ_ORDERED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_ordered(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
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{void MPI::File::Read_ordered(void* buf, int count,
const MPI::Datatype& datatype, MPI::Status& status) (binding
deprecated, see Section 15.2) }

{void MPI::File::Read_ordered(void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_READ_ORDERED is a collective version of the MPI_FILE_READ_SHARED
interface.

MPI_FILE_WRITE_ORDERED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_ordered(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

{void MPI::File::Write_ordered(const void* buf, int count,
const MPI::Datatype& datatype, MPI::Status& status) (binding
deprecated, see Section 15.2) }

{void MPI::File::Write_ordered(const void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_WRITE_ORDERED is a collective version of the MPI_FILE_WRITE_SHARED
interface.

Seek

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous
to call the following two routines (MPI_FILE_SEEK_SHARED and
MPI_FILE_GET_POSITION_SHARED).

MPI_FILE_SEEK_SHARED(fh, offset, whence)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN whence update mode (state)
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int MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)

MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)
INTEGER FH, WHENCE, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

{void MPI::File::Seek_shared(MPI::Offset offset, int whence) (binding
deprecated, see Section 15.2) }

MPI_FILE_SEEK_SHARED updates the shared file pointer according to whence, which
has the following possible values:

• MPI_SEEK_SET: the pointer is set to offset

• MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

• MPI_SEEK_END: the pointer is set to the end of file plus offset

MPI_FILE_SEEK_SHARED is collective; all the processes in the communicator group
associated with the file handle fh must call MPI_FILE_SEEK_SHARED with the same values
for offset and whence.

The offset can be negative, which allows seeking backwards. It is erroneous to seek to
a negative position in the view.

MPI_FILE_GET_POSITION_SHARED(fh, offset)

IN fh file handle (handle)

OUT offset offset of shared pointer (integer)

int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)

MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)
INTEGER FH, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

{MPI::Offset MPI::File::Get_position_shared() const (binding deprecated, see
Section 15.2) }

MPI_FILE_GET_POSITION_SHARED returns, in offset, the current position of the
shared file pointer in etype units relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK_SHARED
using whence = MPI_SEEK_SET to return to the current position. To set the displace-
ment to the current file pointer position, first convert offset into an absolute byte
position using MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with
the resulting displacement. (End of advice to users.)

13.4.5 Split Collective Data Access Routines

MPI provides a restricted form of “nonblocking collective” I/O operations for all data ac-
cesses using split collective data access routines. These routines are referred to as “split”
collective routines because a single collective operation is split in two: a begin routine and
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an end routine. The begin routine begins the operation, much like a nonblocking data access
(e.g., MPI_FILE_IREAD). The end routine completes the operation, much like the matching
test or wait (e.g., MPI_WAIT). As with nonblocking data access operations, the user must
not use the buffer passed to a begin routine while the routine is outstanding; the operation
must be completed with an end routine before it is safe to free buffers, etc.

Split collective data access operations on a file handle fh are subject to the semantic
rules given below.

• On any MPI process, each file handle may have at most one active split collective
operation at any time.

• Begin calls are collective over the group of processes that participated in the collective
open and follow the ordering rules for collective calls.

• End calls are collective over the group of processes that participated in the collective
open and follow the ordering rules for collective calls. Each end call matches the
preceding begin call for the same collective operation. When an “end” call is made,
exactly one unmatched “begin” call for the same operation must precede it.

• An implementation is free to implement any split collective data access routine using
the corresponding blocking collective routine when either the begin call (e.g.,
MPI_FILE_READ_ALL_BEGIN) or the end call (e.g., MPI_FILE_READ_ALL_END) is
issued. The begin and end calls are provided to allow the user and MPI implementation
to optimize the collective operation.

• Split collective operations do not match the corresponding regular collective opera-
tion. For example, in a single collective read operation, an MPI_FILE_READ_ALL
on one process does not match an MPI_FILE_READ_ALL_BEGIN/
MPI_FILE_READ_ALL_END pair on another process.

• Split collective routines must specify a buffer in both the begin and end routines.
By specifying the buffer that receives data in the end routine, we can avoid many
(though not all) of the problems described in “A Problem with Register Optimization,”
Section 16.2.2, page 485.

• No collective I/O operations are permitted on a file handle concurrently with a split
collective access on that file handle (i.e., between the begin and end of the access).
That is

MPI_File_read_all_begin(fh, ...);
...
MPI_File_read_all(fh, ...);
...
MPI_File_read_all_end(fh, ...);

is erroneous.

• In a multithreaded implementation, any split collective begin and end operation called
by a process must be called from the same thread. This restriction is made to simplify
the implementation in the multithreaded case. (Note that we have already disallowed
having two threads begin a split collective operation on the same file handle since only
one split collective operation can be active on a file handle at any time.)
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The arguments for these routines have the same meaning as for the equivalent collective
versions (e.g., the argument definitions for MPI_FILE_READ_ALL_BEGIN and
MPI_FILE_READ_ALL_END are equivalent to the arguments for MPI_FILE_READ_ALL).
The begin routine (e.g., MPI_FILE_READ_ALL_BEGIN) begins a split collective operation
that, when completed with the matching end routine (i.e., MPI_FILE_READ_ALL_END)
produces the result as defined for the equivalent collective routine (i.e.,
MPI_FILE_READ_ALL).

For the purpose of consistency semantics (Section 13.6.1, page 437), a matched pair
of split collective data access operations (e.g., MPI_FILE_READ_ALL_BEGIN and
MPI_FILE_READ_ALL_END) compose a single data access.

MPI_FILE_READ_AT_ALL_BEGIN(fh, offset, buf, count, datatype)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype)

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

{void MPI::File::Read_at_all_begin(MPI::Offset offset, void* buf,
int count, const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_READ_AT_ALL_END(fh, buf, status)

IN fh file handle (handle)

OUT buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_read_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

{void MPI::File::Read_at_all_end(void* buf, MPI::Status& status) (binding
deprecated, see Section 15.2) }
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{void MPI::File::Read_at_all_end(void* buf) (binding deprecated, see Section 15.2)
}

MPI_FILE_WRITE_AT_ALL_BEGIN(fh, offset, buf, count, datatype)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype)

MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

{void MPI::File::Write_at_all_begin(MPI::Offset offset, const void* buf,
int count, const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_WRITE_AT_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_write_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

{void MPI::File::Write_at_all_end(const void* buf, MPI::Status& status)
(binding deprecated, see Section 15.2) }

{void MPI::File::Write_at_all_end(const void* buf) (binding deprecated, see
Section 15.2) }
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MPI_FILE_READ_ALL_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_read_all_begin(MPI_File fh, void *buf, int count,
MPI_Datatype datatype)

MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR

{void MPI::File::Read_all_begin(void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_READ_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

{void MPI::File::Read_all_end(void* buf, MPI::Status& status) (binding
deprecated, see Section 15.2) }

{void MPI::File::Read_all_end(void* buf) (binding deprecated, see Section 15.2) }

MPI_FILE_WRITE_ALL_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_write_all_begin(MPI_File fh, void *buf, int count,
MPI_Datatype datatype)

MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
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INTEGER FH, COUNT, DATATYPE, IERROR

{void MPI::File::Write_all_begin(const void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_WRITE_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_write_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

{void MPI::File::Write_all_end(const void* buf, MPI::Status& status)
(binding deprecated, see Section 15.2) }

{void MPI::File::Write_all_end(const void* buf) (binding deprecated, see
Section 15.2) }

MPI_FILE_READ_ORDERED_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,
MPI_Datatype datatype)

MPI_FILE_READ_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR

{void MPI::File::Read_ordered_begin(void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }
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13.4. DATA ACCESS 427

MPI_FILE_READ_ORDERED_END(fh, buf, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_read_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_READ_ORDERED_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

{void MPI::File::Read_ordered_end(void* buf, MPI::Status& status) (binding
deprecated, see Section 15.2) }

{void MPI::File::Read_ordered_end(void* buf) (binding deprecated, see
Section 15.2) }

MPI_FILE_WRITE_ORDERED_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_write_ordered_begin(MPI_File fh, void *buf, int count,
MPI_Datatype datatype)

MPI_FILE_WRITE_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR

{void MPI::File::Write_ordered_begin(const void* buf, int count,
const MPI::Datatype& datatype) (binding deprecated, see
Section 15.2) }

MPI_FILE_WRITE_ORDERED_END(fh, buf, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_write_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_WRITE_ORDERED_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
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428 CHAPTER 13. I/O

{void MPI::File::Write_ordered_end(const void* buf, MPI::Status& status)
(binding deprecated, see Section 15.2) }

{void MPI::File::Write_ordered_end(const void* buf) (binding deprecated, see
Section 15.2) }

13.5 File Interoperability

At the most basic level, file interoperability is the ability to read the information previously
written to a file—not just the bits of data, but the actual information the bits represent.
MPI guarantees full interoperability within a single MPI environment, and supports in-
creased interoperability outside that environment through the external data representation
(Section 13.5.2, page 431) as well as the data conversion functions (Section 13.5.3, page 432).

Interoperability within a single MPI environment (which could be considered “oper-
ability”) ensures that file data written by one MPI process can be read by any other MPI
process, subject to the consistency constraints (see Section 13.6.1, page 437), provided that
it would have been possible to start the two processes simultaneously and have them reside
in a single MPI_COMM_WORLD. Furthermore, both processes must see the same data values
at every absolute byte offset in the file for which data was written.

This single environment file interoperability implies that file data is accessible regardless
of the number of processes.

There are three aspects to file interoperability:

• transferring the bits,

• converting between different file structures, and

• converting between different machine representations.

The first two aspects of file interoperability are beyond the scope of this standard,
as both are highly machine dependent. However, transferring the bits of a file into and
out of the MPI environment (e.g., by writing a file to tape) is required to be supported
by all MPI implementations. In particular, an implementation must specify how familiar
operations similar to POSIX cp, rm, and mv can be performed on the file. Furthermore, it
is expected that the facility provided maintains the correspondence between absolute byte
offsets (e.g., after possible file structure conversion, the data bits at byte offset 102 in the
MPI environment are at byte offset 102 outside the MPI environment). As an example,
a simple off-line conversion utility that transfers and converts files between the native file
system and the MPI environment would suffice, provided it maintained the offset coherence
mentioned above. In a high-quality implementation of MPI, users will be able to manipulate
MPI files using the same or similar tools that the native file system offers for manipulating
its files.

The remaining aspect of file interoperability, converting between different machine
representations, is supported by the typing information specified in the etype and filetype.
This facility allows the information in files to be shared between any two applications,
regardless of whether they use MPI, and regardless of the machine architectures on which
they run.

MPI supports multiple data representations: “native,” “internal,” and “external32.”
An implementation may support additional data representations. MPI also supports user-
defined data representations (see Section 13.5.3, page 432). The “native” and “internal”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



13.5. FILE INTEROPERABILITY 429

data representations are implementation dependent, while the “external32” representation
is common to all MPI implementations and facilitates file interoperability. The data repre-
sentation is specified in the datarep argument to MPI_FILE_SET_VIEW.

Advice to users. MPI is not guaranteed to retain knowledge of what data representa-
tion was used when a file is written. Therefore, to correctly retrieve file data, an MPI
application is responsible for specifying the same data representation as was used to
create the file. (End of advice to users.)

“native” Data in this representation is stored in a file exactly as it is in memory. The ad-
vantage of this data representation is that data precision and I/O performance are not
lost in type conversions with a purely homogeneous environment. The disadvantage
is the loss of transparent interoperability within a heterogeneous MPI environment.

Advice to users. This data representation should only be used in a homogeneous
MPI environment, or when the MPI application is capable of performing the data
type conversions itself. (End of advice to users.)

Advice to implementors. When implementing read and write operations on
top of MPI message-passing, the message data should be typed as MPI_BYTE
to ensure that the message routines do not perform any type conversions on the
data. (End of advice to implementors.)

“internal” This data representation can be used for I/O operations in a homogeneous
or heterogeneous environment; the implementation will perform type conversions if
necessary. The implementation is free to store data in any format of its choice, with
the restriction that it will maintain constant extents for all predefined datatypes in any
one file. The environment in which the resulting file can be reused is implementation-
defined and must be documented by the implementation.

Rationale. This data representation allows the implementation to perform I/O
efficiently in a heterogeneous environment, though with implementation-defined
restrictions on how the file can be reused. (End of rationale.)

Advice to implementors. Since “external32” is a superset of the functionality
provided by “internal,” an implementation may choose to implement “internal”
as “external32.” (End of advice to implementors.)

“external32” This data representation states that read and write operations convert all
data from and to the “external32” representation defined in Section 13.5.2, page 431.
The data conversion rules for communication also apply to these conversions (see
Section 3.3.2, page 25-27, of the MPI-1 document). The data on the storage medium
is always in this canonical representation, and the data in memory is always in the
local process’s native representation.

This data representation has several advantages. First, all processes reading the file
in a heterogeneous MPI environment will automatically have the data converted to
their respective native representations. Second, the file can be exported from one MPI
environment and imported into any other MPI environment with the guarantee that
the second environment will be able to read all the data in the file.
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430 CHAPTER 13. I/O

The disadvantage of this data representation is that data precision and I/O perfor-
mance may be lost in data type conversions.

Advice to implementors. When implementing read and write operations on top
of MPI message-passing, the message data should be converted to and from the
“external32” representation in the client, and sent as type MPI_BYTE. This will
avoid possible double data type conversions and the associated further loss of
precision and performance. (End of advice to implementors.)

13.5.1 Datatypes for File Interoperability

If the file data representation is other than “native,” care must be taken in constructing
etypes and filetypes. Any of the datatype constructor functions may be used; however,
for those functions that accept displacements in bytes, the displacements must be specified
in terms of their values in the file for the file data representation being used. MPI will
interpret these byte displacements as is; no scaling will be done. The function
MPI_FILE_GET_TYPE_EXTENT can be used to calculate the extents of datatypes in the
file. For etypes and filetypes that are portable datatypes (see Section 2.4, page 11), MPI will
scale any displacements in the datatypes to match the file data representation. Datatypes
passed as arguments to read/write routines specify the data layout in memory; therefore,
they must always be constructed using displacements corresponding to displacements in
memory.

Advice to users. One can logically think of the file as if it were stored in the memory
of a file server. The etype and filetype are interpreted as if they were defined at this
file server, by the same sequence of calls used to define them at the calling process.
If the data representation is “native”, then this logical file server runs on the same
architecture as the calling process, so that these types define the same data layout
on the file as they would define in the memory of the calling process. If the etype
and filetype are portable datatypes, then the data layout defined in the file is the
same as would be defined in the calling process memory, up to a scaling factor. The
routine MPI_FILE_GET_FILE_EXTENT can be used to calculate this scaling factor.
Thus, two equivalent, portable datatypes will define the same data layout in the file,
even in a heterogeneous environment with “internal”, “external32”, or user defined
data representations. Otherwise, the etype and filetype must be constructed so that
their typemap and extent are the same on any architecture. This can be achieved if
they have an explicit upper bound and lower bound (defined either using MPI_LB and
MPI_UB markers, or using MPI_TYPE_CREATE_RESIZED). This condition must also
be fulfilled by any datatype that is used in the construction of the etype and filetype,
if this datatype is replicated contiguously, either explicitly, by a call to
MPI_TYPE_CONTIGUOUS, or implictly, by a blocklength argument that is greater
than one. If an etype or filetype is not portable, and has a typemap or extent that is
architecture dependent, then the data layout specified by it on a file is implementation
dependent.

File data representations other than “native” may be different from corresponding
data representations in memory. Therefore, for these file data representations, it is
important not to use hardwired byte offsets for file positioning, including the initial
displacement that specifies the view. When a portable datatype (see Section 2.4,
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13.5. FILE INTEROPERABILITY 431

page 11) is used in a data access operation, any holes in the datatype are scaled to
match the data representation. However, note that this technique only works when
all the processes that created the file view build their etypes from the same predefined
datatypes. For example, if one process uses an etype built from MPI_INT and another
uses an etype built from MPI_FLOAT, the resulting views may be nonportable because
the relative sizes of these types may differ from one data representation to another.
(End of advice to users.)

MPI_FILE_GET_TYPE_EXTENT(fh, datatype, extent)

IN fh file handle (handle)

IN datatype datatype (handle)

OUT extent datatype extent (integer)

int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,
MPI_Aint *extent)

MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)
INTEGER FH, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT

{MPI::Aint MPI::File::Get_type_extent(const MPI::Datatype& datatype) const
(binding deprecated, see Section 15.2) }

Returns the extent of datatype in the file fh. This extent will be the same for all
processes accessing the file fh. If the current view uses a user-defined data representation
(see Section 13.5.3, page 432), MPI uses the dtype_file_extent_fn callback to calculate the
extent.

Advice to implementors. In the case of user-defined data representations, the extent
of a derived datatype can be calculated by first determining the extents of the prede-
fined datatypes in this derived datatype using dtype_file_extent_fn (see Section 13.5.3,
page 432). (End of advice to implementors.)

13.5.2 External Data Representation: “external32”

All MPI implementations are required to support the data representation defined in this
section. Support of optional datatypes (e.g., MPI_INTEGER2) is not required.

All floating point values are in big-endian IEEE format [27] of the appropriate size.
Floating point values are represented by one of three IEEE formats. These are the IEEE
“Single,” “Double,” and “Double Extended” formats, requiring 4, 8 and 16 bytes of storage,
respectively. For the IEEE “Double Extended” formats, MPI specifies a Format Width of 16
bytes, with 15 exponent bits, bias = +16383, 112 fraction bits, and an encoding analogous
to the “Double” format. All integral values are in two’s complement big-endian format. Big-
endian means most significant byte at lowest address byte. For C _Bool, Fortran LOGICAL
and C++ bool, 0 implies false and nonzero implies true. C float _Complex, double
_Complex and long double _Complex as well as Fortran COMPLEX and DOUBLE COMPLEX are
represented by a pair of floating point format values for the real and imaginary components.
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432 CHAPTER 13. I/O

Characters are in ISO 8859-1 format [28]. Wide characters (of type MPI_WCHAR) are in
Unicode format [47].

All signed numerals (e.g., MPI_INT, MPI_REAL) have the sign bit at the most significant
bit. MPI_COMPLEX and MPI_DOUBLE_COMPLEX have the sign bit of the real and imaginary
parts at the most significant bit of each part.

According to IEEE specifications [27], the “NaN” (not a number) is system dependent.
It should not be interpreted within MPI as anything other than “NaN.”

Advice to implementors. The MPI treatment of “NaN” is similar to the approach used
in XDR (see ftp://ds.internic.net/rfc/rfc1832.txt). (End of advice to implementors.)

All data is byte aligned, regardless of type. All data items are stored contiguously in
the file (if the file view is contiguous).

Advice to implementors. All bytes of LOGICAL and bool must be checked to determine
the value. (End of advice to implementors.)

Advice to users. The type MPI_PACKED is treated as bytes and is not converted.
The user should be aware that MPI_PACK has the option of placing a header in the
beginning of the pack buffer. (End of advice to users.)

The size of the predefined datatypes returned from MPI_TYPE_CREATE_F90_REAL,
MPI_TYPE_CREATE_F90_COMPLEX, and MPI_TYPE_CREATE_F90_INTEGER are defined
in Section 16.2.5, page 493.

Advice to implementors. When converting a larger size integer to a smaller size
integer, only the less significant bytes are moved. Care must be taken to preserve the
sign bit value. This allows no conversion errors if the data range is within the range
of the smaller size integer. (End of advice to implementors.)

Table 13.2 specifies the sizes of predefined datatypes in “external32” format.

13.5.3 User-Defined Data Representations

There are two situations that cannot be handled by the required representations:

1. a user wants to write a file in a representation unknown to the implementation, and

2. a user wants to read a file written in a representation unknown to the implementation.

User-defined data representations allow the user to insert a third party converter into
the I/O stream to do the data representation conversion.
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Type Length Optional Type Length
------------------ ------ ------------------ ------
MPI_PACKED 1 MPI_INTEGER1 1
MPI_BYTE 1 MPI_INTEGER2 2
MPI_CHAR 1 MPI_INTEGER4 4
MPI_UNSIGNED_CHAR 1 MPI_INTEGER8 8
MPI_SIGNED_CHAR 1 MPI_INTEGER16 16
MPI_WCHAR 2
MPI_SHORT 2 MPI_REAL2 2
MPI_UNSIGNED_SHORT 2 MPI_REAL4 4
MPI_INT 4 MPI_REAL8 8
MPI_UNSIGNED 4 MPI_REAL16 16
MPI_LONG 4
MPI_UNSIGNED_LONG 4 MPI_COMPLEX4 2*2
MPI_LONG_LONG_INT 8 MPI_COMPLEX8 2*4
MPI_UNSIGNED_LONG_LONG 8 MPI_COMPLEX16 2*8
MPI_FLOAT 4 MPI_COMPLEX32 2*16
MPI_DOUBLE 8
MPI_LONG_DOUBLE 16

MPI_C_BOOL 4
MPI_INT8_T 1
MPI_INT16_T 2
MPI_INT32_T 4
MPI_INT64_T 8
MPI_UINT8_T 1
MPI_UINT16_T 2
MPI_UINT32_T 4
MPI_UINT64_T 8
MPI_AINT 8
MPI_OFFSET 8
MPI_C_COMPLEX 2*4
MPI_C_FLOAT_COMPLEX 2*4
MPI_C_DOUBLE_COMPLEX 2*8
MPI_C_LONG_DOUBLE_COMPLEX 2*16

MPI_CHARACTER 1
MPI_LOGICAL 4
MPI_INTEGER 4
MPI_REAL 4
MPI_DOUBLE_PRECISION 8
MPI_COMPLEX 2*4
MPI_DOUBLE_COMPLEX 2*8

Table 13.2: “external32” sizes of predefined datatypes
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MPI_REGISTER_DATAREP(datarep, read_conversion_fn, write_conversion_fn,
dtype_file_extent_fn, extra_state)

IN datarep data representation identifier (string)

IN read_conversion_fn function invoked to convert from file representation to
native representation (function)

IN write_conversion_fn function invoked to convert from native representation
to file representation (function)

IN dtype_file_extent_fn function invoked to get the extent of a datatype as
represented in the file (function)

IN extra_state extra state

int MPI_Register_datarep(char *datarep,
MPI_Datarep_conversion_function *read_conversion_fn,
MPI_Datarep_conversion_function *write_conversion_fn,
MPI_Datarep_extent_function *dtype_file_extent_fn,
void *extra_state)

MPI_REGISTER_DATAREP(DATAREP, READ_CONVERSION_FN, WRITE_CONVERSION_FN,
DTYPE_FILE_EXTENT_FN, EXTRA_STATE, IERROR)

CHARACTER*(*) DATAREP
EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
INTEGER IERROR

{void MPI::Register_datarep(const char* datarep,
MPI::Datarep_conversion_function* read_conversion_fn,
MPI::Datarep_conversion_function* write_conversion_fn,
MPI::Datarep_extent_function* dtype_file_extent_fn,
void* extra_state) (binding deprecated, see Section 15.2) }

The call associates read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn
with the data representation identifier datarep. datarep can then be used as an argument
to MPI_FILE_SET_VIEW, causing subsequent data access operations to call the conversion
functions to convert all data items accessed between file data representation and native
representation. MPI_REGISTER_DATAREP is a local operation and only registers the data
representation for the calling MPI process. If datarep is already defined, an error in the
error class MPI_ERR_DUP_DATAREP is raised using the default file error handler (see Sec-
tion 13.7, page 447). The length of a data representation string is limited to the value of
MPI_MAX_DATAREP_STRING. MPI_MAX_DATAREP_STRING must have a value of at least 64.
No routines are provided to delete data representations and free the associated resources;
it is not expected that an application will generate them in significant numbers.

Extent Callback

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,
MPI_Aint *file_extent, void *extra_state);

SUBROUTINE DATAREP_EXTENT_FUNCTION(DATATYPE, EXTENT, EXTRA_STATE, IERROR)
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INTEGER DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, EXTRA_STATE

{typedef void MPI::Datarep_extent_function(const MPI::Datatype& datatype,
MPI::Aint& file_extent, void* extra_state); (binding deprecated,
see Section 15.2) }

The function dtype_file_extent_fn must return, in file_extent, the number of bytes re-
quired to store datatype in the file representation. The function is passed, in extra_state,
the argument that was passed to the MPI_REGISTER_DATAREP call. MPI will only call
this routine with predefined datatypes employed by the user.

Datarep Conversion Functions

typedef int MPI_Datarep_conversion_function(void *userbuf,
MPI_Datatype datatype, int count, void *filebuf,
MPI_Offset position, void *extra_state);

SUBROUTINE DATAREP_CONVERSION_FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,
POSITION, EXTRA_STATE, IERROR)

<TYPE> USERBUF(*), FILEBUF(*)
INTEGER COUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) POSITION
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

{typedef void MPI::Datarep_conversion_function(void* userbuf,
MPI::Datatype& datatype, int count, void* filebuf,
MPI::Offset position, void* extra_state); (binding deprecated, see
Section 15.2) }

The function read_conversion_fn must convert from file data representation to native
representation. Before calling this routine, MPI allocates and fills filebuf with
count contiguous data items. The type of each data item matches the corresponding entry
for the predefined datatype in the type signature of datatype. The function is passed, in
extra_state, the argument that was passed to the MPI_REGISTER_DATAREP call. The
function must copy all count data items from filebuf to userbuf in the distribution described
by datatype, converting each data item from file representation to native representation.
datatype will be equivalent to the datatype that the user passed to the read function. If the
size of datatype is less than the size of the count data items, the conversion function must
treat datatype as being contiguously tiled over the userbuf. The conversion function must
begin storing converted data at the location in userbuf specified by position into the (tiled)
datatype.

Advice to users. Although the conversion functions have similarities to MPI_PACK
and MPI_UNPACK, one should note the differences in the use of the arguments count
and position. In the conversion functions, count is a count of data items (i.e., count
of typemap entries of datatype), and position is an index into this typemap. In
MPI_PACK, incount refers to the number of whole datatypes, and position is a number
of bytes. (End of advice to users.)

Advice to implementors. A converted read operation could be implemented as follows:
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1. Get file extent of all data items

2. Allocate a filebuf large enough to hold all count data items

3. Read data from file into filebuf

4. Call read_conversion_fn to convert data and place it into userbuf

5. Deallocate filebuf

(End of advice to implementors.)

If MPI cannot allocate a buffer large enough to hold all the data to be converted from
a read operation, it may call the conversion function repeatedly using the same datatype
and userbuf, and reading successive chunks of data to be converted in filebuf. For the first
call (and in the case when all the data to be converted fits into filebuf), MPI will call the
function with position set to zero. Data converted during this call will be stored in the
userbuf according to the first count data items in datatype. Then in subsequent calls to the
conversion function, MPI will increment the value in position by the count of items converted
in the previous call, and the userbuf pointer will be unchanged.

Rationale. Passing the conversion function a position and one datatype for the
transfer allows the conversion function to decode the datatype only once and cache an
internal representation of it on the datatype. Then on subsequent calls, the conversion
function can use the position to quickly find its place in the datatype and continue
storing converted data where it left off at the end of the previous call. (End of
rationale.)

Advice to users. Although the conversion function may usefully cache an internal
representation on the datatype, it should not cache any state information specific to
an ongoing conversion operation, since it is possible for the same datatype to be used
concurrently in multiple conversion operations. (End of advice to users.)

The function write_conversion_fn must convert from native representation to file data
representation. Before calling this routine, MPI allocates filebuf of a size large enough to
hold count contiguous data items. The type of each data item matches the corresponding
entry for the predefined datatype in the type signature of datatype. The function must copy
count data items from userbuf in the distribution described by datatype, to a contiguous
distribution in filebuf, converting each data item from native representation to file repre-
sentation. If the size of datatype is less than the size of count data items, the conversion
function must treat datatype as being contiguously tiled over the userbuf.

The function must begin copying at the location in userbuf specified by position into
the (tiled) datatype. datatype will be equivalent to the datatype that the user passed to the
write function. The function is passed, in extra_state, the argument that was passed to the
MPI_REGISTER_DATAREP call.

The predefined constant MPI_CONVERSION_FN_NULL may be used as either
write_conversion_fn or read_conversion_fn. In that case, MPI will not attempt to invoke
write_conversion_fn or read_conversion_fn, respectively, but will perform the requested data
access using the native data representation.

An MPI implementation must ensure that all data accessed is converted, either by
using a filebuf large enough to hold all the requested data items or else by making repeated
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calls to the conversion function with the same datatype argument and appropriate values
for position.

An implementation will only invoke the callback routines in this section
(read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn) when one of the read or
write routines in Section 13.4, page 404, or MPI_FILE_GET_TYPE_EXTENT is called by
the user. dtype_file_extent_fn will only be passed predefined datatypes employed by the
user. The conversion functions will only be passed datatypes equivalent to those that the
user has passed to one of the routines noted above.

The conversion functions must be reentrant. User defined data representations are
restricted to use byte alignment for all types. Furthermore, it is erroneous for the conversion
functions to call any collective routines or to free datatype.

The conversion functions should return an error code. If the returned error code has
a value other than MPI_SUCCESS, the implementation will raise an error in the class
MPI_ERR_CONVERSION.

13.5.4 Matching Data Representations

It is the user’s responsibility to ensure that the data representation used to read data from
a file is compatible with the data representation that was used to write that data to the file.

In general, using the same data representation name when writing and reading a file
does not guarantee that the representation is compatible. Similarly, using different repre-
sentation names on two different implementations may yield compatible representations.

Compatibility can be obtained when “external32” representation is used, although
precision may be lost and the performance may be less than when “native” representation is
used. Compatibility is guaranteed using ”external32” provided at least one of the following
conditions is met.

• The data access routines directly use types enumerated in Section 13.5.2, page 431,
that are supported by all implementations participating in the I/O. The predefined
type used to write a data item must also be used to read a data item.

• In the case of Fortran 90 programs, the programs participating in the data accesses
obtain compatible datatypes using MPI routines that specify precision and/or range
(Section 16.2.5, page 489).

• For any given data item, the programs participating in the data accesses use compat-
ible predefined types to write and read the data item.

User-defined data representations may be used to provide an implementation compat-
iblity with another implementation’s “native” or “internal” representation.

Advice to users. Section 16.2.5, page 489, defines routines that support the use of
matching datatypes in heterogeneous environments and contains examples illustrating
their use. (End of advice to users.)

13.6 Consistency and Semantics

13.6.1 File Consistency

Consistency semantics define the outcome of multiple accesses to a single file. All file
accesses in MPI are relative to a specific file handle created from a collective open. MPI
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provides three levels of consistency: sequential consistency among all accesses using a single
file handle, sequential consistency among all accesses using file handles created from a single
collective open with atomic mode enabled, and user-imposed consistency among accesses
other than the above. Sequential consistency means the behavior of a set of operations will
be as if the operations were performed in some serial order consistent with program order;
each access appears atomic, although the exact ordering of accesses is unspecified. User-
imposed consistency may be obtained using program order and calls to MPI_FILE_SYNC.

Let FH1 be the set of file handles created from one particular collective open of the
file FOO, and FH2 be the set of file handles created from a different collective open of
FOO. Note that nothing restrictive is said about FH1 and FH2: the sizes of FH1 and
FH2 may be different, the groups of processes used for each open may or may not intersect,
the file handles in FH1 may be destroyed before those in FH2 are created, etc. Consider
the following three cases: a single file handle (e.g., fh1 ∈ FH1), two file handles created
from a single collective open (e.g., fh1a ∈ FH1 and fh1b ∈ FH1), and two file handles from
different collective opens (e.g., fh1 ∈ FH1 and fh2 ∈ FH2).

For the purpose of consistency semantics, a matched pair (Section 13.4.5, page 421)
of split collective data access operations (e.g., MPI_FILE_READ_ALL_BEGIN and
MPI_FILE_READ_ALL_END) compose a single data access operation. Similarly, a non-
blocking data access routine (e.g., MPI_FILE_IREAD) and the routine which completes the
request (e.g., MPI_WAIT) also compose a single data access operation. For all cases below,
these data access operations are subject to the same constraints as blocking data access
operations.

Advice to users. For an MPI_FILE_IREAD and MPI_WAIT pair, the operation begins
when MPI_FILE_IREAD is called and ends when MPI_WAIT returns. (End of advice
to users.)

Assume that A1 and A2 are two data access operations. Let D1 (D2) be the set of
absolute byte displacements of every byte accessed in A1 (A2). The two data accesses
overlap if D1 ∩D2 6= ∅. The two data accesses conflict if they overlap and at least one is a
write access.

Let SEQfh be a sequence of file operations on a single file handle, bracketed by
MPI_FILE_SYNCs on that file handle. (Both opening and closing a file implicitly perform
an MPI_FILE_SYNC.) SEQfh is a “write sequence” if any of the data access operations in
the sequence are writes or if any of the file manipulation operations in the sequence change
the state of the file (e.g., MPI_FILE_SET_SIZE or MPI_FILE_PREALLOCATE). Given two
sequences, SEQ1 and SEQ2, we say they are not concurrent if one sequence is guaranteed
to completely precede the other (temporally).

The requirements for guaranteeing sequential consistency among all accesses to a par-
ticular file are divided into the three cases given below. If any of these requirements are
not met, then the value of all data in that file is implementation dependent.

Case 1: fh1 ∈ FH1 All operations on fh1 are sequentially consistent if atomic mode is
set. If nonatomic mode is set, then all operations on fh1 are sequentially consistent if they
are either nonconcurrent, nonconflicting, or both.

Case 2: fh1a ∈ FH1 and fh1b ∈ FH1 Assume A1 is a data access operation using fh1a,
and A2 is a data access operation using fh1b. If for any access A1, there is no access A2

that conflicts with A1, then MPI guarantees sequential consistency.
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13.6. CONSISTENCY AND SEMANTICS 439

However, unlike POSIX semantics, the default MPI semantics for conflicting accesses
do not guarantee sequential consistency. If A1 and A2 conflict, sequential consistency can be
guaranteed by either enabling atomic mode via the MPI_FILE_SET_ATOMICITY routine,
or meeting the condition described in Case 3 below.

Case 3: fh1 ∈ FH1 and fh2 ∈ FH2 Consider access to a single file using file handles from
distinct collective opens. In order to guarantee sequential consistency, MPI_FILE_SYNC
must be used (both opening and closing a file implicitly perform an MPI_FILE_SYNC).

Sequential consistency is guaranteed among accesses to a single file if for any write
sequence SEQ1 to the file, there is no sequence SEQ2 to the file which is concurrent with
SEQ1. To guarantee sequential consistency when there are write sequences,
MPI_FILE_SYNC must be used together with a mechanism that guarantees nonconcurrency
of the sequences.

See the examples in Section 13.6.10, page 443, for further clarification of some of these
consistency semantics.

MPI_FILE_SET_ATOMICITY(fh, flag)

INOUT fh file handle (handle)

IN flag true to set atomic mode, false to set nonatomic mode
(logical)

int MPI_File_set_atomicity(MPI_File fh, int flag)

MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)
INTEGER FH, IERROR
LOGICAL FLAG

{void MPI::File::Set_atomicity(bool flag) (binding deprecated, see Section 15.2) }

Let FH be the set of file handles created by one collective open. The consistency
semantics for data access operations using FH is set by collectively calling
MPI_FILE_SET_ATOMICITY on FH. MPI_FILE_SET_ATOMICITY is collective; all pro-
cesses in the group must pass identical values for fh and flag. If flag is true, atomic mode is
set; if flag is false, nonatomic mode is set.

Changing the consistency semantics for an open file only affects new data accesses.
All completed data accesses are guaranteed to abide by the consistency semantics in effect
during their execution. Nonblocking data accesses and split collective operations that have
not completed (e.g., via MPI_WAIT) are only guaranteed to abide by nonatomic mode
consistency semantics.

Advice to implementors. Since the semantics guaranteed by atomic mode are stronger
than those guaranteed by nonatomic mode, an implementation is free to adhere to
the more stringent atomic mode semantics for outstanding requests. (End of advice
to implementors.)
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MPI_FILE_GET_ATOMICITY(fh, flag)

IN fh file handle (handle)

OUT flag true if atomic mode, false if nonatomic mode (logical)

int MPI_File_get_atomicity(MPI_File fh, int *flag)

MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)
INTEGER FH, IERROR
LOGICAL FLAG

{bool MPI::File::Get_atomicity() const (binding deprecated, see Section 15.2) }

MPI_FILE_GET_ATOMICITY returns the current consistency semantics for data access
operations on the set of file handles created by one collective open. If flag is true, atomic
mode is enabled; if flag is false, nonatomic mode is enabled.

MPI_FILE_SYNC(fh)

INOUT fh file handle (handle)

int MPI_File_sync(MPI_File fh)

MPI_FILE_SYNC(FH, IERROR)
INTEGER FH, IERROR

{void MPI::File::Sync() (binding deprecated, see Section 15.2) }

Calling MPI_FILE_SYNC with fh causes all previous writes to fh by the calling process
to be transferred to the storage device. If other processes have made updates to the storage
device, then all such updates become visible to subsequent reads of fh by the calling process.
MPI_FILE_SYNC may be necessary to ensure sequential consistency in certain cases (see
above).

MPI_FILE_SYNC is a collective operation.
The user is responsible for ensuring that all nonblocking requests and split collective

operations on fh have been completed before calling MPI_FILE_SYNC—otherwise, the call
to MPI_FILE_SYNC is erroneous.

13.6.2 Random Access vs. Sequential Files

MPI distinguishes ordinary random access files from sequential stream files, such as pipes
and tape files. Sequential stream files must be opened with the MPI_MODE_SEQUENTIAL

flag set in the amode. For these files, the only permitted data access operations are shared
file pointer reads and writes. Filetypes and etypes with holes are erroneous. In addition, the
notion of file pointer is not meaningful; therefore, calls to MPI_FILE_SEEK_SHARED and
MPI_FILE_GET_POSITION_SHARED are erroneous, and the pointer update rules specified
for the data access routines do not apply. The amount of data accessed by a data access
operation will be the amount requested unless the end of file is reached or an error is raised.

Rationale. This implies that reading on a pipe will always wait until the requested
amount of data is available or until the process writing to the pipe has issued an end
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of file. (End of rationale.)

Finally, for some sequential files, such as those corresponding to magnetic tapes or
streaming network connections, writes to the file may be destructive. In other words, a
write may act as a truncate (a MPI_FILE_SET_SIZE with size set to the current position)
followed by the write.

13.6.3 Progress

The progress rules of MPI are both a promise to users and a set of constraints on imple-
mentors. In cases where the progress rules restrict possible implementation choices more
than the interface specification alone, the progress rules take precedence.

All blocking routines must complete in finite time unless an exceptional condition (such
as resource exhaustion) causes an error.

Nonblocking data access routines inherit the following progress rule from nonblocking
point to point communication: a nonblocking write is equivalent to a nonblocking send for
which a receive is eventually posted, and a nonblocking read is equivalent to a nonblocking
receive for which a send is eventually posted.

Finally, an implementation is free to delay progress of collective routines until all pro-
cesses in the group associated with the collective call have invoked the routine. Once all
processes in the group have invoked the routine, the progress rule of the equivalent noncol-
lective routine must be followed.

13.6.4 Collective File Operations

Collective file operations are subject to the same restrictions as collective communication
operations. For a complete discussion, please refer to the semantics set forth in Section 5.12
on page 183.

Collective file operations are collective over a dup of the communicator used to open
the file—this duplicate communicator is implicitly specified via the file handle argument.
Different processes can pass different values for other arguments of a collective routine unless
specified otherwise.

13.6.5 Type Matching

The type matching rules for I/O mimic the type matching rules for communication with one
exception: if etype is MPI_BYTE, then this matches any datatype in a data access operation.
In general, the etype of data items written must match the etype used to read the items,
and for each data access operation, the current etype must also match the type declaration
of the data access buffer.

Advice to users. In most cases, use of MPI_BYTE as a wild card will defeat the
file interoperability features of MPI. File interoperability can only perform automatic
conversion between heterogeneous data representations when the exact datatypes ac-
cessed are explicitly specified. (End of advice to users.)

13.6.6 Miscellaneous Clarifications

Once an I/O routine completes, it is safe to free any opaque objects passed as arguments
to that routine. For example, the comm and info used in an MPI_FILE_OPEN, or the etype
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and filetype used in an MPI_FILE_SET_VIEW, can be freed without affecting access to the
file. Note that for nonblocking routines and split collective operations, the operation must
be completed before it is safe to reuse data buffers passed as arguments.

As in communication, datatypes must be committed before they can be used in file
manipulation or data access operations. For example, the etype and filetype must be com-
mitted before calling MPI_FILE_SET_VIEW, and the datatype must be committed before
calling MPI_FILE_READ or MPI_FILE_WRITE.

13.6.7 MPI_Offset Type

MPI_Offset is an integer type of size sufficient to represent the size (in bytes) of the largest
file supported by MPI. Displacements and offsets are always specified as values of type
MPI_Offset.

In Fortran, the corresponding integer is an integer of kind MPI_OFFSET_KIND, defined
in mpif.h and the mpi module.

In Fortran 77 environments that do not support KIND parameters, MPI_Offset argu-
ments should be declared as an INTEGER of suitable size. The language interoperability
implications for MPI_Offset are similar to those for addresses (see Section 16.3, page 497).

13.6.8 Logical vs. Physical File Layout

MPI specifies how the data should be laid out in a virtual file structure (the view), not
how that file structure is to be stored on one or more disks. Specification of the physical
file structure was avoided because it is expected that the mapping of files to disks will be
system specific, and any specific control over file layout would therefore restrict program
portability. However, there are still cases where some information may be necessary to
optimize file layout. This information can be provided as hints specified via info when a file
is created (see Section 13.2.8, page 398).

13.6.9 File Size

The size of a file may be increased by writing to the file after the current end of file. The size
may also be changed by calling MPI size changing routines, such as MPI_FILE_SET_SIZE. A
call to a size changing routine does not necessarily change the file size. For example, calling
MPI_FILE_PREALLOCATE with a size less than the current size does not change the size.

Consider a set of bytes that has been written to a file since the most recent call to a
size changing routine, or since MPI_FILE_OPEN if no such routine has been called. Let the
high byte be the byte in that set with the largest displacement. The file size is the larger of

• One plus the displacement of the high byte.

• The size immediately after the size changing routine, or MPI_FILE_OPEN, returned.

When applying consistency semantics, calls to MPI_FILE_SET_SIZE and
MPI_FILE_PREALLOCATE are considered writes to the file (which conflict with operations
that access bytes at displacements between the old and new file sizes), and
MPI_FILE_GET_SIZE is considered a read of the file (which overlaps with all accesses to the
file).
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Advice to users. Any sequence of operations containing the collective routines
MPI_FILE_SET_SIZE and MPI_FILE_PREALLOCATE is a write sequence. As such,
sequential consistency in nonatomic mode is not guaranteed unless the conditions in
Section 13.6.1, page 437, are satisfied. (End of advice to users.)

File pointer update semantics (i.e., file pointers are updated by the amount accessed)
are only guaranteed if file size changes are sequentially consistent.

Advice to users. Consider the following example. Given two operations made by
separate processes to a file containing 100 bytes: an MPI_FILE_READ of 10 bytes and
an MPI_FILE_SET_SIZE to 0 bytes. If the user does not enforce sequential consis-
tency between these two operations, the file pointer may be updated by the amount
requested (10 bytes) even if the amount accessed is zero bytes. (End of advice to
users.)

13.6.10 Examples

The examples in this section illustrate the application of the MPI consistency and semantics
guarantees. These address

• conflicting accesses on file handles obtained from a single collective open, and

• all accesses on file handles obtained from two separate collective opens.

The simplest way to achieve consistency for conflicting accesses is to obtain sequential
consistency by setting atomic mode. For the code below, process 1 will read either 0 or 10
integers. If the latter, every element of b will be 5. If nonatomic mode is set, the results of
the read are undefined.

/* Process 0 */
int i, a[10] ;
int TRUE = 1;

for ( i=0;i<10;i++)
a[i] = 5 ;

MPI_File_open( MPI_COMM_WORLD, "workfile",
MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0 ) ;

MPI_File_set_view( fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
MPI_File_set_atomicity( fh0, TRUE ) ;
MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status) ;
/* MPI_Barrier( MPI_COMM_WORLD ) ; */

/* Process 1 */
int b[10] ;
int TRUE = 1;
MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1 ) ;
MPI_File_set_view( fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
MPI_File_set_atomicity( fh1, TRUE ) ;
/* MPI_Barrier( MPI_COMM_WORLD ) ; */
MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status) ;
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A user may guarantee that the write on process 0 precedes the read on process 1 by imposing
temporal order with, for example, calls to MPI_BARRIER.

Advice to users. Routines other than MPI_BARRIER may be used to impose temporal
order. In the example above, process 0 could use MPI_SEND to send a 0 byte message,
received by process 1 using MPI_RECV. (End of advice to users.)

Alternatively, a user can impose consistency with nonatomic mode set:

/* Process 0 */
int i, a[10] ;
for ( i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open( MPI_COMM_WORLD, "workfile",
MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0 ) ;

MPI_File_set_view( fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status ) ;
MPI_File_sync( fh0 ) ;
MPI_Barrier( MPI_COMM_WORLD ) ;
MPI_File_sync( fh0 ) ;

/* Process 1 */
int b[10] ;
MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1 ) ;
MPI_File_set_view( fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
MPI_File_sync( fh1 ) ;
MPI_Barrier( MPI_COMM_WORLD ) ;
MPI_File_sync( fh1 ) ;
MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status ) ;

The “sync-barrier-sync” construct is required because:

• The barrier ensures that the write on process 0 occurs before the read on process 1.

• The first sync guarantees that the data written by all processes is transferred to the
storage device.

• The second sync guarantees that all data which has been transferred to the storage
device is visible to all processes. (This does not affect process 0 in this example.)

The following program represents an erroneous attempt to achieve consistency by elim-
inating the apparently superfluous second “sync” call for each process.

/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */
/* Process 0 */
int i, a[10] ;
for ( i=0;i<10;i++)

a[i] = 5 ;
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MPI_File_open( MPI_COMM_WORLD, "workfile",
MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0 ) ;

MPI_File_set_view( fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status ) ;
MPI_File_sync( fh0 ) ;
MPI_Barrier( MPI_COMM_WORLD ) ;

/* Process 1 */
int b[10] ;
MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1 ) ;
MPI_File_set_view( fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
MPI_Barrier( MPI_COMM_WORLD ) ;
MPI_File_sync( fh1 ) ;
MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status ) ;

/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */

The above program also violates the MPI rule against out-of-order collective operations and
will deadlock for implementations in which MPI_FILE_SYNC blocks.

Advice to users. Some implementations may choose to implement MPI_FILE_SYNC
as a temporally synchronizing function. When using such an implementation, the
“sync-barrier-sync” construct above can be replaced by a single “sync.” The results of
using such code with an implementation for which MPI_FILE_SYNC is not temporally
synchronizing is undefined. (End of advice to users.)

Asynchronous I/O

The behavior of asynchronous I/O operations is determined by applying the rules specified
above for synchronous I/O operations.

The following examples all access a preexisting file “myfile.” Word 10 in myfile initially
contains the integer 2. Each example writes and reads word 10.

First consider the following code fragment:

int a = 4, b, TRUE=1;
MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;
MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
/* MPI_File_set_atomicity( fh, TRUE ) ; Use this to set atomic mode. */
MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;
MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;
MPI_Waitall(2, reqs, statuses) ;

For asynchronous data access operations, MPI specifies that the access occurs at any time
between the call to the asynchronous data access routine and the return from the corre-
sponding request complete routine. Thus, executing either the read before the write, or the
write before the read is consistent with program order. If atomic mode is set, then MPI
guarantees sequential consistency, and the program will read either 2 or 4 into b. If atomic
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446 CHAPTER 13. I/O

mode is not set, then sequential consistency is not guaranteed and the program may read
something other than 2 or 4 due to the conflicting data access.

Similarly, the following code fragment does not order file accesses:

int a = 4, b;
MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;
MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
/* MPI_File_set_atomicity( fh, TRUE ) ; Use this to set atomic mode. */
MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;
MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;
MPI_Wait(&reqs[0], &status) ;
MPI_Wait(&reqs[1], &status) ;

If atomic mode is set, either 2 or 4 will be read into b. Again, MPI does not guarantee
sequential consistency in nonatomic mode.

On the other hand, the following code fragment:

int a = 4, b;
MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;
MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;
MPI_Wait(&reqs[0], &status) ;
MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;
MPI_Wait(&reqs[1], &status) ;

defines the same ordering as:

int a = 4, b;
MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;
MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
MPI_File_write_at(fh, 10, &a, 1, MPI_INT, &status ) ;
MPI_File_read_at(fh, 10, &b, 1, MPI_INT, &status ) ;

Since

• nonconcurrent operations on a single file handle are sequentially consistent, and

• the program fragments specify an order for the operations,

MPI guarantees that both program fragments will read the value 4 into b. There is no need
to set atomic mode for this example.

Similar considerations apply to conflicting accesses of the form:

MPI_File_write_all_begin(fh,...) ;
MPI_File_iread(fh,...) ;
MPI_Wait(fh,...) ;
MPI_File_write_all_end(fh,...) ;

Recall that constraints governing consistency and semantics are not relevant to the
following:
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13.7. I/O ERROR HANDLING 447

MPI_File_write_all_begin(fh,...) ;
MPI_File_read_all_begin(fh,...) ;
MPI_File_read_all_end(fh,...) ;
MPI_File_write_all_end(fh,...) ;

since split collective operations on the same file handle may not overlap (see Section 13.4.5,
page 421).

13.7 I/O Error Handling

By default, communication errors are fatal—MPI_ERRORS_ARE_FATAL is the default error
handler associated with MPI_COMM_WORLD. I/O errors are usually less catastrophic (e.g.,
“file not found”) than communication errors, and common practice is to catch these errors
and continue executing. For this reason, MPI provides additional error facilities for I/O.

Advice to users. MPI does not specify the state of a computation after an erroneous
MPI call has occurred. A high-quality implementation will support the I/O error
handling facilities, allowing users to write programs using common practice for I/O.
(End of advice to users.)

Like communicators, each file handle has an error handler associated with it. The MPI
I/O error handling routines are defined in Section 8.3, page 276.

When MPI calls a user-defined error handler resulting from an error on a particular
file handle, the first two arguments passed to the file error handler are the file handle and
the error code. For I/O errors that are not associated with a valid file handle (e.g., in
MPI_FILE_OPEN or MPI_FILE_DELETE), the first argument passed to the error handler is
MPI_FILE_NULL,

I/O error handling differs from communication error handling in another important
aspect. By default, the predefined error handler for file handles is MPI_ERRORS_RETURN.
The default file error handler has two purposes: when a new file handle is created (by
MPI_FILE_OPEN), the error handler for the new file handle is initially set to the default
error handler, and I/O routines that have no valid file handle on which to raise an error (e.g.,
MPI_FILE_OPEN or MPI_FILE_DELETE) use the default file error handler. The default
file error handler can be changed by specifying MPI_FILE_NULL as the
fh argument to MPI_FILE_SET_ERRHANDLER. The current value of the default file error
handler can be determined by passing MPI_FILE_NULL as the fh argument to
MPI_FILE_GET_ERRHANDLER.

Rationale. For communication, the default error handler is inherited from
MPI_COMM_WORLD. In I/O, there is no analogous “root” file handle from which de-
fault properties can be inherited. Rather than invent a new global file handle, the
default file error handler is manipulated as if it were attached to MPI_FILE_NULL. (End
of rationale.)

13.8 I/O Error Classes

The implementation dependent error codes returned by the I/O routines can be converted
into the error classes defined in Table 13.3.
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448 CHAPTER 13. I/O

In addition, calls to routines in this chapter may raise errors in other MPI classes, such
as MPI_ERR_TYPE.

MPI_ERR_FILE Invalid file handle
MPI_ERR_NOT_SAME Collective argument not identical on all

processes, or collective routines called in
a different order by different processes

MPI_ERR_AMODE Error related to the amode passed to
MPI_FILE_OPEN

MPI_ERR_UNSUPPORTED_DATAREP Unsupported datarep passed to
MPI_FILE_SET_VIEW

MPI_ERR_UNSUPPORTED_OPERATION Unsupported operation, such as seeking on
a file which supports sequential access only

MPI_ERR_NO_SUCH_FILE File does not exist
MPI_ERR_FILE_EXISTS File exists
MPI_ERR_BAD_FILE Invalid file name (e.g., path name too long)
MPI_ERR_ACCESS Permission denied
MPI_ERR_NO_SPACE Not enough space
MPI_ERR_QUOTA Quota exceeded
MPI_ERR_READ_ONLY Read-only file or file system
MPI_ERR_FILE_IN_USE File operation could not be completed, as

the file is currently open by some process
MPI_ERR_DUP_DATAREP Conversion functions could not be regis-

tered because a data representation identi-
fier that was already defined was passed to
MPI_REGISTER_DATAREP

MPI_ERR_CONVERSION An error occurred in a user supplied data
conversion function.

MPI_ERR_IO Other I/O error

Table 13.3: I/O Error Classes

13.9 Examples

13.9.1 Double Buffering with Split Collective I/O

This example shows how to overlap computation and output. The computation is performed
by the function compute_buffer().

/*=========================================================================
*
* Function: double_buffer
*
* Synopsis:
* void double_buffer(
* MPI_File fh, ** IN
* MPI_Datatype buftype, ** IN
* int bufcount ** IN
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* )
*
* Description:
* Performs the steps to overlap computation with a collective write
* by using a double-buffering technique.
*
* Parameters:
* fh previously opened MPI file handle
* buftype MPI datatype for memory layout
* (Assumes a compatible view has been set on fh)
* bufcount # buftype elements to transfer
*------------------------------------------------------------------------*/

/* this macro switches which buffer "x" is pointing to */
#define TOGGLE_PTR(x) (((x)==(buffer1)) ? (x=buffer2) : (x=buffer1))

void double_buffer( MPI_File fh, MPI_Datatype buftype, int bufcount)
{

MPI_Status status; /* status for MPI calls */
float *buffer1, *buffer2; /* buffers to hold results */
float *compute_buf_ptr; /* destination buffer */

/* for computing */
float *write_buf_ptr; /* source for writing */
int done; /* determines when to quit */

/* buffer initialization */
buffer1 = (float *)

malloc(bufcount*sizeof(float)) ;
buffer2 = (float *)

malloc(bufcount*sizeof(float)) ;
compute_buf_ptr = buffer1 ; /* initially point to buffer1 */
write_buf_ptr = buffer1 ; /* initially point to buffer1 */

/* DOUBLE-BUFFER prolog:
* compute buffer1; then initiate writing buffer1 to disk
*/
compute_buffer(compute_buf_ptr, bufcount, &done);
MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);

/* DOUBLE-BUFFER steady state:
* Overlap writing old results from buffer pointed to by write_buf_ptr
* with computing new results into buffer pointed to by compute_buf_ptr.
*
* There is always one write-buffer and one compute-buffer in use
* during steady state.
*/
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while (!done) {
TOGGLE_PTR(compute_buf_ptr);
compute_buffer(compute_buf_ptr, bufcount, &done);
MPI_File_write_all_end(fh, write_buf_ptr, &status);
TOGGLE_PTR(write_buf_ptr);
MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);

}

/* DOUBLE-BUFFER epilog:
* wait for final write to complete.
*/
MPI_File_write_all_end(fh, write_buf_ptr, &status);

/* buffer cleanup */
free(buffer1);
free(buffer2);

}

13.9.2 Subarray Filetype Constructor

Process 0 Process 2

Process 1 Process 3

Figure 13.4: Example array file layout

Assume we are writing out a 100x100 2D array of double precision floating point num-
bers that is distributed among 4 processes such that each process has a block of 25 columns
(e.g., process 0 has columns 0-24, process 1 has columns 25-49, etc.; see Figure 13.4). To
create the filetypes for each process one could use the following C program (see Section 4.1.3
on page 87):

double subarray[100][25];
MPI_Datatype filetype;
int sizes[2], subsizes[2], starts[2];
int rank;
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HolesMPI_DOUBLE

Figure 13.5: Example local array filetype for process 1

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
sizes[0]=100; sizes[1]=100;
subsizes[0]=100; subsizes[1]=25;
starts[0]=0; starts[1]=rank*subsizes[1];

MPI_Type_create_subarray(2, sizes, subsizes, starts, MPI_ORDER_C,
MPI_DOUBLE, &filetype);

Or, equivalently in Fortran:

double precision subarray(100,25)
integer filetype, rank, ierror
integer sizes(2), subsizes(2), starts(2)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)
sizes(1)=100
sizes(2)=100
subsizes(1)=100
subsizes(2)=25
starts(1)=0
starts(2)=rank*subsizes(2)

call MPI_TYPE_CREATE_SUBARRAY(2, sizes, subsizes, starts, &
MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, &
filetype, ierror)

The generated filetype will then describe the portion of the file contained within the
process’s subarray with holes for the space taken by the other processes. Figure 13.5 shows
the filetype created for process 1.
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Chapter 14

Profiling Interface

14.1 Requirements

To meet the MPI profiling interface, an implementation of the MPI functions must

1. provide a mechanism through which all of the MPI defined functions except those
allowed as macros (See Section 2.6.5). This requires, in C and Fortran, an alternate
entry point name, with the prefix PMPI_ for each MPI function. The profiling interface
in C++ is described in Section 16.1.10. For routines implemented as macros, it is still
required that the PMPI_ version be supplied and work as expected, but it is not
possible to replace at link time the MPI_ version with a user-defined version.

2. ensure that those MPI functions that are not replaced may still be linked into an
executable image without causing name clashes.

3. document the implementation of different language bindings of the MPI interface if
they are layered on top of each other, so that the profiler developer knows whether
she must implement the profile interface for each binding, or can economise by imple-
menting it only for the lowest level routines.

4. where the implementation of different language bindings is done through a layered
approach (e.g. the Fortran binding is a set of “wrapper” functions that call the C
implementation), ensure that these wrapper functions are separable from the rest of
the library.

This separability is necessary to allow a separate profiling library to be correctly
implemented, since (at least with Unix linker semantics) the profiling library must
contain these wrapper functions if it is to perform as expected. This requirement
allows the person who builds the profiling library to extract these functions from the
original MPI library and add them into the profiling library without bringing along
any other unnecessary code.

5. provide a no-op routine MPI_PCONTROL in the MPI library.

14.2 Discussion

The objective of the MPI profiling interface is to ensure that it is relatively easy for authors
of profiling (and other similar) tools to interface their codes to MPI implementations on
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454 CHAPTER 14. PROFILING INTERFACE

different machines.
Since MPI is a machine independent standard with many different implementations,

it is unreasonable to expect that the authors of profiling tools for MPI will have access to
the source code that implements MPI on any particular machine. It is therefore necessary
to provide a mechanism by which the implementors of such tools can collect whatever
performance information they wish without access to the underlying implementation.

We believe that having such an interface is important if MPI is to be attractive to end
users, since the availability of many different tools will be a significant factor in attracting
users to the MPI standard.

The profiling interface is just that, an interface. It says nothing about the way in which
it is used. There is therefore no attempt to lay down what information is collected through
the interface, or how the collected information is saved, filtered, or displayed.

While the initial impetus for the development of this interface arose from the desire to
permit the implementation of profiling tools, it is clear that an interface like that specified
may also prove useful for other purposes, such as “internetworking” multiple MPI imple-
mentations. Since all that is defined is an interface, there is no objection to its being used
wherever it is useful.

As the issues being addressed here are intimately tied up with the way in which ex-
ecutable images are built, which may differ greatly on different machines, the examples
given below should be treated solely as one way of implementing the objective of the MPI
profiling interface. The actual requirements made of an implementation are those detailed
in the Requirements section above, the whole of the rest of this chapter is only present as
justification and discussion of the logic for those requirements.

The examples below show one way in which an implementation could be constructed to
meet the requirements on a Unix system (there are doubtless others that would be equally
valid).

14.3 Logic of the Design

Provided that an MPI implementation meets the requirements above, it is possible for the
implementor of the profiling system to intercept all of the MPI calls that are made by
the user program. She can then collect whatever information she requires before calling
the underlying MPI implementation (through its name shifted entry points) to achieve the
desired effects.

14.3.1 Miscellaneous Control of Profiling

There is a clear requirement for the user code to be able to control the profiler dynamically
at run time. This is normally used for (at least) the purposes of

• Enabling and disabling profiling depending on the state of the calculation.

• Flushing trace buffers at non-critical points in the calculation

• Adding user events to a trace file.

These requirements are met by use of the MPI_PCONTROL.
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MPI_PCONTROL(level, . . . )

IN level Profiling level

int MPI_Pcontrol(const int level, ...)

MPI_PCONTROL(LEVEL)
INTEGER LEVEL

{void MPI::Pcontrol(const int level, ...) (binding deprecated, see Section 15.2)
}

MPI libraries themselves make no use of this routine, and simply return immediately
to the user code. However the presence of calls to this routine allows a profiling package to
be explicitly called by the user.

Since MPI has no control of the implementation of the profiling code, we are unable
to specify precisely the semantics that will be provided by calls to MPI_PCONTROL. This
vagueness extends to the number of arguments to the function, and their datatypes.

However to provide some level of portability of user codes to different profiling libraries,
we request the following meanings for certain values of level.

• level==0 Profiling is disabled.

• level==1 Profiling is enabled at a normal default level of detail.

• level==2 Profile buffers are flushed. (This may be a no-op in some profilers).

• All other values of level have profile library defined effects and additional arguments.

We also request that the default state after MPI_INIT has been called is for profiling
to be enabled at the normal default level. (i.e. as if MPI_PCONTROL had just been called
with the argument 1). This allows users to link with a profiling library and obtain profile
output without having to modify their source code at all.

The provision of MPI_PCONTROL as a no-op in the standard MPI library allows them
to modify their source code to obtain more detailed profiling information, but still be able
to link exactly the same code against the standard MPI library.

14.4 Examples

14.4.1 Profiler Implementation

Suppose that the profiler wishes to accumulate the total amount of data sent by the
MPI_SEND function, along with the total elapsed time spent in the function. This could
trivially be achieved thus

static int totalBytes = 0;
static double totalTime = 0.0;

int MPI_Send(void* buffer, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

{
double tstart = MPI_Wtime(); /* Pass on all the arguments */
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int extent;
int result = PMPI_Send(buffer,count,datatype,dest,tag,comm);

MPI_Type_size(datatype, &extent); /* Compute size */
totalBytes += count*extent;

totalTime += MPI_Wtime() - tstart; /* and time */

return result;
}

14.4.2 MPI Library Implementation

On a Unix system, in which the MPI library is implemented in C, then there are various
possible options, of which two of the most obvious are presented here. Which is better
depends on whether the linker and compiler support weak symbols.

Systems with Weak Symbols

If the compiler and linker support weak external symbols (e.g. Solaris 2.x, other system
V.4 machines), then only a single library is required through the use of #pragma weak thus

#pragma weak MPI_Example = PMPI_Example

int PMPI_Example(/* appropriate args */)
{

/* Useful content */
}

The effect of this #pragma is to define the external symbol MPI_Example as a weak
definition. This means that the linker will not complain if there is another definition of the
symbol (for instance in the profiling library), however if no other definition exists, then the
linker will use the weak definition.

Systems Without Weak Symbols

In the absence of weak symbols then one possible solution would be to use the C macro
pre-processor thus

#ifdef PROFILELIB
# ifdef __STDC__
# define FUNCTION(name) P##name
# else
# define FUNCTION(name) P/**/name
# endif
#else
# define FUNCTION(name) name
#endif
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Each of the user visible functions in the library would then be declared thus

int FUNCTION(MPI_Example)(/* appropriate args */)
{

/* Useful content */
}

The same source file can then be compiled to produce both versions of the library,
depending on the state of the PROFILELIB macro symbol.

It is required that the standard MPI library be built in such a way that the inclusion of
MPI functions can be achieved one at a time. This is a somewhat unpleasant requirement,
since it may mean that each external function has to be compiled from a separate file.
However this is necessary so that the author of the profiling library need only define those
MPI functions that she wishes to intercept, references to any others being fulfilled by the
normal MPI library. Therefore the link step can look something like this

% cc ... -lmyprof -lpmpi -lmpi

Here libmyprof.a contains the profiler functions that intercept some of the MPI func-
tions. libpmpi.a contains the “name shifted” MPI functions, and libmpi.a contains the
normal definitions of the MPI functions.

14.4.3 Complications

Multiple Counting

Since parts of the MPI library may themselves be implemented using more basic MPI func-
tions (e.g. a portable implementation of the collective operations implemented using point
to point communications), there is potential for profiling functions to be called from within
an MPI function that was called from a profiling function. This could lead to “double
counting” of the time spent in the inner routine. Since this effect could actually be useful
under some circumstances (e.g. it might allow one to answer the question “How much time
is spent in the point to point routines when they’re called from collective functions ?”), we
have decided not to enforce any restrictions on the author of the MPI library that would
overcome this. Therefore the author of the profiling library should be aware of this problem,
and guard against it herself. In a single threaded world this is easily achieved through use
of a static variable in the profiling code that remembers if you are already inside a profiling
routine. It becomes more complex in a multi-threaded environment (as does the meaning
of the times recorded !)

Linker Oddities

The Unix linker traditionally operates in one pass : the effect of this is that functions from
libraries are only included in the image if they are needed at the time the library is scanned.
When combined with weak symbols, or multiple definitions of the same function, this can
cause odd (and unexpected) effects.

Consider, for instance, an implementation of MPI in which the Fortran binding is
achieved by using wrapper functions on top of the C implementation. The author of the
profile library then assumes that it is reasonable only to provide profile functions for the C
binding, since Fortran will eventually call these, and the cost of the wrappers is assumed
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458 CHAPTER 14. PROFILING INTERFACE

to be small. However, if the wrapper functions are not in the profiling library, then none
of the profiled entry points will be undefined when the profiling library is called. Therefore
none of the profiling code will be included in the image. When the standard MPI library
is scanned, the Fortran wrappers will be resolved, and will also pull in the base versions of
the MPI functions. The overall effect is that the code will link successfully, but will not be
profiled.

To overcome this we must ensure that the Fortran wrapper functions are included in
the profiling version of the library. We ensure that this is possible by requiring that these
be separable from the rest of the base MPI library. This allows them to be ared out of the
base library and into the profiling one.

14.5 Multiple Levels of Interception

The scheme given here does not directly support the nesting of profiling functions, since it
provides only a single alternative name for each MPI function. Consideration was given to
an implementation that would allow multiple levels of call interception, however we were
unable to construct an implementation of this that did not have the following disadvantages

• assuming a particular implementation language.

• imposing a run time cost even when no profiling was taking place.

Since one of the objectives of MPI is to permit efficient, low latency implementations, and
it is not the business of a standard to require a particular implementation language, we
decided to accept the scheme outlined above.

Note, however, that it is possible to use the scheme above to implement a multi-level
system, since the function called by the user may call many different profiling functions
before calling the underlying MPI function.

Unfortunately such an implementation may require more cooperation between the dif-
ferent profiling libraries than is required for the single level implementation detailed above.
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Chapter 15

Deprecated Functions

15.1 Deprecated since MPI-2.0

The following function is deprecated and is superseded by MPI_TYPE_CREATE_HVECTOR
in MPI-2.0. The language independent definition and the C binding of the deprecated
function is the same as of the new function, except of the function name. Only the Fortran
language binding is different.

MPI_TYPE_HVECTOR( count, blocklength, stride, oldtype, newtype)

IN count number of blocks (non-negative integer)

IN blocklength number of elements in each block (non-negative inte-
ger)

IN stride number of bytes between start of each block (integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_hvector(int count, int blocklength, MPI_Aint stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_TYPE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

The following function is deprecated and is superseded by
MPI_TYPE_CREATE_HINDEXED in MPI-2.0. The language independent definition and
the C binding of the deprecated function is the same as of the new function, except of the
function name. Only the Fortran language binding is different.
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460 CHAPTER 15. DEPRECATED FUNCTIONS

MPI_TYPE_HINDEXED( count, array_of_blocklengths, array_of_displacements, oldtype, new-
type)

IN count number of blocks – also number of entries in
array_of_displacements and array_of_blocklengths (non-
negative integer)

IN array_of_blocklengths number of elements in each block (array of non-negative
integers)

IN array_of_displacements byte displacement of each block (array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_hindexed(int count, int *array_of_blocklengths,
MPI_Aint *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_TYPE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),
OLDTYPE, NEWTYPE, IERROR

The following function is deprecated and is superseded by
MPI_TYPE_CREATE_STRUCT in MPI-2.0. The language independent definition and the C
binding of the deprecated function is the same as of the new function, except of the function
name. Only the Fortran language binding is different.

MPI_TYPE_STRUCT(count, array_of_blocklengths, array_of_displacements, array_of_types,
newtype)

IN count number of blocks (integer) (non-negative integer) –
also number of entries in arrays array_of_types,
array_of_displacements and array_of_blocklengths

IN array_of_blocklength number of elements in each block (array of non-negative
integer)

IN array_of_displacements byte displacement of each block (array of integer)

IN array_of_types type of elements in each block (array of handles to
datatype objects)

OUT newtype new datatype (handle)

int MPI_Type_struct(int count, int *array_of_blocklengths,
MPI_Aint *array_of_displacements,
MPI_Datatype *array_of_types, MPI_Datatype *newtype)

MPI_TYPE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
ARRAY_OF_TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),
ARRAY_OF_TYPES(*), NEWTYPE, IERROR
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15.1. DEPRECATED SINCE MPI-2.0 461

The following function is deprecated and is superseded by MPI_GET_ADDRESS in MPI-
2.0. The language independent definition and the C binding of the deprecated function is
the same as of the new function, except of the function name. Only the Fortran language
binding is different.

MPI_ADDRESS(location, address)

IN location location in caller memory (choice)

OUT address address of location (integer)

int MPI_Address(void* location, MPI_Aint *address)

MPI_ADDRESS(LOCATION, ADDRESS, IERROR)
<type> LOCATION(*)
INTEGER ADDRESS, IERROR

The following functions are deprecated and are superseded by
MPI_TYPE_GET_EXTENT in MPI-2.0.

MPI_TYPE_EXTENT(datatype, extent)

IN datatype datatype (handle)

OUT extent datatype extent (integer)

int MPI_Type_extent(MPI_Datatype datatype, MPI_Aint *extent)

MPI_TYPE_EXTENT(DATATYPE, EXTENT, IERROR)
INTEGER DATATYPE, EXTENT, IERROR

Returns the extent of a datatype, where extent is as defined on page 96.
The two functions below can be used for finding the lower bound and the upper bound

of a datatype.

MPI_TYPE_LB( datatype, displacement)

IN datatype datatype (handle)

OUT displacement displacement of lower bound from origin, in bytes (in-
teger)

int MPI_Type_lb(MPI_Datatype datatype, MPI_Aint* displacement)

MPI_TYPE_LB( DATATYPE, DISPLACEMENT, IERROR)
INTEGER DATATYPE, DISPLACEMENT, IERROR
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462 CHAPTER 15. DEPRECATED FUNCTIONS

MPI_TYPE_UB( datatype, displacement)

IN datatype datatype (handle)

OUT displacement displacement of upper bound from origin, in bytes (in-
teger)

int MPI_Type_ub(MPI_Datatype datatype, MPI_Aint* displacement)

MPI_TYPE_UB( DATATYPE, DISPLACEMENT, IERROR)
INTEGER DATATYPE, DISPLACEMENT, IERROR

The following function is deprecated and is superseded by
MPI_COMM_CREATE_KEYVAL in MPI-2.0. The language independent definition of the
deprecated function is the same as that of the new function, except for the function name
and a different behavior in the C/Fortran language interoperability, see Section 16.3.7 on
page 505. The language bindings are modified.

MPI_KEYVAL_CREATE(copy_fn, delete_fn, keyval, extra_state)

IN copy_fn Copy callback function for keyval

IN delete_fn Delete callback function for keyval

OUT keyval key value for future access (integer)

IN extra_state Extra state for callback functions

int MPI_Keyval_create(MPI_Copy_function *copy_fn, MPI_Delete_function
*delete_fn, int *keyval, void* extra_state)

MPI_KEYVAL_CREATE(COPY_FN, DELETE_FN, KEYVAL, EXTRA_STATE, IERROR)
EXTERNAL COPY_FN, DELETE_FN
INTEGER KEYVAL, EXTRA_STATE, IERROR

The copy_fn function is invoked when a communicator is duplicated by
MPI_COMM_DUP. copy_fn should be of type MPI_Copy_function, which is defined as follows:

typedef int MPI_Copy_function(MPI_Comm oldcomm, int keyval,
void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag)

A Fortran declaration for such a function is as follows:
SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERR)
INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, IERR
LOGICAL FLAG

copy_fn may be specified as MPI_NULL_COPY_FN or MPI_DUP_FN from either C or
FORTRAN; MPI_NULL_COPY_FN is a function that does nothing other than returning
flag = 0 and MPI_SUCCESS. MPI_DUP_FN is a simple-minded copy function that sets flag =
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15.1. DEPRECATED SINCE MPI-2.0 463

1, returns the value of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS. Note
that MPI_NULL_COPY_FN and MPI_DUP_FN are also deprecated.

Analogous to copy_fn is a callback deletion function, defined as follows. The delete_fn
function is invoked when a communicator is deleted by MPI_COMM_FREE or when a call
is made explicitly to MPI_ATTR_DELETE. delete_fn should be of type MPI_Delete_function,
which is defined as follows:

typedef int MPI_Delete_function(MPI_Comm comm, int keyval,
void *attribute_val, void *extra_state);

A Fortran declaration for such a function is as follows:
SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR

delete_fn may be specified as MPI_NULL_DELETE_FN from either C or FORTRAN;
MPI_NULL_DELETE_FN is a function that does nothing, other than returning
MPI_SUCCESS. Note that MPI_NULL_DELETE_FN is also deprecated.

The following function is deprecated and is superseded by MPI_COMM_FREE_KEYVAL
in MPI-2.0. The language independent definition of the deprecated function is the same as
of the new function, except of the function name. The language bindings are modified.

MPI_KEYVAL_FREE(keyval)

INOUT keyval Frees the integer key value (integer)

int MPI_Keyval_free(int *keyval)

MPI_KEYVAL_FREE(KEYVAL, IERROR)
INTEGER KEYVAL, IERROR

The following function is deprecated and is superseded by MPI_COMM_SET_ATTR in
MPI-2.0. The language independent definition of the deprecated function is the same as of
the new function, except of the function name. The language bindings are modified.

MPI_ATTR_PUT(comm, keyval, attribute_val)

INOUT comm communicator to which attribute will be attached (han-
dle)

IN keyval key value, as returned by
MPI_KEYVAL_CREATE (integer)

IN attribute_val attribute value

int MPI_Attr_put(MPI_Comm comm, int keyval, void* attribute_val)

MPI_ATTR_PUT(COMM, KEYVAL, ATTRIBUTE_VAL, IERROR)
INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

The following function is deprecated and is superseded by MPI_COMM_GET_ATTR in
MPI-2.0. The language independent definition of the deprecated function is the same as of
the new function, except of the function name. The language bindings are modified.
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464 CHAPTER 15. DEPRECATED FUNCTIONS

MPI_ATTR_GET(comm, keyval, attribute_val, flag)

IN comm communicator to which attribute is attached (handle)

IN keyval key value (integer)

OUT attribute_val attribute value, unless flag = false

OUT flag true if an attribute value was extracted; false if no
attribute is associated with the key

int MPI_Attr_get(MPI_Comm comm, int keyval, void *attribute_val, int *flag)

MPI_ATTR_GET(COMM, KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR
LOGICAL FLAG

The following function is deprecated and is superseded by MPI_COMM_DELETE_ATTR
in MPI-2.0. The language independent definition of the deprecated function is the same as
of the new function, except of the function name. The language bindings are modified.

MPI_ATTR_DELETE(comm, keyval)

INOUT comm communicator to which attribute is attached (handle)

IN keyval The key value of the deleted attribute (integer)

int MPI_Attr_delete(MPI_Comm comm, int keyval)

MPI_ATTR_DELETE(COMM, KEYVAL, IERROR)
INTEGER COMM, KEYVAL, IERROR

The following function is deprecated and is superseded by
MPI_COMM_CREATE_ERRHANDLER in MPI-2.0. The language independent definition
of the deprecated function is the same as of the new function, except of the function name.
The language bindings are modified.

MPI_ERRHANDLER_CREATE( function, errhandler )

IN function user defined error handling procedure

OUT errhandler MPI error handler (handle)

int MPI_Errhandler_create(MPI_Handler_function *function,
MPI_Errhandler *errhandler)

MPI_ERRHANDLER_CREATE(FUNCTION, ERRHANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

Register the user routine function for use as an MPI exception handler. Returns in
errhandler a handle to the registered exception handler.

In the C language, the user routine should be a C function of type MPI_Handler_function,
which is defined as:
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15.2. DEPRECATED SINCE MPI-2.2 465

typedef void (MPI_Handler_function)(MPI_Comm *, int *, ...);

The first argument is the communicator in use, the second is the error code to be
returned.

In the Fortran language, the user routine should be of the form:

SUBROUTINE HANDLER_FUNCTION(COMM, ERROR_CODE)
INTEGER COMM, ERROR_CODE

The following function is deprecated and is superseded by
MPI_COMM_SET_ERRHANDLER in MPI-2.0. The language independent definition of the
deprecated function is the same as of the new function, except of the function name. The
language bindings are modified.

MPI_ERRHANDLER_SET( comm, errhandler )

INOUT comm communicator to set the error handler for (handle)

IN errhandler new MPI error handler for communicator (handle)

int MPI_Errhandler_set(MPI_Comm comm, MPI_Errhandler errhandler)

MPI_ERRHANDLER_SET(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

Associates the new error handler errorhandler with communicator comm at the calling
process. Note that an error handler is always associated with the communicator.

The following function is deprecated and is superseded by
MPI_COMM_GET_ERRHANDLER in MPI-2.0. The language independent definition of the
deprecated function is the same as of the new function, except of the function name. The
language bindings are modified.

MPI_ERRHANDLER_GET( comm, errhandler )

IN comm communicator to get the error handler from (handle)

OUT errhandler MPI error handler currently associated with commu-
nicator (handle)

int MPI_Errhandler_get(MPI_Comm comm, MPI_Errhandler *errhandler)

MPI_ERRHANDLER_GET(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

Returns in errhandler (a handle to) the error handler that is currently associated with
communicator comm.

15.2 Deprecated since MPI-2.2

The entire set of C++ language bindings have been deprecated.
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466 CHAPTER 15. DEPRECATED FUNCTIONS

Rationale. The C++ bindings add minimal functionality over the C bindings while
incurring a significant amount of maintenance to the MPI specification. Since the
C++ bindings are effectively a one-to-one mapping of the C bindings, it should be
relatively easy to convert existing C++ MPI applications to use the MPI C bindings.
Additionally, there are third party packages available that provide C++ class library
functionality (i.e., C++-specific functionality layered on top of the MPI C bindings)
that are likely more expressive and/or natural to C++ programmers and are not
suitable for standardization in this specification. (End of rationale.)

The following function typedefs have been deprecated and are superseded by new
names. Other than the typedef names, the function signatures are exactly the same; the
names were updated to match conventions of other function typedef names.

Deprecated Name New Name
MPI_Comm_errhandler_fn MPI_Comm_errhandler_function
MPI::Comm::Errhandler_fn MPI::Comm::Errhandler_function
MPI_File_errhandler_fn MPI_File_errhandler_function
MPI::File::Errhandler_fn MPI::File::Errhandler_function
MPI_Win_errhandler_fn MPI_Win_errhandler_function
MPI::Win::Errhandler_fn MPI::Win:::Errhandler_function
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Chapter 16

Language Bindings

16.1 C++

16.1.1 Overview

The C++ language bindings have been deprecated.
There are some issues specific to C++ that must be considered in the design of an

interface that go beyond the simple description of language bindings. In particular, in
C++, we must be concerned with the design of objects and their interfaces, rather than
just the design of a language-specific functional interface to MPI. Fortunately, the design of
MPI was based on the notion of objects, so a natural set of classes is already part of MPI.

MPI-2 includes C++ bindings as part of its function specifications. In some cases,
MPI-2 provides new names for the C bindings of MPI-1 functions. In this case, the C++
binding matches the new C name — there is no binding for the deprecated name.

16.1.2 Design

The C++ language interface for MPI is designed according to the following criteria:

1. The C++ language interface consists of a small set of classes with a lightweight
functional interface to MPI. The classes are based upon the fundamental MPI object
types (e.g., communicator, group, etc.).

2. The MPI C++ language bindings provide a semantically correct interface to MPI.

3. To the greatest extent possible, the C++ bindings for MPI functions are member
functions of MPI classes.

Rationale. Providing a lightweight set of MPI objects that correspond to the basic
MPI types is the best fit to MPI’s implicit object-based design; methods can be supplied
for these objects to realize MPI functionality. The existing C bindings can be used in
C++ programs, but much of the expressive power of the C++ language is forfeited.
On the other hand, while a comprehensive class library would make user programming
more elegant, such a library it is not suitable as a language binding for MPI since a
binding must provide a direct and unambiguous mapping to the specified functionality
of MPI. (End of rationale.)

.
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468 CHAPTER 16. LANGUAGE BINDINGS

16.1.3 C++ Classes for MPI

All MPI classes, constants, and functions are declared within the scope of an MPI namespace.
Thus, instead of the MPI_ prefix that is used in C and Fortran, MPI functions essentially
have an MPI:: prefix.

The members of the MPI namespace are those classes corresponding to objects implicitly
used by MPI. An abbreviated definition of the MPI namespace and its member classes is as
follows:

namespace MPI {
class Comm {...};
class Intracomm : public Comm {...};
class Graphcomm : public Intracomm {...};
class Distgraphcomm : public Intracomm {...};
class Cartcomm : public Intracomm {...};
class Intercomm : public Comm {...};
class Datatype {...};
class Errhandler {...};
class Exception {...};
class File {...};
class Group {...};
class Info {...};
class Op {...};
class Request {...};
class Prequest : public Request {...};
class Grequest : public Request {...};
class Status {...};
class Win {...};

};

Note that there are a small number of derived classes, and that virtual inheritance is
not used.

16.1.4 Class Member Functions for MPI

Besides the member functions which constitute the C++ language bindings for MPI, the
C++ language interface has additional functions (as required by the C++ language). In
particular, the C++ language interface must provide a constructor and destructor, an
assignment operator, and comparison operators.

The complete set of C++ language bindings for MPI is presented in Annex A.4. The
bindings take advantage of some important C++ features, such as references and const.
Declarations (which apply to all MPI member classes) for construction, destruction, copying,
assignment, comparison, and mixed-language operability are also provided.

Except where indicated, all non-static member functions (except for constructors and
the assignment operator) of MPI member classes are virtual functions.

Rationale. Providing virtual member functions is an important part of design for
inheritance. Virtual functions can be bound at run-time, which allows users of libraries
to re-define the behavior of objects already contained in a library. There is a small
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16.1. C++ 469

performance penalty that must be paid (the virtual function must be looked up before
it can be called). However, users concerned about this performance penalty can force
compile-time function binding. (End of rationale.)

Example 16.1 Example showing a derived MPI class.

class foo_comm : public MPI::Intracomm {
public:
void Send(const void* buf, int count, const MPI::Datatype& type,

int dest, int tag) const
{

// Class library functionality
MPI::Intracomm::Send(buf, count, type, dest, tag);
// More class library functionality

}
};

Advice to implementors. Implementors must be careful to avoid unintended side
effects from class libraries that use inheritance, especially in layered implementations.
For example, if MPI_BCAST is implemented by repeated calls to MPI_SEND or
MPI_RECV, the behavior of MPI_BCAST cannot be changed by derived communicator
classes that might redefine MPI_SEND or MPI_RECV. The implementation of
MPI_BCAST must explicitly use the MPI_SEND (or MPI_RECV) of the base
MPI::Comm class. (End of advice to implementors.)

16.1.5 Semantics

The semantics of the member functions constituting the C++ language binding for MPI are
specified by the MPI function description itself. Here, we specify the semantics for those
portions of the C++ language interface that are not part of the language binding. In this
subsection, functions are prototyped using the type MPI::〈CLASS〉 rather than listing each
function for every MPI class; the word 〈CLASS〉 can be replaced with any valid MPI class
name (e.g., Group), except as noted.

Construction / Destruction The default constructor and destructor are prototyped as fol-
lows:
{ MPI::<CLASS>() (binding deprecated, see Section 15.2) }

{ ∼MPI::<CLASS>() (binding deprecated, see Section 15.2) }

In terms of construction and destruction, opaque MPI user level objects behave like
handles. Default constructors for all MPI objects except MPI::Status create corresponding
MPI::*_NULL handles. That is, when an MPI object is instantiated, comparing it with its
corresponding MPI::*_NULL object will return true. The default constructors do not create
new MPI opaque objects. Some classes have a member function Create() for this purpose.

Example 16.2 In the following code fragment, the test will return true and the message
will be sent to cout.
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void foo()
{
MPI::Intracomm bar;

if (bar == MPI::COMM_NULL)
cout << "bar is MPI::COMM_NULL" << endl;

}

The destructor for each MPI user level object does not invoke the corresponding
MPI_*_FREE function (if it exists).

Rationale. MPI_*_FREE functions are not automatically invoked for the following
reasons:

1. Automatic destruction contradicts the shallow-copy semantics of the MPI classes.

2. The model put forth in MPI makes memory allocation and deallocation the re-
sponsibility of the user, not the implementation.

3. Calling MPI_*_FREE upon destruction could have unintended side effects, in-
cluding triggering collective operations (this also affects the copy, assignment,
and construction semantics). In the following example, we would want neither
foo_comm nor bar_comm to automatically invoke MPI_*_FREE upon exit from
the function.

void example_function()
{
MPI::Intracomm foo_comm(MPI::COMM_WORLD), bar_comm;
bar_comm = MPI::COMM_WORLD.Dup();
// rest of function

}

(End of rationale.)

Copy / Assignment The copy constructor and assignment operator are prototyped as fol-
lows:
{ MPI::<CLASS>(const MPI::<CLASS>& data) (binding deprecated, see Section 15.2) }

{ MPI::<CLASS>& MPI::<CLASS>::operator=(const MPI::<CLASS>& data) (binding
deprecated, see Section 15.2) }

In terms of copying and assignment, opaque MPI user level objects behave like handles.
Copy constructors perform handle-based (shallow) copies. MPI::Status objects are excep-
tions to this rule. These objects perform deep copies for assignment and copy construction.

Advice to implementors. Each MPI user level object is likely to contain, by value
or by reference, implementation-dependent state information. The assignment and
copying of MPI object handles may simply copy this value (or reference). (End of
advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



16.1. C++ 471

Example 16.3 Example using assignment operator. In this example,
MPI::Intracomm::Dup() is not called for foo_comm. The object foo_comm is simply an
alias for MPI::COMM_WORLD. But bar_comm is created with a call to
MPI::Intracomm::Dup() and is therefore a different communicator than foo_comm (and
thus different from MPI::COMM_WORLD). baz_comm becomes an alias for bar_comm. If one of
bar_comm or baz_comm is freed with MPI_COMM_FREE it will be set to MPI::COMM_NULL.
The state of the other handle will be undefined — it will be invalid, but not necessarily set
to MPI::COMM_NULL.

MPI::Intracomm foo_comm, bar_comm, baz_comm;

foo_comm = MPI::COMM_WORLD;
bar_comm = MPI::COMM_WORLD.Dup();
baz_comm = bar_comm;

Comparison The comparison operators are prototyped as follows:
{bool MPI::<CLASS>::operator==(const MPI::<CLASS>& data) const (binding

deprecated, see Section 15.2) }

{bool MPI::<CLASS>::operator!=(const MPI::<CLASS>& data) const (binding
deprecated, see Section 15.2) }

The member function operator==() returns true only when the handles reference the
same internal MPI object, false otherwise. operator!=() returns the boolean complement
of operator==(). However, since the Status class is not a handle to an underlying MPI
object, it does not make sense to compare Status instances. Therefore, the operator==()
and operator!=() functions are not defined on the Status class.

Constants Constants are singleton objects and are declared const. Note that not all glob-
ally defined MPI objects are constant. For example, MPI::COMM_WORLD and MPI::COMM_SELF
are not const.

16.1.6 C++ Datatypes

Table 16.1 lists all of the C++ predefined MPI datatypes and their corresponding C and
C++ datatypes, Table 16.2 lists all of the Fortran predefined MPI datatypes and their
corresponding Fortran 77 datatypes. Table 16.3 lists the C++ names for all other MPI
datatypes.

MPI::BYTE and MPI::PACKED conform to the same restrictions as MPI_BYTE and
MPI_PACKED, listed in Sections 3.2.2 on page 27 and Sections 4.2 on page 121, respectively.

The following table defines groups of MPI predefined datatypes:

C integer: MPI::INT, MPI::LONG, MPI::SHORT,
MPI::UNSIGNED_SHORT, MPI::UNSIGNED,
MPI::UNSIGNED_LONG,
MPI::_LONG_LONG, MPI::UNSIGNED_LONG_LONG,
MPI::SIGNED_CHAR, MPI::UNSIGNED_CHAR

Fortran integer: MPI::INTEGER
and handles returned from
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MPI datatype C datatype C++ datatype
MPI::CHAR char char
MPI::SHORT signed short signed short
MPI::INT signed int signed int
MPI::LONG signed long signed long
MPI::LONG_LONG signed long long signed long long
MPI::SIGNED_CHAR signed char signed char
MPI::UNSIGNED_CHAR unsigned char unsigned char
MPI::UNSIGNED_SHORT unsigned short unsigned short
MPI::UNSIGNED unsigned int unsigned int
MPI::UNSIGNED_LONG unsigned long unsigned long int
MPI::UNSIGNED_LONG_LONG unsigned long long unsigned long long
MPI::FLOAT float float
MPI::DOUBLE double double
MPI::LONG_DOUBLE long double long double
MPI::BOOL bool
MPI::COMPLEX Complex<float>
MPI::DOUBLE_COMPLEX Complex<double>
MPI::LONG_DOUBLE_COMPLEX Complex<long double>
MPI::WCHAR wchar_t wchar_t
MPI::BYTE
MPI::PACKED

Table 16.1: C++ names for the MPI C and C++ predefined datatypes, and their corre-
sponding C/C++ datatypes.

MPI datatype Fortran datatype
MPI::INTEGER INTEGER
MPI::REAL REAL
MPI::DOUBLE_PRECISION DOUBLE PRECISION
MPI::F_COMPLEX COMPLEX
MPI::LOGICAL LOGICAL
MPI::CHARACTER CHARACTER(1)
MPI::BYTE
MPI::PACKED

Table 16.2: C++ names for the MPI Fortran predefined datatypes, and their corresponding
Fortran 77 datatypes.
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MPI datatype Description
MPI::FLOAT_INT C/C++ reduction type
MPI::DOUBLE_INT C/C++ reduction type
MPI::LONG_INT C/C++ reduction type
MPI::TWOINT C/C++ reduction type
MPI::SHORT_INT C/C++ reduction type
MPI::LONG_DOUBLE_INT C/C++ reduction type
MPI::TWOREAL Fortran reduction type
MPI::TWODOUBLE_PRECISION Fortran reduction type
MPI::TWOINTEGER Fortran reduction type
MPI::F_DOUBLE_COMPLEX Optional Fortran type
MPI::INTEGER1 Explicit size type
MPI::INTEGER2 Explicit size type
MPI::INTEGER4 Explicit size type
MPI::INTEGER8 Explicit size type
MPI::INTEGER16 Explicit size type
MPI::REAL2 Explicit size type
MPI::REAL4 Explicit size type
MPI::REAL8 Explicit size type
MPI::REAL16 Explicit size type
MPI::F_COMPLEX4 Explicit size type
MPI::F_COMPLEX8 Explicit size type
MPI::F_COMPLEX16 Explicit size type
MPI::F_COMPLEX32 Explicit size type

Table 16.3: C++ names for other MPI datatypes. Implementations may also define other
optional types (e.g., MPI::INTEGER8).
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MPI::Datatype::Create_f90_integer,
and if available: MPI::INTEGER1,
MPI::INTEGER2, MPI::INTEGER4,
MPI::INTEGER8, MPI::INTEGER16

Floating point: MPI::FLOAT, MPI::DOUBLE, MPI::REAL,
MPI::DOUBLE_PRECISION,
MPI::LONG_DOUBLE
and handles returned from
MPI::Datatype::Create_f90_real,
and if available: MPI::REAL2,
MPI::REAL4, MPI::REAL8, MPI::REAL16

Logical: MPI::LOGICAL, MPI::BOOL
Complex: MPI::F_COMPLEX, MPI::COMPLEX,

MPI::F_DOUBLE_COMPLEX,
MPI::DOUBLE_COMPLEX,
MPI::LONG_DOUBLE_COMPLEX
and handles returned from
MPI::Datatype::Create_f90_complex,
and if available: MPI::F_DOUBLE_COMPLEX,
MPI::F_COMPLEX4, MPI::F_COMPLEX8,
MPI::F_COMPLEX16, MPI::F_COMPLEX32

Byte: MPI::BYTE

Valid datatypes for each reduction operation are specified below in terms of the groups
defined above.

Op Allowed Types

MPI::MAX, MPI::MIN C integer, Fortran integer, Floating point

MPI::SUM, MPI::PROD C integer, Fortran integer, Floating point, Complex

MPI::LAND, MPI::LOR, MPI::LXOR C integer, Logical

MPI::BAND, MPI::BOR, MPI::BXOR C integer, Fortran integer, Byte

MPI::MINLOC and MPI::MAXLOC perform just as their C and Fortran counterparts; see
Section 5.9.4 on page 167.

16.1.7 Communicators

The MPI::Comm class hierarchy makes explicit the different kinds of communicators implic-
itly defined by MPI and allows them to be strongly typed. Since the original design of MPI
defined only one type of handle for all types of communicators, the following clarifications
are provided for the C++ design.

Types of communicators There are six different types of communicators:
MPI::Comm, MPI::Intercomm, MPI::Intracomm, MPI::Cartcomm, MPI::Graphcomm, and
MPI::Distgraphcomm. MPI::Comm is the abstract base communicator class, encapsulating
the functionality common to all MPI communicators. MPI::Intercomm and
MPI::Intracomm are derived from MPI::Comm. MPI::Cartcomm, MPI::Graphcomm, and
MPI::Distgraphcomm are derived from MPI::Intracomm.
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16.1. C++ 475

Advice to users. Initializing a derived class with an instance of a base class is not legal
in C++. For instance, it is not legal to initialize a Cartcomm from an Intracomm.
Moreover, because MPI::Comm is an abstract base class, it is non-instantiable, so that
it is not possible to have an object of class MPI::Comm. However, it is possible to
have a reference or a pointer to an MPI::Comm.

Example 16.4 The following code is erroneous.

Intracomm intra = MPI::COMM_WORLD.Dup();
Cartcomm cart(intra); // This is erroneous

(End of advice to users.)

MPI::COMM_NULL The specific type of MPI::COMM_NULL is implementation dependent.
MPI::COMM_NULL must be able to be used in comparisons and initializations with all types
of communicators. MPI::COMM_NULL must also be able to be passed to a function that
expects a communicator argument in the parameter list (provided that MPI::COMM_NULL

is an allowed value for the communicator argument).

Rationale. There are several possibilities for implementation of MPI::COMM_NULL.
Specifying its required behavior, rather than its realization, provides maximum flexi-
bility to implementors. (End of rationale.)

Example 16.5 The following example demonstrates the behavior of assignment and com-
parison using MPI::COMM_NULL.

MPI::Intercomm comm;
comm = MPI::COMM_NULL; // assign with COMM_NULL
if (comm == MPI::COMM_NULL) // true
cout << "comm is NULL" << endl;

if (MPI::COMM_NULL == comm) // note -- a different function!
cout << "comm is still NULL" << endl;

Dup() is not defined as a member function of MPI::Comm, but it is defined for the
derived classes of MPI::Comm. Dup() is not virtual and it returns its OUT parameter by
value.

MPI::Comm::Clone() The C++ language interface for MPI includes a new function
Clone(). MPI::Comm::Clone() is a pure virtual function. For the derived communicator
classes, Clone() behaves like Dup() except that it returns a new object by reference. The
Clone() functions are prototyped as follows:
Comm& Comm::Clone() const = 0

Intracomm& Intracomm::Clone() const

Intercomm& Intercomm::Clone() const

Cartcomm& Cartcomm::Clone() const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



476 CHAPTER 16. LANGUAGE BINDINGS

Graphcomm& Graphcomm::Clone() const

Distgraphcomm& Distgraphcomm::Clone() const

Rationale. Clone() provides the “virtual dup” functionality that is expected by C++
programmers and library writers. Since Clone() returns a new object by reference,
users are responsible for eventually deleting the object. A new name is introduced
rather than changing the functionality of Dup(). (End of rationale.)

Advice to implementors. Within their class declarations, prototypes for Clone() and
Dup() would look like the following:

namespace MPI {
class Comm {

virtual Comm& Clone() const = 0;
};
class Intracomm : public Comm {

Intracomm Dup() const { ... };
virtual Intracomm& Clone() const { ... };

};
class Intercomm : public Comm {

Intercomm Dup() const { ... };
virtual Intercomm& Clone() const { ... };

};
// Cartcomm, Graphcomm,
// and Distgraphcomm are similarly defined

};

(End of advice to implementors.)

16.1.8 Exceptions

The C++ language interface for MPI includes the predefined error handler
MPI::ERRORS_THROW_EXCEPTIONS for use with the Set_errhandler() member functions.
MPI::ERRORS_THROW_EXCEPTIONS can only be set or retrieved by C++ functions. If a
non-C++ program causes an error that invokes the MPI::ERRORS_THROW_EXCEPTIONS error
handler, the exception will pass up the calling stack until C++ code can catch it. If there
is no C++ code to catch it, the behavior is undefined. In a multi-threaded environment
or if a nonblocking MPI call throws an exception while making progress in the background,
the behavior is implementation dependent.

The error handler MPI::ERRORS_THROW_EXCEPTIONS causes an MPI::Exception to be
thrown for any MPI result code other than MPI::SUCCESS. The public interface to
MPI::Exception class is defined as follows:

namespace MPI {
class Exception {
public:

Exception(int error_code);
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int Get_error_code() const;
int Get_error_class() const;
const char *Get_error_string() const;

};
};

Advice to implementors.

The exception will be thrown within the body of MPI::ERRORS_THROW_EXCEPTIONS.
It is expected that control will be returned to the user when the exception is thrown.
Some MPI functions specify certain return information in their parameters in the case
of an error and MPI_ERRORS_RETURN is specified. The same type of return information
must be provided when exceptions are thrown.

For example, MPI_WAITALL puts an error code for each request in the corresponding
entry in the status array and returns MPI_ERR_IN_STATUS. When using
MPI::ERRORS_THROW_EXCEPTIONS, it is expected that the error codes in the status
array will be set appropriately before the exception is thrown.

(End of advice to implementors.)

16.1.9 Mixed-Language Operability

The C++ language interface provides functions listed below for mixed-language operability.
These functions provide for a seamless transition between C and C++. For the case where
the C++ class corresponding to <CLASS> has derived classes, functions are also provided
for converting between the derived classes and the C MPI_<CLASS>.

MPI::<CLASS>& MPI::<CLASS>::operator=(const MPI_<CLASS>& data)

MPI::<CLASS>(const MPI_<CLASS>& data)

MPI::<CLASS>::operator MPI_<CLASS>() const

These functions are discussed in Section 16.3.4.

16.1.10 Profiling

This section specifies the requirements of a C++ profiling interface to MPI.

Advice to implementors. Since the main goal of profiling is to intercept function calls
from user code, it is the implementor’s decision how to layer the underlying imple-
mentation to allow function calls to be intercepted and profiled. If an implementation
of the MPI C++ bindings is layered on top of MPI bindings in another language
(such as C), or if the C++ bindings are layered on top of a profiling interface in an-
other language, no extra profiling interface is necessary because the underlying MPI
implementation already meets the MPI profiling interface requirements.

Native C++ MPI implementations that do not have access to other profiling interfaces
must implement an interface that meets the requirements outlined in this section.

High-quality implementations can implement the interface outlined in this section in
order to promote portable C++ profiling libraries. Implementors may wish to provide
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an option whether to build the C++ profiling interface or not; C++ implementations
that are already layered on top of bindings in another language or another profiling
interface will have to insert a third layer to implement the C++ profiling interface.
(End of advice to implementors.)

To meet the requirements of the C++ MPI profiling interface, an implementation of
the MPI functions must:

1. Provide a mechanism through which all of the MPI defined functions may be accessed
with a name shift. Thus all of the MPI functions (which normally start with the prefix
“MPI::”) should also be accessible with the prefix “PMPI::.”

2. Ensure that those MPI functions which are not replaced may still be linked into an
executable image without causing name clashes.

3. Document the implementation of different language bindings of the MPI interface if
they are layered on top of each other, so that profiler developer knows whether they
must implement the profile interface for each binding, or can economize by imple-
menting it only for the lowest level routines.

4. Where the implementation of different language bindings is done through a layered
approach (e.g., the C++ binding is a set of “wrapper” functions which call the C
implementation), ensure that these wrapper functions are separable from the rest of
the library.

This is necessary to allow a separate profiling library to be correctly implemented,
since (at least with Unix linker semantics) the profiling library must contain these
wrapper functions if it is to perform as expected. This requirement allows the author
of the profiling library to extract these functions from the original MPI library and add
them into the profiling library without bringing along any other unnecessary code.

5. Provide a no-op routine MPI::Pcontrol in the MPI library.

Advice to implementors. There are (at least) two apparent options for implementing
the C++ profiling interface: inheritance or caching. An inheritance-based approach
may not be attractive because it may require a virtual inheritance implementation of
the communicator classes. Thus, it is most likely that implementors will cache PMPI
objects on their corresponding MPI objects. The caching scheme is outlined below.

The “real” entry points to each routine can be provided within a namespace PMPI.
The non-profiling version can then be provided within a namespace MPI.

Caching instances of PMPI objects in the MPI handles provides the “has a” relationship
that is necessary to implement the profiling scheme.

Each instance of an MPI object simply “wraps up” an instance of a PMPI object. MPI
objects can then perform profiling actions before invoking the corresponding function
in their internal PMPI object.

The key to making the profiling work by simply re-linking programs is by having
a header file that declares all the MPI functions. The functions must be defined
elsewhere, and compiled into a library. MPI constants should be declared extern in
the MPI namespace. For example, the following is an excerpt from a sample mpi.h
file:
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Example 16.6 Sample mpi.h file.

namespace PMPI {
class Comm {
public:

int Get_size() const;
};
// etc.

};

namespace MPI {
public:
class Comm {
public:

int Get_size() const;

private:
PMPI::Comm pmpi_comm;

};
};

Note that all constructors, the assignment operator, and the destructor in the MPI
class will need to initialize/destroy the internal PMPI object as appropriate.

The definitions of the functions must be in separate object files; the PMPI class member
functions and the non-profiling versions of the MPI class member functions can be
compiled into libmpi.a, while the profiling versions can be compiled into libpmpi.a.
Note that the PMPI class member functions and the MPI constants must be in different
object files than the non-profiling MPI class member functions in the libmpi.a library
to prevent multiple definitions of MPI class member function names when linking both
libmpi.a and libpmpi.a. For example:

Example 16.7 pmpi.cc, to be compiled into libmpi.a.

int PMPI::Comm::Get_size() const
{
// Implementation of MPI_COMM_SIZE

}

Example 16.8 constants.cc, to be compiled into libmpi.a.

const MPI::Intracomm MPI::COMM_WORLD;

Example 16.9 mpi_no_profile.cc, to be compiled into libmpi.a.
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int MPI::Comm::Get_size() const
{
return pmpi_comm.Get_size();

}

Example 16.10 mpi_profile.cc, to be compiled into libpmpi.a.

int MPI::Comm::Get_size() const
{
// Do profiling stuff
int ret = pmpi_comm.Get_size();
// More profiling stuff
return ret;

}

(End of advice to implementors.)

16.2 Fortran Support

16.2.1 Overview

The Fortran MPI-2 language bindings have been designed to be compatible with the Fortran
90 standard (and later). These bindings are in most cases compatible with Fortran 77,
implicit-style interfaces.

Rationale. Fortran 90 contains numerous features designed to make it a more “mod-
ern” language than Fortran 77. It seems natural that MPI should be able to take
advantage of these new features with a set of bindings tailored to Fortran 90. MPI
does not (yet) use many of these features because of a number of technical difficulties.
(End of rationale.)

MPI defines two levels of Fortran support, described in Sections 16.2.3 and 16.2.4. In
the rest of this section, “Fortran” and “Fortran 90” shall refer to “Fortran 90” and its
successors, unless qualified.

1. Basic Fortran Support An implementation with this level of Fortran support pro-
vides the original Fortran bindings specified in MPI-1, with small additional require-
ments specified in Section 16.2.3.

2. Extended Fortran Support An implementation with this level of Fortran sup-
port provides Basic Fortran Support plus additional features that specifically support
Fortran 90, as described in Section 16.2.4.

A compliant MPI-2 implementation providing a Fortran interface must provide Ex-
tended Fortran Support unless the target compiler does not support modules or KIND-
parameterized types.
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16.2.2 Problems With Fortran Bindings for MPI

This section discusses a number of problems that may arise when using MPI in a Fortran
program. It is intended as advice to users, and clarifies how MPI interacts with Fortran. It
does not add to the standard, but is intended to clarify the standard.

As noted in the original MPI specification, the interface violates the Fortran standard
in several ways. While these cause few problems for Fortran 77 programs, they become
more significant for Fortran 90 programs, so that users must exercise care when using new
Fortran 90 features. The violations were originally adopted and have been retained because
they are important for the usability of MPI. The rest of this section describes the potential
problems in detail. It supersedes and replaces the discussion of Fortran bindings in the
original MPI specification (for Fortran 90, not Fortran 77).

The following MPI features are inconsistent with Fortran 90.

1. An MPI subroutine with a choice argument may be called with different argument
types.

2. An MPI subroutine with an assumed-size dummy argument may be passed an actual
scalar argument.

3. Many MPI routines assume that actual arguments are passed by address and that
arguments are not copied on entrance to or exit from the subroutine.

4. An MPI implementation may read or modify user data (e.g., communication buffers
used by nonblocking communications) concurrently with a user program that is exe-
cuting outside of MPI calls.

5. Several named “constants,” such as MPI_BOTTOM, MPI_IN_PLACE,
MPI_STATUS_IGNORE, MPI_STATUSES_IGNORE, MPI_ERRCODES_IGNORE,
MPI_UNWEIGHTED, MPI_ARGV_NULL, and MPI_ARGVS_NULL are not ordinary Fortran
constants and require a special implementation. See Section 2.5.4 on page 14 for more
information.

6. The memory allocation routine MPI_ALLOC_MEM can’t be usefully used in Fortran
without a language extension that allows the allocated memory to be associated with
a Fortran variable.

Additionally, MPI is inconsistent with Fortran 77 in a number of ways, as noted below.

• MPI identifiers exceed 6 characters.

• MPI identifiers may contain underscores after the first character.

• MPI requires an include file, mpif.h. On systems that do not support include files,
the implementation should specify the values of named constants.

• Many routines in MPI have KIND-parameterized integers (e.g., MPI_ADDRESS_KIND

and MPI_OFFSET_KIND) that hold address information. On systems that do not sup-
port Fortran 90-style parameterized types, INTEGER*8 or INTEGER should be used
instead.
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MPI-1 contained several routines that take address-sized information as input or return
address-sized information as output. In C such arguments were of type MPI_Aint and in
Fortran of type INTEGER. On machines where integers are smaller than addresses, these
routines can lose information. In MPI-2 the use of these functions has been deprecated and
they have been replaced by routines taking INTEGER arguments of KIND=MPI_ADDRESS_KIND.
A number of new MPI-2 functions also take INTEGER arguments of non-default KIND. See
Section 2.6 on page 16 and Section 4.1.1 on page 79 for more information.

Problems Due to Strong Typing

All MPI functions with choice arguments associate actual arguments of different Fortran
datatypes with the same dummy argument. This is not allowed by Fortran 77, and in
Fortran 90 is technically only allowed if the function is overloaded with a different function
for each type. In C, the use of void* formal arguments avoids these problems.

The following code fragment is technically illegal and may generate a compile-time
error.

integer i(5)
real x(5)
...
call mpi_send(x, 5, MPI_REAL, ...)
call mpi_send(i, 5, MPI_INTEGER, ...)

In practice, it is rare for compilers to do more than issue a warning, though there is concern
that Fortran 90 compilers are more likely to return errors.

It is also technically illegal in Fortran to pass a scalar actual argument to an array
dummy argument. Thus the following code fragment may generate an error since the buf
argument to MPI_SEND is declared as an assumed-size array <type> buf(*).

integer a
call mpi_send(a, 1, MPI_INTEGER, ...)

Advice to users. In the event that you run into one of the problems related to type
checking, you may be able to work around it by using a compiler flag, by compiling
separately, or by using an MPI implementation with Extended Fortran Support as de-
scribed in Section 16.2.4. An alternative that will usually work with variables local to a
routine but not with arguments to a function or subroutine is to use the EQUIVALENCE
statement to create another variable with a type accepted by the compiler. (End of
advice to users.)

Problems Due to Data Copying and Sequence Association

Implicit in MPI is the idea of a contiguous chunk of memory accessible through a linear
address space. MPI copies data to and from this memory. An MPI program specifies the
location of data by providing memory addresses and offsets. In the C language, sequence
association rules plus pointers provide all the necessary low-level structure.

In Fortran 90, user data is not necessarily stored contiguously. For example, the array
section A(1:N:2) involves only the elements of A with indices 1, 3, 5, ... . The same is true
for a pointer array whose target is such a section. Most compilers ensure that an array that
is a dummy argument is held in contiguous memory if it is declared with an explicit shape
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(e.g., B(N)) or is of assumed size (e.g., B(*)). If necessary, they do this by making a copy
of the array into contiguous memory. Both Fortran 77 and Fortran 90 are carefully worded
to allow such copying to occur, but few Fortran 77 compilers do it.1

Because MPI dummy buffer arguments are assumed-size arrays, this leads to a serious
problem for a nonblocking call: the compiler copies the temporary array back on return but
MPI continues to copy data to the memory that held it. For example, consider the following
code fragment:

real a(100)
call MPI_IRECV(a(1:100:2), MPI_REAL, 50, ...)

Since the first dummy argument to MPI_IRECV is an assumed-size array (<type> buf(*)),
the array section a(1:100:2) is copied to a temporary before being passed to MPI_IRECV,
so that it is contiguous in memory. MPI_IRECV returns immediately, and data is copied
from the temporary back into the array a. Sometime later, MPI may write to the address of
the deallocated temporary. Copying is also a problem for MPI_ISEND since the temporary
array may be deallocated before the data has all been sent from it.

Most Fortran 90 compilers do not make a copy if the actual argument is the whole of
an explicit-shape or assumed-size array or is a ‘simple’ section such as A(1:N) of such an
array. (We define ‘simple’ more fully in the next paragraph.) Also, many compilers treat
allocatable arrays the same as they treat explicit-shape arrays in this regard (though we
know of one that does not). However, the same is not true for assumed-shape and pointer
arrays; since they may be discontiguous, copying is often done. It is this copying that causes
problems for MPI as described in the previous paragraph.

Our formal definition of a ‘simple’ array section is

name ( [:,]... [<subscript>]:[<subscript>] [,<subscript>]... )

That is, there are zero or more dimensions that are selected in full, then one dimension
selected without a stride, then zero or more dimensions that are selected with a simple
subscript. Examples are

A(1:N), A(:,N), A(:,1:N,1), A(1:6,N), A(:,:,1:N)

Because of Fortran’s column-major ordering, where the first index varies fastest, a simple
section of a contiguous array will also be contiguous.2

The same problem can occur with a scalar argument. Some compilers, even for Fortran
77, make a copy of some scalar dummy arguments within a called procedure. That this can
cause a problem is illustrated by the example

call user1(a,rq)
call MPI_WAIT(rq,status,ierr)
write (*,*) a

subroutine user1(buf,request)

1Technically, the Fortran standards are worded to allow non-contiguous storage of any array data.
2To keep the definition of ‘simple’ simple, we have chosen to require all but one of the section subscripts

to be without bounds. A colon without bounds makes it obvious both to the compiler and to the reader
that the whole of the dimension is selected. It would have been possible to allow cases where the whole
dimension is selected with one or two bounds, but this means for the reader that the array declaration or
most recent allocation has to be consulted and for the compiler that a run-time check may be required.
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call MPI_IRECV(buf,...,request,...)
end

If a is copied, MPI_IRECV will alter the copy when it completes the communication
and will not alter a itself.

Note that copying will almost certainly occur for an argument that is a non-trivial
expression (one with at least one operator or function call), a section that does not select a
contiguous part of its parent (e.g., A(1:n:2)), a pointer whose target is such a section, or
an assumed-shape array that is (directly or indirectly) associated with such a section.

If there is a compiler option that inhibits copying of arguments, in either the calling or
called procedure, this should be employed.

If a compiler makes copies in the calling procedure of arguments that are explicit-
shape or assumed-size arrays, simple array sections of such arrays, or scalars, and if there
is no compiler option to inhibit this, then the compiler cannot be used for applications
that use MPI_GET_ADDRESS, or any nonblocking MPI routine. If a compiler copies scalar
arguments in the called procedure and there is no compiler option to inhibit this, then this
compiler cannot be used for applications that use memory references across subroutine calls
as in the example above.

Special Constants

MPI requires a number of special “constants” that cannot be implemented as normal Fortran
constants, e.g., MPI_BOTTOM. The complete list can be found in Section 2.5.4 on page 14.
In C, these are implemented as constant pointers, usually as NULL and are used where the

function prototype calls for a pointer to a variable, not the variable itself.
In Fortran the implementation of these special constants may require the use of lan-

guage constructs that are outside the Fortran standard. Using special values for the con-
stants (e.g., by defining them through parameter statements) is not possible because an
implementation cannot distinguish these values from legal data. Typically these constants
are implemented as predefined static variables (e.g., a variable in an MPI-declared COMMON
block), relying on the fact that the target compiler passes data by address. Inside the
subroutine, this address can be extracted by some mechanism outside the Fortran standard
(e.g., by Fortran extensions or by implementing the function in C).

Fortran 90 Derived Types

MPI does not explicitly support passing Fortran 90 derived types to choice dummy argu-
ments. Indeed, for MPI implementations that provide explicit interfaces through the mpi
module a compiler will reject derived type actual arguments at compile time. Even when no
explicit interfaces are given, users should be aware that Fortran 90 provides no guarantee
of sequence association for derived types or arrays of derived types. For instance, an array
of a derived type consisting of two elements may be implemented as an array of the first
elements followed by an array of the second. Use of the SEQUENCE attribute may help here,
somewhat.

The following code fragment shows one possible way to send a derived type in Fortran.
The example assumes that all data is passed by address.

type mytype
integer i
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real x
double precision d

end type mytype

type(mytype) foo
integer blocklen(3), type(3)
integer(MPI_ADDRESS_KIND) disp(3), base

call MPI_GET_ADDRESS(foo%i, disp(1), ierr)
call MPI_GET_ADDRESS(foo%x, disp(2), ierr)
call MPI_GET_ADDRESS(foo%d, disp(3), ierr)

base = disp(1)
disp(1) = disp(1) - base
disp(2) = disp(2) - base
disp(3) = disp(3) - base

blocklen(1) = 1
blocklen(2) = 1
blocklen(3) = 1

type(1) = MPI_INTEGER
type(2) = MPI_REAL
type(3) = MPI_DOUBLE_PRECISION

call MPI_TYPE_CREATE_STRUCT(3, blocklen, disp, type, newtype, ierr)
call MPI_TYPE_COMMIT(newtype, ierr)

! unpleasant to send foo%i instead of foo, but it works for scalar
! entities of type mytype

call MPI_SEND(foo%i, 1, newtype, ...)

A Problem with Register Optimization

MPI provides operations that may be hidden from the user code and run concurrently with
it, accessing the same memory as user code. Examples include the data transfer for an
MPI_IRECV. The optimizer of a compiler will assume that it can recognize periods when a
copy of a variable can be kept in a register without reloading from or storing to memory.
When the user code is working with a register copy of some variable while the hidden
operation reads or writes the memory copy, problems occur. This section discusses register
optimization pitfalls.

When a variable is local to a Fortran subroutine (i.e., not in a module or COMMON
block), the compiler will assume that it cannot be modified by a called subroutine unless it
is an actual argument of the call. In the most common linkage convention, the subroutine
is expected to save and restore certain registers. Thus, the optimizer will assume that a
register which held a valid copy of such a variable before the call will still hold a valid copy
on return.
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Normally users are not afflicted with this. But the user should pay attention to this
section if in his/her program a buffer argument to an MPI_SEND, MPI_RECV etc., uses
a name which hides the actual variables involved. MPI_BOTTOM with an MPI_Datatype
containing absolute addresses is one example. Creating a datatype which uses one variable
as an anchor and brings along others by using MPI_GET_ADDRESS to determine their
offsets from the anchor is another. The anchor variable would be the only one mentioned in
the call. Also attention must be paid if MPI operations are used that run in parallel with
the user’s application.

Example 16.11 shows what Fortran compilers are allowed to do.

Example 16.11 Fortran 90 register optimization.

This source ... can be compiled as:

call MPI_GET_ADDRESS(buf,bufaddr, call MPI_GET_ADDRESS(buf,...)
ierror)

call MPI_TYPE_CREATE_STRUCT(1,1, call MPI_TYPE_CREATE_STRUCT(...)
bufaddr,
MPI_REAL,type,ierror)

call MPI_TYPE_COMMIT(type,ierror) call MPI_TYPE_COMMIT(...)
val_old = buf register = buf

val_old = register
call MPI_RECV(MPI_BOTTOM,1,type,...) call MPI_RECV(MPI_BOTTOM,...)
val_new = buf val_new = register

The compiler does not invalidate the register because it cannot see that MPI_RECV
changes the value of buf. The access of buf is hidden by the use of MPI_GET_ADDRESS
and MPI_BOTTOM.

Example 16.12 shows extreme, but allowed, possibilities.

Example 16.12 Fortran 90 register optimization – extreme.

Source compiled as or compiled as

call MPI_IRECV(buf,..req) call MPI_IRECV(buf,..req) call MPI_IRECV(buf,..req)
register = buf b1 = buf

call MPI_WAIT(req,..) call MPI_WAIT(req,..) call MPI_WAIT(req,..)
b1 = buf b1 := register

MPI_WAIT on a concurrent thread modifies buf between the invocation of MPI_IRECV
and the finish of MPI_WAIT. But the compiler cannot see any possibility that buf can be
changed after MPI_IRECV has returned, and may schedule the load of buf earlier than
typed in the source. It has no reason to avoid using a register to hold buf across the call to
MPI_WAIT. It also may reorder the instructions as in the case on the right.

To prevent instruction reordering or the allocation of a buffer in a register there are
two possibilities in portable Fortran code:

• The compiler may be prevented from moving a reference to a buffer across a call to
an MPI subroutine by surrounding the call by calls to an external subroutine with
the buffer as an actual argument. Note that if the intent is declared in the external
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subroutine, it must be OUT or INOUT. The subroutine itself may have an empty body,
but the compiler does not know this and has to assume that the buffer may be altered.
For example, the above call of MPI_RECV might be replaced by

call DD(buf)
call MPI_RECV(MPI_BOTTOM,...)
call DD(buf)

with the separately compiled

subroutine DD(buf)
integer buf

end

(assuming that buf has type INTEGER). The compiler may be similarly prevented from
moving a reference to a variable across a call to an MPI subroutine.

In the case of a nonblocking call, as in the above call of MPI_WAIT, no reference to
the buffer is permitted until it has been verified that the transfer has been completed.
Therefore, in this case, the extra call ahead of the MPI call is not necessary, i.e., the
call of MPI_WAIT in the example might be replaced by

call MPI_WAIT(req,..)
call DD(buf)

• An alternative is to put the buffer or variable into a module or a common block and
access it through a USE or COMMON statement in each scope where it is referenced,
defined or appears as an actual argument in a call to an MPI routine. The compiler
will then have to assume that the MPI procedure (MPI_RECV in the above example)
may alter the buffer or variable, provided that the compiler cannot analyze that the
MPI procedure does not reference the module or common block.

The VOLATILE attribute, available in later versions of Fortran, gives the buffer or vari-
able the properties needed, but it may inhibit optimization of any code containing the buffer
or variable.

In C, subroutines which modify variables that are not in the argument list will not cause
register optimization problems. This is because taking pointers to storage objects by using
the & operator and later referencing the objects by way of the pointer is an integral part of
the language. A C compiler understands the implications, so that the problem should not
occur, in general. However, some compilers do offer optional aggressive optimization levels
which may not be safe.

16.2.3 Basic Fortran Support

Because Fortran 90 is (for all practical purposes) a superset of Fortran 77, Fortran 90
(and future) programs can use the original Fortran interface. The following additional
requirements are added:
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1. Implementations are required to provide the file mpif.h, as described in the original
MPI-1 specification.

2. mpif.h must be valid and equivalent for both fixed- and free- source form.

Advice to implementors. To make mpif.h compatible with both fixed- and free-source
forms, to allow automatic inclusion by preprocessors, and to allow extended fixed-form
line length, it is recommended that requirement two be met by constructing mpif.h
without any continuation lines. This should be possible because mpif.h contains
only declarations, and because common block declarations can be split among several
lines. To support Fortran 77 as well as Fortran 90, it may be necessary to eliminate
all comments from mpif.h. (End of advice to implementors.)

16.2.4 Extended Fortran Support

Implementations with Extended Fortran support must provide:

1. An mpi module

2. A new set of functions to provide additional support for Fortran intrinsic numeric
types, including parameterized types: MPI_SIZEOF, MPI_TYPE_MATCH_SIZE,
MPI_TYPE_CREATE_F90_INTEGER, MPI_TYPE_CREATE_F90_REAL and
MPI_TYPE_CREATE_F90_COMPLEX. Parameterized types are Fortran intrinsic types
which are specified using KIND type parameters. These routines are described in detail
in Section 16.2.5.

Additionally, high-quality implementations should provide a mechanism to prevent fatal
type mismatch errors for MPI routines with choice arguments.

The mpi Module

An MPI implementation must provide a module named mpi that can be used in a Fortran
90 program. This module must:

• Define all named MPI constants

• Declare MPI functions that return a value.

An MPI implementation may provide in the mpi module other features that enhance
the usability of MPI while maintaining adherence to the standard. For example, it may:

• Provide interfaces for all or for a subset of MPI routines.

• Provide INTENT information in these interface blocks.

Advice to implementors. The appropriate INTENT may be different from what is
given in the MPI generic interface. Implementations must choose INTENT so that the
function adheres to the MPI standard. (End of advice to implementors.)

Rationale. The intent given by the MPI generic interface is not precisely defined
and does not in all cases correspond to the correct Fortran INTENT. For instance,
receiving into a buffer specified by a datatype with absolute addresses may require
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associating MPI_BOTTOM with a dummy OUT argument. Moreover, “constants” such
as MPI_BOTTOM and MPI_STATUS_IGNORE are not constants as defined by Fortran,
but “special addresses” used in a nonstandard way. Finally, the MPI-1 generic intent
is changed in several places by MPI-2. For instance, MPI_IN_PLACE changes the sense
of an OUT argument to be INOUT. (End of rationale.)

Applications may use either the mpi module or the mpif.h include file. An implemen-
tation may require use of the module to prevent type mismatch errors (see below).

Advice to users. It is recommended to use the mpi module even if it is not necessary to
use it to avoid type mismatch errors on a particular system. Using a module provides
several potential advantages over using an include file. (End of advice to users.)

It must be possible to link together routines some of which USE mpi and others of which
INCLUDE mpif.h.

No Type Mismatch Problems for Subroutines with Choice Arguments

A high-quality MPI implementation should provide a mechanism to ensure that MPI choice
arguments do not cause fatal compile-time or run-time errors due to type mismatch. An
MPI implementation may require applications to use the mpi module, or require that it be
compiled with a particular compiler flag, in order to avoid type mismatch problems.

Advice to implementors. In the case where the compiler does not generate errors,
nothing needs to be done to the existing interface. In the case where the compiler
may generate errors, a set of overloaded functions may be used. See the paper of M.
Hennecke [26]. Even if the compiler does not generate errors, explicit interfaces for
all routines would be useful for detecting errors in the argument list. Also, explicit
interfaces which give INTENT information can reduce the amount of copying for BUF(*)
arguments. (End of advice to implementors.)

16.2.5 Additional Support for Fortran Numeric Intrinsic Types

The routines in this section are part of Extended Fortran Support described in Section 16.2.4.
MPI provides a small number of named datatypes that correspond to named intrinsic

types supported by C and Fortran. These include MPI_INTEGER, MPI_REAL, MPI_INT,
MPI_DOUBLE, etc., as well as the optional types MPI_REAL4, MPI_REAL8, etc. There is a
one-to-one correspondence between language declarations and MPI types.

Fortran (starting with Fortran 90) provides so-called KIND-parameterized types. These
types are declared using an intrinsic type (one of INTEGER, REAL, COMPLEX, LOGICAL and
CHARACTER) with an optional integer KIND parameter that selects from among one or more
variants. The specific meaning of different KIND values themselves are implementation
dependent and not specified by the language. Fortran provides the KIND selection functions
selected_real_kind for REAL and COMPLEX types, and selected_int_kind for INTEGER
types that allow users to declare variables with a minimum precision or number of digits.
These functions provide a portable way to declare KIND-parameterized REAL, COMPLEX and
INTEGER variables in Fortran. This scheme is backward compatible with Fortran 77. REAL
and INTEGER Fortran variables have a default KIND if none is specified. Fortran DOUBLE
PRECISION variables are of intrinsic type REAL with a non-default KIND. The following
two declarations are equivalent:
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double precision x
real(KIND(0.0d0)) x

MPI provides two orthogonal methods to communicate using numeric intrinsic types.
The first method can be used when variables have been declared in a portable way —
using default KIND or using KIND parameters obtained with the selected_int_kind or
selected_real_kind functions. With this method, MPI automatically selects the correct
data size (e.g., 4 or 8 bytes) and provides representation conversion in heterogeneous en-
vironments. The second method gives the user complete control over communication by
exposing machine representations.

Parameterized Datatypes with Specified Precision and Exponent Range

MPI provides named datatypes corresponding to standard Fortran 77 numeric types —
MPI_INTEGER, MPI_COMPLEX, MPI_REAL, MPI_DOUBLE_PRECISION and
MPI_DOUBLE_COMPLEX. MPI automatically selects the correct data size and provides rep-
resentation conversion in heterogeneous environments. The mechanism described in this
section extends this model to support portable parameterized numeric types.

The model for supporting portable parameterized types is as follows. Real variables
are declared (perhaps indirectly) using selected_real_kind(p, r) to determine the KIND
parameter, where p is decimal digits of precision and r is an exponent range. Implicitly
MPI maintains a two-dimensional array of predefined MPI datatypes D(p, r). D(p, r) is
defined for each value of (p, r) supported by the compiler, including pairs for which one
value is unspecified. Attempting to access an element of the array with an index (p, r) not
supported by the compiler is erroneous. MPI implicitly maintains a similar array of COMPLEX
datatypes. For integers, there is a similar implicit array related to selected_int_kind and
indexed by the requested number of digits r. Note that the predefined datatypes contained
in these implicit arrays are not the same as the named MPI datatypes MPI_REAL, etc., but
a new set.

Advice to implementors. The above description is for explanatory purposes only. It
is not expected that implementations will have such internal arrays. (End of advice
to implementors.)

Advice to users. selected_real_kind() maps a large number of (p,r) pairs to a
much smaller number of KIND parameters supported by the compiler. KIND parameters
are not specified by the language and are not portable. From the language point of
view intrinsic types of the same base type and KIND parameter are of the same type. In
order to allow interoperability in a heterogeneous environment, MPI is more stringent.
The corresponding MPI datatypes match if and only if they have the same (p,r) value
(REAL and COMPLEX) or r value (INTEGER). Thus MPI has many more datatypes than
there are fundamental language types. (End of advice to users.)
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MPI_TYPE_CREATE_F90_REAL(p, r, newtype)

IN p precision, in decimal digits (integer)

IN r decimal exponent range (integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype)

MPI_TYPE_CREATE_F90_REAL(P, R, NEWTYPE, IERROR)
INTEGER P, R, NEWTYPE, IERROR

{static MPI::Datatype MPI::Datatype::Create_f90_real(int p, int r) (binding
deprecated, see Section 15.2) }

This function returns a predefined MPI datatype that matches a REAL variable of KIND
selected_real_kind(p, r). In the model described above it returns a handle for the el-
ement D(p, r). Either p or r may be omitted from calls to selected_real_kind(p, r)
(but not both). Analogously, either p or r may be set to MPI_UNDEFINED. In communica-
tion, an MPI datatype A returned by MPI_TYPE_CREATE_F90_REAL matches a datatype
B if and only if B was returned by MPI_TYPE_CREATE_F90_REAL called with the same
values for p and r or B is a duplicate of such a datatype. Restrictions on using the returned
datatype with the “external32” data representation are given on page 493.

It is erroneous to supply values for p and r not supported by the compiler.

MPI_TYPE_CREATE_F90_COMPLEX(p, r, newtype)

IN p precision, in decimal digits (integer)

IN r decimal exponent range (integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype)

MPI_TYPE_CREATE_F90_COMPLEX(P, R, NEWTYPE, IERROR)
INTEGER P, R, NEWTYPE, IERROR

{static MPI::Datatype MPI::Datatype::Create_f90_complex(int p, int r)
(binding deprecated, see Section 15.2) }

This function returns a predefined MPI datatype that matches a
COMPLEX variable of KIND selected_real_kind(p, r). Either p or r may be omitted from
calls to selected_real_kind(p, r) (but not both). Analogously, either p or r may be set
to MPI_UNDEFINED. Matching rules for datatypes created by this function are analogous to
the matching rules for datatypes created by MPI_TYPE_CREATE_F90_REAL. Restrictions
on using the returned datatype with the “external32” data representation are given on page
493.

It is erroneous to supply values for p and r not supported by the compiler.
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492 CHAPTER 16. LANGUAGE BINDINGS

MPI_TYPE_CREATE_F90_INTEGER(r, newtype)

IN r decimal exponent range, i.e., number of decimal digits
(integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)

MPI_TYPE_CREATE_F90_INTEGER(R, NEWTYPE, IERROR)
INTEGER R, NEWTYPE, IERROR

{static MPI::Datatype MPI::Datatype::Create_f90_integer(int r) (binding
deprecated, see Section 15.2) }

This function returns a predefined MPI datatype that matches a INTEGER variable of
KIND selected_int_kind(r). Matching rules for datatypes created by this function are
analogous to the matching rules for datatypes created by MPI_TYPE_CREATE_F90_REAL.
Restrictions on using the returned datatype with the “external32” data representation are
given on page 493.

It is erroneous to supply a value for r that is not supported by the compiler.
Example:

integer longtype, quadtype
integer, parameter :: long = selected_int_kind(15)
integer(long) ii(10)
real(selected_real_kind(30)) x(10)
call MPI_TYPE_CREATE_F90_INTEGER(15, longtype, ierror)
call MPI_TYPE_CREATE_F90_REAL(30, MPI_UNDEFINED, quadtype, ierror)
...

call MPI_SEND(ii, 10, longtype, ...)
call MPI_SEND(x, 10, quadtype, ...)

Advice to users. The datatypes returned by the above functions are predefined
datatypes. They cannot be freed; they do not need to be committed; they can be
used with predefined reduction operations. There are two situations in which they
behave differently syntactically, but not semantically, from the MPI named predefined
datatypes.

1. MPI_TYPE_GET_ENVELOPE returns special combiners that allow a program to
retrieve the values of p and r.

2. Because the datatypes are not named, they cannot be used as compile-time
initializers or otherwise accessed before a call to one of the
MPI_TYPE_CREATE_F90_ routines.

If a variable was declared specifying a non-default KIND value that was not obtained
with selected_real_kind() or selected_int_kind(), the only way to obtain a
matching MPI datatype is to use the size-based mechanism described in the next
section.

(End of advice to users.)
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16.2. FORTRAN SUPPORT 493

Advice to implementors. An application may often repeat a call to
MPI_TYPE_CREATE_F90_xxxx with the same combination of (xxxx,p,r). The appli-
cation is not allowed to free the returned predefined, unnamed datatype handles. To
prevent the creation of a potentially huge amount of handles, a high quality MPI imple-
mentation should return the same datatype handle for the same (REAL/COMPLEX/
INTEGER,p,r) combination. Checking for the combination (p,r) in the preceding call
to MPI_TYPE_CREATE_F90_xxxx and using a hash-table to find formerly generated
handles should limit the overhead of finding a previously generated datatype with
same combination of (xxxx,p,r). (End of advice to implementors.)

Rationale. The MPI_TYPE_CREATE_F90_REAL/COMPLEX/INTEGER interface
needs as input the original range and precision values to be able to define useful
and compiler-independent external (Section 13.5.2 on page 431) or user-defined (Sec-
tion 13.5.3 on page 432) data representations, and in order to be able to perform
automatic and efficient data conversions in a heterogeneous environment. (End of
rationale.)

We now specify how the datatypes described in this section behave when used with the
“external32” external data representation described in Section 13.5.2 on page 431.

The external32 representation specifies data formats for integer and floating point val-
ues. Integer values are represented in two’s complement big-endian format. Floating point
values are represented by one of three IEEE formats. These are the IEEE “Single,” “Dou-
ble” and “Double Extended” formats, requiring 4, 8 and 16 bytes of storage, respectively.
For the IEEE “Double Extended” formats, MPI specifies a Format Width of 16 bytes, with
15 exponent bits, bias = +10383, 112 fraction bits, and an encoding analogous to the
“Double” format.

The external32 representations of the datatypes returned by
MPI_TYPE_CREATE_F90_REAL/COMPLEX/INTEGER are given by the following rules.
For MPI_TYPE_CREATE_F90_REAL:

if (p > 33) or (r > 4931) then external32 representation
is undefined

else if (p > 15) or (r > 307) then external32_size = 16
else if (p > 6) or (r > 37) then external32_size = 8
else external32_size = 4

For MPI_TYPE_CREATE_F90_COMPLEX: twice the size as for MPI_TYPE_CREATE_F90_REAL.
For MPI_TYPE_CREATE_F90_INTEGER:

if (r > 38) then external32 representation is undefined
else if (r > 18) then external32_size = 16
else if (r > 9) then external32_size = 8
else if (r > 4) then external32_size = 4
else if (r > 2) then external32_size = 2
else external32_size = 1

If the external32 representation of a datatype is undefined, the result of using the datatype
directly or indirectly (i.e., as part of another datatype or through a duplicated datatype)
in operations that require the external32 representation is undefined. These operations in-
clude MPI_PACK_EXTERNAL, MPI_UNPACK_EXTERNAL and many MPI_FILE functions,
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when the “external32” data representation is used. The ranges for which the external32
representation is undefined are reserved for future standardization.

Support for Size-specific MPI Datatypes

MPI provides named datatypes corresponding to optional Fortran 77 numeric types that
contain explicit byte lengths — MPI_REAL4, MPI_INTEGER8, etc. This section describes a
mechanism that generalizes this model to support all Fortran numeric intrinsic types.

We assume that for each typeclass (integer, real, complex) and each word size there is
a unique machine representation. For every pair (typeclass, n) supported by a compiler,
MPI must provide a named size-specific datatype. The name of this datatype is of the form
MPI_<TYPE>n in C and Fortran and of the form MPI::<TYPE>n in C++ where
<TYPE> is one of REAL, INTEGER and COMPLEX, and n is the length in bytes of the machine
representation. This datatype locally matches all variables of type (typeclass, n). The list
of names for such types includes:

MPI_REAL4
MPI_REAL8
MPI_REAL16
MPI_COMPLEX8
MPI_COMPLEX16
MPI_COMPLEX32
MPI_INTEGER1
MPI_INTEGER2
MPI_INTEGER4
MPI_INTEGER8
MPI_INTEGER16

One datatype is required for each representation supported by the compiler. To be backward
compatible with the interpretation of these types in MPI-1, we assume that the nonstandard
declarations REAL*n, INTEGER*n, always create a variable whose representation is of size n.
All these datatypes are predefined.

The following functions allow a user to obtain a size-specific MPI datatype for any
intrinsic Fortran type.

MPI_SIZEOF(x, size)

IN x a Fortran variable of numeric intrinsic type (choice)

OUT size size of machine representation of that type (integer)

MPI_SIZEOF(X, SIZE, IERROR)
<type> X
INTEGER SIZE, IERROR

This function returns the size in bytes of the machine representation of the given
variable. It is a generic Fortran routine and has a Fortran binding only.

Advice to users. This function is similar to the C and C++ sizeof operator but
behaves slightly differently. If given an array argument, it returns the size of the base
element, not the size of the whole array. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48
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Rationale. This function is not available in other languages because it would not be
useful. (End of rationale.)

MPI_TYPE_MATCH_SIZE(typeclass, size, type)

IN typeclass generic type specifier (integer)

IN size size, in bytes, of representation (integer)

OUT type datatype with correct type, size (handle)

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *type)

MPI_TYPE_MATCH_SIZE(TYPECLASS, SIZE, TYPE, IERROR)
INTEGER TYPECLASS, SIZE, TYPE, IERROR

{static MPI::Datatype MPI::Datatype::Match_size(int typeclass, int size)
(binding deprecated, see Section 15.2) }

typeclass is one of MPI_TYPECLASS_REAL, MPI_TYPECLASS_INTEGER and
MPI_TYPECLASS_COMPLEX, corresponding to the desired typeclass. The function returns
an MPI datatype matching a local variable of type (typeclass, size).

This function returns a reference (handle) to one of the predefined named datatypes, not
a duplicate. This type cannot be freed. MPI_TYPE_MATCH_SIZE can be used to obtain a
size-specific type that matches a Fortran numeric intrinsic type by first calling MPI_SIZEOF
in order to compute the variable size, and then calling MPI_TYPE_MATCH_SIZE to find a
suitable datatype. In C and C++, one can use the C function sizeof(), instead of
MPI_SIZEOF. In addition, for variables of default kind the variable’s size can be computed
by a call to MPI_TYPE_GET_EXTENT, if the typeclass is known. It is erroneous to specify
a size not supported by the compiler.

Rationale. This is a convenience function. Without it, it can be tedious to find the
correct named type. See note to implementors below. (End of rationale.)

Advice to implementors. This function could be implemented as a series of tests.

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *rtype)
{
switch(typeclass) {

case MPI_TYPECLASS_REAL: switch(size) {
case 4: *rtype = MPI_REAL4; return MPI_SUCCESS;
case 8: *rtype = MPI_REAL8; return MPI_SUCCESS;
default: error(...);

}
case MPI_TYPECLASS_INTEGER: switch(size) {

case 4: *rtype = MPI_INTEGER4; return MPI_SUCCESS;
case 8: *rtype = MPI_INTEGER8; return MPI_SUCCESS;
default: error(...); }

... etc. ...
}

}
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(End of advice to implementors.)

Communication With Size-specific Types

The usual type matching rules apply to size-specific datatypes: a value sent with datatype
MPI_<TYPE>n can be received with this same datatype on another process. Most modern
computers use 2’s complement for integers and IEEE format for floating point. Thus, com-
munication using these size-specific datatypes will not entail loss of precision or truncation
errors.

Advice to users. Care is required when communicating in a heterogeneous environ-
ment. Consider the following code:

real(selected_real_kind(5)) x(100)
call MPI_SIZEOF(x, size, ierror)
call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)
if (myrank .eq. 0) then

... initialize x ...
call MPI_SEND(x, xtype, 100, 1, ...)

else if (myrank .eq. 1) then
call MPI_RECV(x, xtype, 100, 0, ...)

endif

This may not work in a heterogeneous environment if the value of size is not the
same on process 1 and process 0. There should be no problem in a homogeneous
environment. To communicate in a heterogeneous environment, there are at least four
options. The first is to declare variables of default type and use the MPI datatypes
for these types, e.g., declare a variable of type REAL and use MPI_REAL. The second
is to use selected_real_kind or selected_int_kind and with the functions of the
previous section. The third is to declare a variable that is known to be the same
size on all architectures (e.g., selected_real_kind(12) on almost all compilers will
result in an 8-byte representation). The fourth is to carefully check representation
size before communication. This may require explicit conversion to a variable of size
that can be communicated and handshaking between sender and receiver to agree on
a size.

Note finally that using the “external32” representation for I/O requires explicit at-
tention to the representation sizes. Consider the following code:

real(selected_real_kind(5)) x(100)
call MPI_SIZEOF(x, size, ierror)
call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)

if (myrank .eq. 0) then
call MPI_FILE_OPEN(MPI_COMM_SELF, ’foo’, &

MPI_MODE_CREATE+MPI_MODE_WRONLY, &
MPI_INFO_NULL, fh, ierror)

call MPI_FILE_SET_VIEW(fh, 0, xtype, xtype, ’external32’, &
MPI_INFO_NULL, ierror)
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call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)
call MPI_FILE_CLOSE(fh, ierror)

endif

call MPI_BARRIER(MPI_COMM_WORLD, ierror)

if (myrank .eq. 1) then
call MPI_FILE_OPEN(MPI_COMM_SELF, ’foo’, MPI_MODE_RDONLY, &

MPI_INFO_NULL, fh, ierror)
call MPI_FILE_SET_VIEW(fh, 0, xtype, xtype, ’external32’, &

MPI_INFO_NULL, ierror)
call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)
call MPI_FILE_CLOSE(fh, ierror)

endif

If processes 0 and 1 are on different machines, this code may not work as expected if
the size is different on the two machines. (End of advice to users.)

16.3 Language Interoperability

16.3.1 Introduction

It is not uncommon for library developers to use one language to develop an applications
library that may be called by an application program written in a different language. MPI
currently supports ISO (previously ANSI) C, C++, and Fortran bindings. It should be
possible for applications in any of the supported languages to call MPI-related functions in
another language.

Moreover, MPI allows the development of client-server code, with MPI communication
used between a parallel client and a parallel server. It should be possible to code the server
in one language and the clients in another language. To do so, communications should be
possible between applications written in different languages.

There are several issues that need to be addressed in order to achieve interoperability.

Initialization We need to specify how the MPI environment is initialized for all languages.

Interlanguage passing of MPI opaque objects We need to specify how MPI object
handles are passed between languages. We also need to specify what happens when
an MPI object is accessed in one language, to retrieve information (e.g., attributes)
set in another language.

Interlanguage communication We need to specify how messages sent in one language
can be received in another language.

It is highly desirable that the solution for interlanguage interoperability be extendable
to new languages, should MPI bindings be defined for such languages.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



498 CHAPTER 16. LANGUAGE BINDINGS

16.3.2 Assumptions

We assume that conventions exist for programs written in one language to call routines
written in another language. These conventions specify how to link routines in different
languages into one program, how to call functions in a different language, how to pass ar-
guments between languages, and the correspondence between basic data types in different
languages. In general, these conventions will be implementation dependent. Furthermore,
not every basic datatype may have a matching type in other languages. For example,
C/C++ character strings may not be compatible with Fortran CHARACTER variables. How-
ever, we assume that a Fortran INTEGER, as well as a (sequence associated) Fortran array
of INTEGERs, can be passed to a C or C++ program. We also assume that Fortran, C, and
C++ have address-sized integers. This does not mean that the default-size integers are the
same size as default-sized pointers, but only that there is some way to hold (and pass) a
C address in a Fortran integer. It is also assumed that INTEGER(KIND=MPI_OFFSET_KIND)
can be passed from Fortran to C as MPI_Offset.

16.3.3 Initialization

A call to MPI_INIT or MPI_INIT_THREAD, from any language, initializes MPI for execution
in all languages.

Advice to users. Certain implementations use the (inout) argc, argv arguments of
the C/C++ version of MPI_INIT in order to propagate values for argc and argv to
all executing processes. Use of the Fortran version of MPI_INIT to initialize MPI may
result in a loss of this ability. (End of advice to users.)

The function MPI_INITIALIZED returns the same answer in all languages.
The function MPI_FINALIZE finalizes the MPI environments for all languages.
The function MPI_FINALIZED returns the same answer in all languages.
The function MPI_ABORT kills processes, irrespective of the language used by the

caller or by the processes killed.
The MPI environment is initialized in the same manner for all languages by

MPI_INIT. E.g., MPI_COMM_WORLD carries the same information regardless of language:
same processes, same environmental attributes, same error handlers.

Information can be added to info objects in one language and retrieved in another.

Advice to users. The use of several languages in one MPI program may require the
use of special options at compile and/or link time. (End of advice to users.)

Advice to implementors. Implementations may selectively link language specific MPI
libraries only to codes that need them, so as not to increase the size of binaries for codes
that use only one language. The MPI initialization code need perform initialization for
a language only if that language library is loaded. (End of advice to implementors.)

16.3.4 Transfer of Handles

Handles are passed between Fortran and C or C++ by using an explicit C wrapper to
convert Fortran handles to C handles. There is no direct access to C or C++ handles in
Fortran. Handles are passed between C and C++ using overloaded C++ operators called
from C++ code. There is no direct access to C++ objects from C.
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16.3. LANGUAGE INTEROPERABILITY 499

The type definition MPI_Fint is provided in C/C++ for an integer of the size that
matches a Fortran INTEGER; usually, MPI_Fint will be equivalent to int.

The following functions are provided in C to convert from a Fortran communicator han-
dle (which is an integer) to a C communicator handle, and vice versa. See also Section 2.6.5
on page 21.

MPI_Comm MPI_Comm_f2c(MPI_Fint comm)

If comm is a valid Fortran handle to a communicator, then MPI_Comm_f2c returns a
valid C handle to that same communicator; if comm = MPI_COMM_NULL (Fortran value),
then MPI_Comm_f2c returns a null C handle; if comm is an invalid Fortran handle, then
MPI_Comm_f2c returns an invalid C handle.

MPI_Fint MPI_Comm_c2f(MPI_Comm comm)

The function MPI_Comm_c2f translates a C communicator handle into a Fortran handle
to the same communicator; it maps a null handle into a null handle and an invalid handle
into an invalid handle.

Similar functions are provided for the other types of opaque objects.

MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)

MPI_Fint MPI_Type_c2f(MPI_Datatype datatype)

MPI_Group MPI_Group_f2c(MPI_Fint group)

MPI_Fint MPI_Group_c2f(MPI_Group group)

MPI_Request MPI_Request_f2c(MPI_Fint request)

MPI_Fint MPI_Request_c2f(MPI_Request request)

MPI_File MPI_File_f2c(MPI_Fint file)

MPI_Fint MPI_File_c2f(MPI_File file)

MPI_Win MPI_Win_f2c(MPI_Fint win)

MPI_Fint MPI_Win_c2f(MPI_Win win)

MPI_Op MPI_Op_f2c(MPI_Fint op)

MPI_Fint MPI_Op_c2f(MPI_Op op)

MPI_Info MPI_Info_f2c(MPI_Fint info)

MPI_Fint MPI_Info_c2f(MPI_Info info)

MPI_Errhandler MPI_Errhandler_f2c(MPI_Fint errhandler)

MPI_Fint MPI_Errhandler_c2f(MPI_Errhandler errhandler)

Example 16.13 The example below illustrates how the Fortran MPI function
MPI_TYPE_COMMIT can be implemented by wrapping the C MPI function
MPI_Type_commit with a C wrapper to do handle conversions. In this example a Fortran-C
interface is assumed where a Fortran function is all upper case when referred to from C and
arguments are passed by addresses.
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! FORTRAN PROCEDURE
SUBROUTINE MPI_TYPE_COMMIT( DATATYPE, IERR)
INTEGER DATATYPE, IERR
CALL MPI_X_TYPE_COMMIT(DATATYPE, IERR)
RETURN
END

/* C wrapper */

void MPI_X_TYPE_COMMIT( MPI_Fint *f_handle, MPI_Fint *ierr)
{

MPI_Datatype datatype;

datatype = MPI_Type_f2c( *f_handle);
*ierr = (MPI_Fint)MPI_Type_commit( &datatype);
*f_handle = MPI_Type_c2f(datatype);
return;

}

The same approach can be used for all other MPI functions. The call to MPI_xxx_f2c
(resp. MPI_xxx_c2f) can be omitted when the handle is an OUT (resp. IN) argument, rather
than INOUT.

Rationale. The design here provides a convenient solution for the prevalent case,
where a C wrapper is used to allow Fortran code to call a C library, or C code to
call a Fortran library. The use of C wrappers is much more likely than the use of
Fortran wrappers, because it is much more likely that a variable of type INTEGER can
be passed to C, than a C handle can be passed to Fortran.

Returning the converted value as a function value rather than through the argument
list allows the generation of efficient inlined code when these functions are simple
(e.g., the identity). The conversion function in the wrapper does not catch an invalid
handle argument. Instead, an invalid handle is passed below to the library function,
which, presumably, checks its input arguments. (End of rationale.)

C and C++ The C++ language interface provides the functions listed below for mixed-
language interoperability. The token <CLASS> is used below to indicate any valid MPI
opaque handle name (e.g., Group), except where noted. For the case where the C++ class
corresponding to <CLASS> has derived classes, functions are also provided for converting
between the derived classes and the C MPI_<CLASS>.

The following function allows assignment from a C MPI handle to a C++ MPI handle.

MPI::<CLASS>& MPI::<CLASS>::operator=(const MPI_<CLASS>& data)

The constructor below creates a C++ MPI object from a C MPI handle. This allows
the automatic promotion of a C MPI handle to a C++ MPI handle.

MPI::<CLASS>::<CLASS>(const MPI_<CLASS>& data)

Example 16.14 In order for a C program to use a C++ library, the C++ library must
export a C interface that provides appropriate conversions before invoking the underlying

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



16.3. LANGUAGE INTEROPERABILITY 501

C++ library call. This example shows a C interface function that invokes a C++ library
call with a C communicator; the communicator is automatically promoted to a C++ handle
when the underlying C++ function is invoked.

// C++ library function prototype
void cpp_lib_call(MPI::Comm cpp_comm);

// Exported C function prototype
extern "C" {

void c_interface(MPI_Comm c_comm);
}

void c_interface(MPI_Comm c_comm)
{

// the MPI_Comm (c_comm) is automatically promoted to MPI::Comm
cpp_lib_call(c_comm);

}

The following function allows conversion from C++ objects to C MPI handles. In this
case, the casting operator is overloaded to provide the functionality.

MPI::<CLASS>::operator MPI_<CLASS>() const

Example 16.15 A C library routine is called from a C++ program. The C library routine
is prototyped to take an MPI_Comm as an argument.

// C function prototype
extern "C" {

void c_lib_call(MPI_Comm c_comm);
}

void cpp_function()
{

// Create a C++ communicator, and initialize it with a dup of
// MPI::COMM_WORLD
MPI::Intracomm cpp_comm(MPI::COMM_WORLD.Dup());
c_lib_call(cpp_comm);

}

Rationale. Providing conversion from C to C++ via constructors and from C++
to C via casting allows the compiler to make automatic conversions. Calling C from
C++ becomes trivial, as does the provision of a C or Fortran interface to a C++
library. (End of rationale.)

Advice to users. Note that the casting and promotion operators return new handles
by value. Using these new handles as INOUT parameters will affect the internal MPI
object, but will not affect the original handle from which it was cast. (End of advice
to users.)

It is important to note that all C++ objects with corresponding C handles can be used
interchangeably by an application. For example, an application can cache an attribute on
MPI_COMM_WORLD and later retrieve it from MPI::COMM_WORLD.
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16.3.5 Status

The following two procedures are provided in C to convert from a Fortran status (which is
an array of integers) to a C status (which is a structure), and vice versa. The conversion
occurs on all the information in status, including that which is hidden. That is, no status
information is lost in the conversion.

int MPI_Status_f2c(MPI_Fint *f_status, MPI_Status *c_status)

If f_status is a valid Fortran status, but not the Fortran value of MPI_STATUS_IGNORE

or MPI_STATUSES_IGNORE, then MPI_Status_f2c returns in c_status a valid C status with
the same content. If f_status is the Fortran value of MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE, or if f_status is not a valid Fortran status, then the call is erroneous.

The C status has the same source, tag and error code values as the Fortran status,
and returns the same answers when queried for count, elements, and cancellation. The
conversion function may be called with a Fortran status argument that has an undefined
error field, in which case the value of the error field in the C status argument is undefined.

Two global variables of type MPI_Fint*, MPI_F_STATUS_IGNORE and
MPI_F_STATUSES_IGNORE are declared in mpi.h. They can be used to test, in C, whether
f_status is the Fortran value of MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE, respec-
tively. These are global variables, not C constant expressions and cannot be used in places
where C requires constant expressions. Their value is defined only between the calls to
MPI_INIT and MPI_FINALIZE and should not be changed by user code.

To do the conversion in the other direction, we have the following:
int MPI_Status_c2f(MPI_Status *c_status, MPI_Fint *f_status)

This call converts a C status into a Fortran status, and has a behavior similar to
MPI_Status_f2c. That is, the value of c_status must not be either MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE.

Advice to users. There is not a separate conversion function for arrays of statuses,
since one can simply loop through the array, converting each status. (End of advice
to users.)

Rationale. The handling of MPI_STATUS_IGNORE is required in order to layer libraries
with only a C wrapper: if the Fortran call has passed MPI_STATUS_IGNORE, then the
C wrapper must handle this correctly. Note that this constant need not have the
same value in Fortran and C. If MPI_Status_f2c were to handle MPI_STATUS_IGNORE,
then the type of its result would have to be MPI_Status**, which was considered an
inferior solution. (End of rationale.)

16.3.6 MPI Opaque Objects

Unless said otherwise, opaque objects are “the same” in all languages: they carry the same
information, and have the same meaning in both languages. The mechanism described
in the previous section can be used to pass references to MPI objects from language to
language. An object created in one language can be accessed, modified or freed in another
language.

We examine below in more detail, issues that arise for each type of MPI object.
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Datatypes

Datatypes encode the same information in all languages. E.g., a datatype accessor like
MPI_TYPE_GET_EXTENT will return the same information in all languages. If a datatype
defined in one language is used for a communication call in another language, then the
message sent will be identical to the message that would be sent from the first language:
the same communication buffer is accessed, and the same representation conversion is per-
formed, if needed. All predefined datatypes can be used in datatype constructors in any
language. If a datatype is committed, it can be used for communication in any language.

The function MPI_GET_ADDRESS returns the same value in all languages. Note that
we do not require that the constant MPI_BOTTOM have the same value in all languages (see
16.3.9, page 509).

Example 16.16

! FORTRAN CODE
REAL R(5)
INTEGER TYPE, IERR, AOBLEN(1), AOTYPE(1)
INTEGER (KIND=MPI_ADDRESS_KIND) AODISP(1)

! create an absolute datatype for array R
AOBLEN(1) = 5
CALL MPI_GET_ADDRESS( R, AODISP(1), IERR)
AOTYPE(1) = MPI_REAL
CALL MPI_TYPE_CREATE_STRUCT(1, AOBLEN,AODISP,AOTYPE, TYPE, IERR)
CALL C_ROUTINE(TYPE)

/* C code */

void C_ROUTINE(MPI_Fint *ftype)
{

int count = 5;
int lens[2] = {1,1};
MPI_Aint displs[2];
MPI_Datatype types[2], newtype;

/* create an absolute datatype for buffer that consists */
/* of count, followed by R(5) */

MPI_Get_address(&count, &displs[0]);
displs[1] = 0;
types[0] = MPI_INT;
types[1] = MPI_Type_f2c(*ftype);
MPI_Type_create_struct(2, lens, displs, types, &newtype);
MPI_Type_commit(&newtype);

MPI_Send(MPI_BOTTOM, 1, newtype, 1, 0, MPI_COMM_WORLD);
/* the message sent contains an int count of 5, followed */
/* by the 5 REAL entries of the Fortran array R. */

}
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Advice to implementors. The following implementation can be used: MPI addresses,
as returned by MPI_GET_ADDRESS, will have the same value in all languages. One
obvious choice is that MPI addresses be identical to regular addresses. The address
is stored in the datatype, when datatypes with absolute addresses are constructed.
When a send or receive operation is performed, then addresses stored in a datatype
are interpreted as displacements that are all augmented by a base address. This base
address is (the address of) buf, or zero, if buf = MPI_BOTTOM. Thus, if MPI_BOTTOM

is zero then a send or receive call with buf = MPI_BOTTOM is implemented exactly
as a call with a regular buffer argument: in both cases the base address is buf. On the
other hand, if MPI_BOTTOM is not zero, then the implementation has to be slightly
different. A test is performed to check whether buf = MPI_BOTTOM. If true, then
the base address is zero, otherwise it is buf. In particular, if MPI_BOTTOM does
not have the same value in Fortran and C/C++, then an additional test for buf =
MPI_BOTTOM is needed in at least one of the languages.

It may be desirable to use a value other than zero for MPI_BOTTOM even in C/C++,
so as to distinguish it from a NULL pointer. If MPI_BOTTOM = c then one can still
avoid the test buf = MPI_BOTTOM, by using the displacement from MPI_BOTTOM,
i.e., the regular address - c, as the MPI address returned by MPI_GET_ADDRESS and
stored in absolute datatypes. (End of advice to implementors.)

Callback Functions

MPI calls may associate callback functions with MPI objects: error handlers are associ-
ated with communicators and files, attribute copy and delete functions are associated with
attribute keys, reduce operations are associated with operation objects, etc. In a multilan-
guage environment, a function passed in an MPI call in one language may be invoked by an
MPI call in another language. MPI implementations must make sure that such invocation
will use the calling convention of the language the function is bound to.

Advice to implementors. Callback functions need to have a language tag. This
tag is set when the callback function is passed in by the library function (which is
presumably different for each language), and is used to generate the right calling
sequence when the callback function is invoked. (End of advice to implementors.)

Error Handlers

Advice to implementors. Error handlers, have, in C and C++, a “stdargs” argu-
ment list. It might be useful to provide to the handler information on the language
environment where the error occurred. (End of advice to implementors.)

Reduce Operations

Advice to users. Reduce operations receive as one of their arguments the datatype
of the operands. Thus, one can define “polymorphic” reduce operations that work for
C, C++, and Fortran datatypes. (End of advice to users.)

Addresses

Some of the datatype accessors and constructors have arguments of type MPI_Aint (in C)
or MPI::Aint in C++, to hold addresses. The corresponding arguments, in Fortran, have
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type INTEGER. This causes Fortran and C/C++ to be incompatible, in an environment
where addresses have 64 bits, but Fortran INTEGERs have 32 bits.

This is a problem, irrespective of interlanguage issues. Suppose that a Fortran pro-
cess has an address space of ≥ 4 GB. What should be the value returned in Fortran by
MPI_ADDRESS, for a variable with an address above 232? The design described here ad-
dresses this issue, while maintaining compatibility with current Fortran codes.

The constant MPI_ADDRESS_KIND is defined so that, in Fortran 90,
INTEGER(KIND=MPI_ADDRESS_KIND)) is an address sized integer type (typically, but not
necessarily, the size of an INTEGER(KIND=MPI_ADDRESS_KIND) is 4 on 32 bit address ma-
chines and 8 on 64 bit address machines). Similarly, the constant MPI_INTEGER_KIND is
defined so that INTEGER(KIND=MPI_INTEGER_KIND) is a default size INTEGER.

There are seven functions that have address arguments: MPI_TYPE_HVECTOR,
MPI_TYPE_HINDEXED, MPI_TYPE_STRUCT, MPI_ADDRESS, MPI_TYPE_EXTENT
MPI_TYPE_LB and MPI_TYPE_UB.

Four new functions are provided to supplement the first four functions in this list.
These functions are described in Section 4.1.1 on page 79. The remaining three functions
are supplemented by the new function MPI_TYPE_GET_EXTENT, described in that same
section. The new functions have the same functionality as the old functions in C/C++,
or on Fortran systems where default INTEGERs are address sized. In Fortran, they accept
arguments of type INTEGER(KIND=MPI_ADDRESS_KIND), wherever arguments of type
MPI_Aint and MPI::Aint are used in C and C++. On Fortran 77 systems that do not support
the Fortran 90 KIND notation, and where addresses are 64 bits whereas default INTEGERs
are 32 bits, these arguments will be of an appropriate integer type. The old functions will
continue to be provided, for backward compatibility. However, users are encouraged to
switch to the new functions, in Fortran, so as to avoid problems on systems with an address
range > 232, and to provide compatibility across languages.

16.3.7 Attributes

Attribute keys can be allocated in one language and freed in another. Similarly, attribute
values can be set in one language and accessed in another. To achieve this, attribute keys
will be allocated in an integer range that is valid all languages. The same holds true for
system-defined attribute values (such as MPI_TAG_UB, MPI_WTIME_IS_GLOBAL, etc.)

Attribute keys declared in one language are associated with copy and delete functions in
that language (the functions provided by the MPI_{TYPE,COMM,WIN}_CREATE_KEYVAL
call). When a communicator is duplicated, for each attribute, the corresponding copy
function is called, using the right calling convention for the language of that function; and
similarly, for the delete callback function.

Advice to implementors. This requires that attributes be tagged either as “C,”
“C++” or “Fortran,” and that the language tag be checked in order to use the right
calling convention for the callback function. (End of advice to implementors.)

The attribute manipulation functions described in Section 6.7 on page 224 define at-
tributes arguments to be of type void* in C, and of type INTEGER, in Fortran. On some
systems, INTEGERs will have 32 bits, while C/C++ pointers will have 64 bits. This is a
problem if communicator attributes are used to move information from a Fortran caller to
a C/C++ callee, or vice-versa.
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MPI behaves as if it stores, internally, address sized attributes. If Fortran INTEGERs
are smaller, then the Fortran function MPI_ATTR_GET will return the least significant part
of the attribute word; the Fortran function MPI_ATTR_PUT will set the least significant
part of the attribute word, which will be sign extended to the entire word. (These two
functions may be invoked explicitly by user code, or implicitly, by attribute copying callback
functions.)

As for addresses, new functions are provided that manipulate Fortran address sized
attributes, and have the same functionality as the old functions in C/C++. These functions
are described in Section 6.7, page 224. Users are encouraged to use these new functions.

MPI supports two types of attributes: address-valued (pointer) attributes, and integer
valued attributes. C and C++ attribute functions put and get address valued attributes.
Fortran attribute functions put and get integer valued attributes. When an integer valued
attribute is accessed from C or C++, then MPI_xxx_get_attr will return the address of (a
pointer to) the integer valued attribute, which is a pointer to MPI_Aint if the attribute was
stored with Fortran MPI_xxx_SET_ATTR, and a pointer to int if it was stored with the
deprecated Fortran MPI_ATTR_PUT. When an address valued attribute is accessed from
Fortran, then MPI_xxx_GET_ATTR will convert the address into an integer and return
the result of this conversion. This conversion is lossless if new style attribute functions
are used, and an integer of kind MPI_ADDRESS_KIND is returned. The conversion may
cause truncation if deprecated attribute functions are used. In C, the deprecated routines
MPI_Attr_put and MPI_Attr_get behave identical to MPI_Comm_set_attr and
MPI_Comm_get_attr.

Example 16.17 A. Setting an attribute value in C

int set_val = 3;
struct foo set_struct;

/* Set a value that is a pointer to an int */

MPI_Comm_set_attr(MPI_COMM_WORLD, keyval1, &set_val);
/* Set a value that is a pointer to a struct */
MPI_Comm_set_attr(MPI_COMM_WORLD, keyval2, &set_struct);
/* Set an integer value */
MPI_Comm_set_attr(MPI_COMM_WORLD, keyval3, (void *) 17);

B. Reading the attribute value in C

int flag, *get_val;
struct foo *get_struct;

/* Upon successful return, get_val == &set_val
(and therefore *get_val == 3) */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval1, &get_val, &flag);
/* Upon successful return, get_struct == &set_struct */
MPI_Comm_get_attr(MPI_COMM_WORLD, keyval2, &get_struct, &flag);
/* Upon successful return, get_val == (void*) 17 */
/* i.e., (MPI_Aint) get_val == 17 */
MPI_Comm_get_attr(MPI_COMM_WORLD, keyval3, &get_val, &flag);
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C. Reading the attribute value with (deprecated) Fortran MPI-1 calls

LOGICAL FLAG
INTEGER IERR, GET_VAL, GET_STRUCT

! Upon successful return, GET_VAL == &set_val, possibly truncated
CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL1, GET_VAL, FLAG, IERR)
! Upon successful return, GET_STRUCT == &set_struct, possibly truncated
CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL2, GET_STRUCT, FLAG, IERR)
! Upon successful return, GET_VAL == 17
CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL3, GET_VAL, FLAG, IERR)

D. Reading the attribute value with Fortran MPI-2 calls

LOGICAL FLAG
INTEGER IERR
INTEGER (KIND=MPI_ADDRESS_KIND) GET_VAL, GET_STRUCT

! Upon successful return, GET_VAL == &set_val
CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL1, GET_VAL, FLAG, IERR)
! Upon successful return, GET_STRUCT == &set_struct
CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL2, GET_STRUCT, FLAG, IERR)
! Upon successful return, GET_VAL == 17
CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL3, GET_VAL, FLAG, IERR)

Example 16.18 A. Setting an attribute value with the (deprecated) Fortran MPI-1 call

INTEGER IERR, VAL
VAL = 7
CALL MPI_ATTR_PUT(MPI_COMM_WORLD, KEYVAL, VAL, IERR)

B. Reading the attribute value in C

int flag;
int *value;

/* Upon successful return, value points to internal MPI storage and
*value == (int) 7 */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval, &value, &flag);

C. Reading the attribute value with (deprecated) Fortran MPI-1 calls

LOGICAL FLAG
INTEGER IERR, VALUE

! Upon successful return, VALUE == 7
CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL, VALUE, FLAG, IERR)

D. Reading the attribute value with Fortran MPI-2 calls
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LOGICAL FLAG
INTEGER IERR
INTEGER (KIND=MPI_ADDRESS_KIND) VALUE

! Upon successful return, VALUE == 7 (sign extended)
CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL, VALUE, FLAG, IERR)

Example 16.19 A. Setting an attribute value via a Fortran MPI-2 call

INTEGER IERR
INTEGER(KIND=MPI_ADDRESS_KIND) VALUE1
INTEGER(KIND=MPI_ADDRESS_KIND) VALUE2
VALUE1 = 42
VALUE2 = INT(2, KIND=MPI_ADDRESS_KIND) ** 40

CALL MPI_COMM_SET_ATTR(MPI_COMM_WORLD, KEYVAL1, VALUE1, IERR)
CALL MPI_COMM_SET_ATTR(MPI_COMM_WORLD, KEYVAL2, VALUE2, IERR)

B. Reading the attribute value in C

int flag;
MPI_Aint *value1, *value2;

/* Upon successful return, value1 points to internal MPI storage and
*value1 == 42 */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval1, &value1, &flag);
/* Upon successful return, value2 points to internal MPI storage and

*value2 == 2^40 */
MPI_Comm_get_attr(MPI_COMM_WORLD, keyval2, &value2, &flag);

C. Reading the attribute value with (deprecated) Fortran MPI-1 calls

LOGICAL FLAG
INTEGER IERR, VALUE1, VALUE2

! Upon successful return, VALUE1 == 42
CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL1, VALUE1, FLAG, IERR)
! Upon successful return, VALUE2 == 2^40, or 0 if truncation
! needed (i.e., the least significant part of the attribute word)
CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL2, VALUE2, FLAG, IERR)

D. Reading the attribute value with Fortran MPI-2 calls

LOGICAL FLAG
INTEGER IERR
INTEGER (KIND=MPI_ADDRESS_KIND) VALUE1, VALUE2

! Upon successful return, VALUE1 == 42
CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL1, VALUE1, FLAG, IERR)
! Upon successful return, VALUE2 == 2^40
CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL2, VALUE2, FLAG, IERR)
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The predefined MPI attributes can be integer valued or address valued. Predefined
integer valued attributes, such as MPI_TAG_UB, behave as if they were put by a call to
the deprecated Fortran routine MPI_ATTR_PUT, i.e., in Fortran,
MPI_COMM_GET_ATTR(MPI_COMM_WORLD, MPI_TAG_UB, val, flag, ierr) will return
in val the upper bound for tag value; in C, MPI_Comm_get_attr(MPI_COMM_WORLD,
MPI_TAG_UB, &p, &flag) will return in p a pointer to an int containing the upper bound
for tag value.

Address valued predefined attributes, such as MPI_WIN_BASE behave as if they were
put by a C call, i.e., in Fortran, MPI_WIN_GET_ATTR(win, MPI_WIN_BASE, val, flag,
ierror) will return in val the base address of the window, converted to an integer. In C,
MPI_Win_get_attr(win, MPI_WIN_BASE, &p, &flag) will return in p a pointer to the window
base, cast to (void *).

Rationale. The design is consistent with the behavior specified for predefined at-
tributes, and ensures that no information is lost when attributes are passed from
language to language. Because the language interoperability for predefined attributes
was defined based on MPI_ATTR_PUT, this definition is kept for compatibility reasons
although the routine itself is now deprecated. (End of rationale.)

Advice to implementors. Implementations should tag attributes either as (1) address
attributes, (2) as INTEGER(KIND=MPI_ADDRESS_KIND) attributes or (3) as INTEGER
attributes, according to whether they were set in (1) C (with MPI_Attr_put or
MPI_Xxx_set_attr), (2) in Fortran with MPI_XXX_SET_ATTR or (3) with the depre-
cated Fortran routine MPI_ATTR_PUT. Thus, the right choice can be made when the
attribute is retrieved. (End of advice to implementors.)

16.3.8 Extra State

Extra-state should not be modified by the copy or delete callback functions. (This is obvious
from the C binding, but not obvious from the Fortran binding). However, these functions
may update state that is indirectly accessed via extra-state. E.g., in C, extra-state can be
a pointer to a data structure that is modified by the copy or callback functions; in Fortran,
extra-state can be an index into an entry in a COMMON array that is modified by the copy
or callback functions. In a multithreaded environment, users should be aware that distinct
threads may invoke the same callback function concurrently: if this function modifies state
associated with extra-state, then mutual exclusion code must be used to protect updates
and accesses to the shared state.

16.3.9 Constants

MPI constants have the same value in all languages, unless specified otherwise. This does not
apply to constant handles (MPI_INT, MPI_COMM_WORLD, MPI_ERRORS_RETURN, MPI_SUM,
etc.) These handles need to be converted, as explained in Section 16.3.4. Constants that
specify maximum lengths of strings (see Section A.1.1 for a listing) have a value one less in
Fortran than C/C++ since in C/C++ the length includes the null terminating character.
Thus, these constants represent the amount of space which must be allocated to hold the
largest possible such string, rather than the maximum number of printable characters the
string could contain.
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Advice to users. This definition means that it is safe in C/C++ to allocate a buffer
to receive a string using a declaration like

char name [MPI_MAX_OBJECT_NAME];

(End of advice to users.)

Also constant “addresses,” i.e., special values for reference arguments that are not han-
dles, such as MPI_BOTTOM or MPI_STATUS_IGNORE may have different values in different
languages.

Rationale. The current MPI standard specifies that MPI_BOTTOM can be used in
initialization expressions in C, but not in Fortran. Since Fortran does not normally
support call by value, then MPI_BOTTOM must be in Fortran the name of a predefined
static variable, e.g., a variable in an MPI declared COMMON block. On the other hand,
in C, it is natural to take MPI_BOTTOM = 0 (Caveat: Defining MPI_BOTTOM = 0
implies that NULL pointer cannot be distinguished from MPI_BOTTOM; it may be that
MPI_BOTTOM = 1 is better . . . ) Requiring that the Fortran and C values be the same
will complicate the initialization process. (End of rationale.)

16.3.10 Interlanguage Communication

The type matching rules for communications in MPI are not changed: the datatype specifi-
cation for each item sent should match, in type signature, the datatype specification used to
receive this item (unless one of the types is MPI_PACKED). Also, the type of a message item
should match the type declaration for the corresponding communication buffer location,
unless the type is MPI_BYTE or MPI_PACKED. Interlanguage communication is allowed if it
complies with these rules.

Example 16.20 In the example below, a Fortran array is sent from Fortran and received
in C.

! FORTRAN CODE
REAL R(5)
INTEGER TYPE, IERR, MYRANK, AOBLEN(1), AOTYPE(1)
INTEGER (KIND=MPI_ADDRESS_KIND) AODISP(1)

! create an absolute datatype for array R
AOBLEN(1) = 5
CALL MPI_GET_ADDRESS( R, AODISP(1), IERR)
AOTYPE(1) = MPI_REAL
CALL MPI_TYPE_CREATE_STRUCT(1, AOBLEN,AODISP,AOTYPE, TYPE, IERR)
CALL MPI_TYPE_COMMIT(TYPE, IERR)

CALL MPI_COMM_RANK( MPI_COMM_WORLD, MYRANK, IERR)
IF (MYRANK.EQ.0) THEN

CALL MPI_SEND( MPI_BOTTOM, 1, TYPE, 1, 0, MPI_COMM_WORLD, IERR)
ELSE

CALL C_ROUTINE(TYPE)
END IF
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16.3. LANGUAGE INTEROPERABILITY 511

/* C code */

void C_ROUTINE(MPI_Fint *fhandle)
{

MPI_Datatype type;
MPI_Status status;

type = MPI_Type_f2c(*fhandle);

MPI_Recv( MPI_BOTTOM, 1, type, 0, 0, MPI_COMM_WORLD, &status);
}

MPI implementors may weaken these type matching rules, and allow messages to be
sent with Fortran types and received with C types, and vice versa, when those types match.
I.e., if the Fortran type INTEGER is identical to the C type int, then an MPI implementation
may allow data to be sent with datatype MPI_INTEGER and be received with datatype
MPI_INT. However, such code is not portable.
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Annex A

Language Bindings Summary

In this section we summarize the specific bindings for C, Fortran, and C++. First we
present the constants, type definitions, info values and keys. Then we present the routine
prototypes separately for each binding. Listings are alphabetical within chapter.

A.1 Defined Values and Handles

A.1.1 Defined Constants

The C and Fortran name is listed in the left column and the C++ name is listed in the
middle or right column. Constants with the type const int may also be implemented as
literal integer constants substituted by the preprocessor.

Return Codes
C type: const int (or unnamed enum) C++ type: const int

Fortran type: INTEGER (or unnamed enum)
MPI_SUCCESS MPI::SUCCESS

MPI_ERR_BUFFER MPI::ERR_BUFFER

MPI_ERR_COUNT MPI::ERR_COUNT

MPI_ERR_TYPE MPI::ERR_TYPE

MPI_ERR_TAG MPI::ERR_TAG

MPI_ERR_COMM MPI::ERR_COMM

MPI_ERR_RANK MPI::ERR_RANK

MPI_ERR_REQUEST MPI::ERR_REQUEST

MPI_ERR_ROOT MPI::ERR_ROOT

MPI_ERR_GROUP MPI::ERR_GROUP

MPI_ERR_OP MPI::ERR_OP

MPI_ERR_TOPOLOGY MPI::ERR_TOPOLOGY

MPI_ERR_DIMS MPI::ERR_DIMS

MPI_ERR_ARG MPI::ERR_ARG

MPI_ERR_UNKNOWN MPI::ERR_UNKNOWN

MPI_ERR_TRUNCATE MPI::ERR_TRUNCATE

MPI_ERR_OTHER MPI::ERR_OTHER

MPI_ERR_INTERN MPI::ERR_INTERN

MPI_ERR_PENDING MPI::ERR_PENDING

(Continued on next page)
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514 ANNEX A. LANGUAGE BINDINGS SUMMARY

Return Codes (continued)
MPI_ERR_IN_STATUS MPI::ERR_IN_STATUS

MPI_ERR_ACCESS MPI::ERR_ACCESS

MPI_ERR_AMODE MPI::ERR_AMODE

MPI_ERR_ASSERT MPI::ERR_ASSERT

MPI_ERR_BAD_FILE MPI::ERR_BAD_FILE

MPI_ERR_BASE MPI::ERR_BASE

MPI_ERR_CONVERSION MPI::ERR_CONVERSION

MPI_ERR_DISP MPI::ERR_DISP

MPI_ERR_DUP_DATAREP MPI::ERR_DUP_DATAREP

MPI_ERR_FILE_EXISTS MPI::ERR_FILE_EXISTS

MPI_ERR_FILE_IN_USE MPI::ERR_FILE_IN_USE

MPI_ERR_FILE MPI::ERR_FILE

MPI_ERR_INFO_KEY MPI::ERR_INFO_VALUE

MPI_ERR_INFO_NOKEY MPI::ERR_INFO_NOKEY

MPI_ERR_INFO_VALUE MPI::ERR_INFO_KEY

MPI_ERR_INFO MPI::ERR_INFO

MPI_ERR_IO MPI::ERR_IO

MPI_ERR_KEYVAL MPI::ERR_KEYVAL

MPI_ERR_LOCKTYPE MPI::ERR_LOCKTYPE

MPI_ERR_NAME MPI::ERR_NAME

MPI_ERR_NO_MEM MPI::ERR_NO_MEM

MPI_ERR_NOT_SAME MPI::ERR_NOT_SAME

MPI_ERR_NO_SPACE MPI::ERR_NO_SPACE

MPI_ERR_NO_SUCH_FILE MPI::ERR_NO_SUCH_FILE

MPI_ERR_PORT MPI::ERR_PORT

MPI_ERR_QUOTA MPI::ERR_QUOTA

MPI_ERR_READ_ONLY MPI::ERR_READ_ONLY

MPI_ERR_RMA_CONFLICT MPI::ERR_RMA_CONFLICT

MPI_ERR_RMA_SYNC MPI::ERR_RMA_SYNC

MPI_ERR_SERVICE MPI::ERR_SERVICE

MPI_ERR_SIZE MPI::ERR_SIZE

MPI_ERR_SPAWN MPI::ERR_SPAWN

MPI_ERR_UNSUPPORTED_DATAREP MPI::ERR_UNSUPPORTED_DATAREP

MPI_ERR_UNSUPPORTED_OPERATION MPI::ERR_UNSUPPORTED_OPERATION

MPI_ERR_WIN MPI::ERR_WIN

MPI_ERR_LASTCODE MPI::ERR_LASTCODE

Buffer Address Constants
C type: void * const C++ type:
Fortran type: (predefined memory location) void * const
MPI_BOTTOM MPI::BOTTOM

MPI_IN_PLACE MPI::IN_PLACE
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A.1. DEFINED VALUES AND HANDLES 515

Assorted Constants
C type: const int (or unnamed enum) C++ type:
Fortran type: INTEGER const int (or unnamed enum)
MPI_PROC_NULL MPI::PROC_NULL

MPI_ANY_SOURCE MPI::ANY_SOURCE

MPI_ANY_TAG MPI::ANY_TAG

MPI_UNDEFINED MPI::UNDEFINED

MPI_BSEND_OVERHEAD MPI::BSEND_OVERHEAD

MPI_KEYVAL_INVALID MPI::KEYVAL_INVALID

MPI_LOCK_EXCLUSIVE MPI::LOCK_EXCLUSIVE

MPI_LOCK_SHARED MPI::LOCK_SHARED

MPI_ROOT MPI::ROOT

Status size and reserved index values (Fortran only)
Fortran type: INTEGER
MPI_STATUS_SIZE Not defined for C++
MPI_SOURCE Not defined for C++
MPI_TAG Not defined for C++
MPI_ERROR Not defined for C++

Variable Address Size (Fortran only)
Fortran type: INTEGER
MPI_ADDRESS_KIND Not defined for C++
MPI_INTEGER_KIND Not defined for C++
MPI_OFFSET_KIND Not defined for C++

Error-handling specifiers
C type: MPI_Errhandler C++ type: MPI::Errhandler
Fortran type: INTEGER
MPI_ERRORS_ARE_FATAL MPI::ERRORS_ARE_FATAL

MPI_ERRORS_RETURN MPI::ERRORS_RETURN

MPI::ERRORS_THROW_EXCEPTIONS

Maximum Sizes for Strings
C type: const int (or unnamed enum) C++ type:
Fortran type: INTEGER const int (or unnamed enum)
MPI_MAX_PROCESSOR_NAME MPI::MAX_PROCESSOR_NAME

MPI_MAX_ERROR_STRING MPI::MAX_ERROR_STRING

MPI_MAX_DATAREP_STRING MPI::MAX_DATAREP_STRING

MPI_MAX_INFO_KEY MPI::MAX_INFO_KEY

MPI_MAX_INFO_VAL MPI::MAX_INFO_VAL

MPI_MAX_OBJECT_NAME MPI::MAX_OBJECT_NAME

MPI_MAX_PORT_NAME MPI::MAX_PORT_NAME
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516 ANNEX A. LANGUAGE BINDINGS SUMMARY

Named Predefined Datatypes C/C++ types
C type: MPI_Datatype C++ type: MPI::Datatype
Fortran type: INTEGER
MPI_CHAR MPI::CHAR char

(treated as printable
character)

MPI_SHORT MPI::SHORT signed short int
MPI_INT MPI::INT signed int
MPI_LONG MPI::LONG signed long
MPI_LONG_LONG_INT MPI::LONG_LONG_INT signed long long
MPI_LONG_LONG MPI::LONG_LONG long long (synonym)
MPI_SIGNED_CHAR MPI::SIGNED_CHAR signed char

(treated as integral value)
MPI_UNSIGNED_CHAR MPI::UNSIGNED_CHAR unsigned char

(treated as integral value)
MPI_UNSIGNED_SHORT MPI::UNSIGNED_SHORT unsigned short
MPI_UNSIGNED MPI::UNSIGNED unsigned int
MPI_UNSIGNED_LONG MPI::UNSIGNED_LONG unsigned long
MPI_UNSIGNED_LONG_LONG MPI::UNSIGNED_LONG_LONG unsigned long long
MPI_FLOAT MPI::FLOAT float
MPI_DOUBLE MPI::DOUBLE double
MPI_LONG_DOUBLE MPI::LONG_DOUBLE long double
MPI_WCHAR MPI::WCHAR wchar_t

(defined in <stddef.h>)
(treated as printable
character)

MPI_C_BOOL (use C datatype handle) _Bool
MPI_INT8_T (use C datatype handle) int8_t
MPI_INT16_T (use C datatype handle) int16_t
MPI_INT32_T (use C datatype handle) int32_t
MPI_INT64_T (use C datatype handle) int64_t
MPI_UINT8_T (use C datatype handle) uint8_t
MPI_UINT16_T (use C datatype handle) uint16_t
MPI_UINT32_T (use C datatype handle) uint32_t
MPI_UINT64_T (use C datatype handle) uint64_t
MPI_AINT (use C datatype handle) MPI_Aint
MPI_OFFSET (use C datatype handle) MPI_Offset
MPI_C_COMPLEX (use C datatype handle) float _Complex
MPI_C_FLOAT_COMPLEX (use C datatype handle) float _Complex
MPI_C_DOUBLE_COMPLEX (use C datatype handle) double _Complex
MPI_C_LONG_DOUBLE_COMPLEX (use C datatype handle) long double _Complex
MPI_BYTE MPI::BYTE (any C/C++ type)
MPI_PACKED MPI::PACKED (any C/C++ type)
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A.1. DEFINED VALUES AND HANDLES 517

Named Predefined Datatypes Fortran types
C type: MPI_Datatype C++ type: MPI::Datatype
Fortran type: INTEGER
MPI_INTEGER MPI::INTEGER INTEGER
MPI_REAL MPI::REAL REAL
MPI_DOUBLE_PRECISION MPI::DOUBLE_PRECISION DOUBLE PRECISION
MPI_COMPLEX MPI::F_COMPLEX COMPLEX
MPI_LOGICAL MPI::LOGICAL LOGICAL
MPI_CHARACTER MPI::CHARACTER CHARACTER(1)
MPI_AINT (use C datatype handle) INTEGER (KIND=MPI_ADDRESS_KIND)
MPI_OFFSET (use C datatype handle) INTEGER (KIND=MPI_OFFSET_KIND)
MPI_BYTE MPI::BYTE (any Fortran type)
MPI_PACKED MPI::PACKED (any Fortran type)

C++-Only Named Predefined Datatypes C++ types
C++ type: MPI::Datatype
MPI::BOOL bool
MPI::COMPLEX Complex<float>
MPI::DOUBLE_COMPLEX Complex<double>
MPI::LONG_DOUBLE_COMPLEX Complex<long double>

Optional datatypes (Fortran) Fortran types
C type: MPI_Datatype C++ type: MPI::Datatype
Fortran type: INTEGER
MPI_DOUBLE_COMPLEX MPI::F_DOUBLE_COMPLEX DOUBLE COMPLEX
MPI_INTEGER1 MPI::INTEGER1 INTEGER*1
MPI_INTEGER2 MPI::INTEGER2 INTEGER*8
MPI_INTEGER4 MPI::INTEGER4 INTEGER*4
MPI_INTEGER8 MPI::INTEGER8 INTEGER*8
MPI_INTEGER16 INTEGER*16
MPI_REAL2 MPI::REAL2 REAL*2
MPI_REAL4 MPI::REAL4 REAL*4
MPI_REAL8 MPI::REAL8 REAL*8
MPI_REAL16 REAL*16
MPI_COMPLEX4 COMPLEX*4
MPI_COMPLEX8 COMPLEX*8
MPI_COMPLEX16 COMPLEX*16
MPI_COMPLEX32 COMPLEX*32
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518 ANNEX A. LANGUAGE BINDINGS SUMMARY

Datatypes for reduction functions (C and C++)
C type: MPI_Datatype C++ type: MPI::Datatype
Fortran type: INTEGER
MPI_FLOAT_INT MPI::FLOAT_INT

MPI_DOUBLE_INT MPI::DOUBLE_INT

MPI_LONG_INT MPI::LONG_INT

MPI_2INT MPI::TWOINT

MPI_SHORT_INT MPI::SHORT_INT

MPI_LONG_DOUBLE_INT MPI::LONG_DOUBLE_INT

Datatypes for reduction functions (Fortran)
C type: MPI_Datatype C++ type: MPI::Datatype
Fortran type: INTEGER
MPI_2REAL MPI::TWOREAL

MPI_2DOUBLE_PRECISION MPI::TWODOUBLE_PRECISION

MPI_2INTEGER MPI::TWOINTEGER

Special datatypes for constructing derived datatypes
C type: MPI_Datatype C++ type: MPI::Datatype
Fortran type: INTEGER
MPI_UB MPI::UB

MPI_LB MPI::LB

Reserved communicators
C type: MPI_Comm C++ type: MPI::Intracomm
Fortran type: INTEGER
MPI_COMM_WORLD MPI::COMM_WORLD

MPI_COMM_SELF MPI::COMM_SELF

Results of communicator and group comparisons
C type: const int (or unnamed enum) C++ type: const int

Fortran type: INTEGER (or unnamed enum)
MPI_IDENT MPI::IDENT

MPI_CONGRUENT MPI::CONGRUENT

MPI_SIMILAR MPI::SIMILAR

MPI_UNEQUAL MPI::UNEQUAL

Environmental inquiry keys
C type: const int (or unnamed enum) C++ type: const int

Fortran type: INTEGER (or unnamed enum)
MPI_TAG_UB MPI::TAG_UB

MPI_IO MPI::IO

MPI_HOST MPI::HOST

MPI_WTIME_IS_GLOBAL MPI::WTIME_IS_GLOBAL
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Collective Operations
C type: MPI_Op C++ type: const MPI::Op

Fortran type: INTEGER
MPI_MAX MPI::MAX

MPI_MIN MPI::MIN

MPI_SUM MPI::SUM

MPI_PROD MPI::PROD

MPI_MAXLOC MPI::MAXLOC

MPI_MINLOC MPI::MINLOC

MPI_BAND MPI::BAND

MPI_BOR MPI::BOR

MPI_BXOR MPI::BXOR

MPI_LAND MPI::LAND

MPI_LOR MPI::LOR

MPI_LXOR MPI::LXOR

MPI_REPLACE MPI::REPLACE

Null Handles
C/Fortran name C++ name

C type / Fortran type C++ type
MPI_GROUP_NULL MPI::GROUP_NULL

MPI_Group / INTEGER const MPI::Group

MPI_COMM_NULL MPI::COMM_NULL

MPI_Comm / INTEGER 1)
MPI_DATATYPE_NULL MPI::DATATYPE_NULL

MPI_Datatype / INTEGER const MPI::Datatype

MPI_REQUEST_NULL MPI::REQUEST_NULL

MPI_Request / INTEGER const MPI::Request

MPI_OP_NULL MPI::OP_NULL

MPI_Op / INTEGER const MPI::Op

MPI_ERRHANDLER_NULL MPI::ERRHANDLER_NULL

MPI_Errhandler / INTEGER const MPI::Errhandler
MPI_FILE_NULL MPI::FILE_NULL

MPI_File / INTEGER

MPI_INFO_NULL MPI::INFO_NULL

MPI_Info / INTEGER const MPI::Info

MPI_WIN_NULL MPI::WIN_NULL

MPI_Win / INTEGER
1) C++ type: See Section 16.1.7 on page 474 regarding

class hierarchy and the specific type of MPI::COMM_NULL

Empty group
C type: MPI_Group C++ type: const MPI::Group

Fortran type: INTEGER
MPI_GROUP_EMPTY MPI::GROUP_EMPTY
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Topologies
C type: const int (or unnamed enum) C++ type: const int

Fortran type: INTEGER (or unnamed enum)
MPI_GRAPH MPI::GRAPH

MPI_CART MPI::CART

MPI_DIST_GRAPH MPI::DIST_GRAPH

Predefined functions
C/Fortran name C++ name

C type / Fortran type C++ type
MPI_COMM_NULL_COPY_FN MPI_COMM_NULL_COPY_FN

MPI_Comm_copy_attr_function same as in C 1)
/ COMM_COPY_ATTR_FN

MPI_COMM_DUP_FN MPI_COMM_DUP_FN
MPI_Comm_copy_attr_function same as in C 1)
/ COMM_COPY_ATTR_FN

MPI_COMM_NULL_DELETE_FN MPI_COMM_NULL_DELETE_FN
MPI_Comm_delete_attr_function same as in C 1)
/ COMM_DELETE_ATTR_FN

MPI_WIN_NULL_COPY_FN MPI_WIN_NULL_COPY_FN
MPI_Win_copy_attr_function same as in C 1)
/ WIN_COPY_ATTR_FN

MPI_WIN_DUP_FN MPI_WIN_DUP_FN
MPI_Win_copy_attr_function same as in C 1)
/ WIN_COPY_ATTR_FN

MPI_WIN_NULL_DELETE_FN MPI_WIN_NULL_DELETE_FN
MPI_Win_delete_attr_function same as in C 1)
/ WIN_DELETE_ATTR_FN

MPI_TYPE_NULL_COPY_FN MPI_TYPE_NULL_COPY_FN
MPI_Type_copy_attr_function same as in C 1)
/ TYPE_COPY_ATTR_FN

MPI_TYPE_DUP_FN MPI_TYPE_DUP_FN
MPI_Type_copy_attr_function same as in C 1)
/ TYPE_COPY_ATTR_FN

MPI_TYPE_NULL_DELETE_FN MPI_TYPE_NULL_DELETE_FN
MPI_Type_delete_attr_function same as in C 1)
/ TYPE_DELETE_ATTR_FN

1 See the advice to implementors on MPI_COMM_NULL_COPY_FN, ... in
Section 6.7.2 on page 226
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Deprecated predefined functions
C/Fortran name C++ name

C type / Fortran type C++ type
MPI_NULL_COPY_FN MPI::NULL_COPY_FN

MPI_Copy_function / COPY_FUNCTION MPI::Copy_function

MPI_DUP_FN MPI::DUP_FN

MPI_Copy_function / COPY_FUNCTION MPI::Copy_function

MPI_NULL_DELETE_FN MPI::NULL_DELETE_FN

MPI_Delete_function / DELETE_FUNCTION MPI::Delete_function

Predefined Attribute Keys
C type: const int (or unnamed enum) C++ type:
Fortran type: INTEGER const int (or unnamed enum)
MPI_APPNUM MPI::APPNUM

MPI_LASTUSEDCODE MPI::LASTUSEDCODE

MPI_UNIVERSE_SIZE MPI::UNIVERSE_SIZE

MPI_WIN_BASE MPI::WIN_BASE

MPI_WIN_DISP_UNIT MPI::WIN_DISP_UNIT

MPI_WIN_SIZE MPI::WIN_SIZE

Mode Constants
C type: const int (or unnamed enum) C++ type:
Fortran type: INTEGER const int (or unnamed enum)
MPI_MODE_APPEND MPI::MODE_APPEND

MPI_MODE_CREATE MPI::MODE_CREATE

MPI_MODE_DELETE_ON_CLOSE MPI::MODE_DELETE_ON_CLOSE

MPI_MODE_EXCL MPI::MODE_EXCL

MPI_MODE_NOCHECK MPI::MODE_NOCHECK

MPI_MODE_NOPRECEDE MPI::MODE_NOPRECEDE

MPI_MODE_NOPUT MPI::MODE_NOPUT

MPI_MODE_NOSTORE MPI::MODE_NOSTORE

MPI_MODE_NOSUCCEED MPI::MODE_NOSUCCEED

MPI_MODE_RDONLY MPI::MODE_RDONLY

MPI_MODE_RDWR MPI::MODE_RDWR

MPI_MODE_SEQUENTIAL MPI::MODE_SEQUENTIAL

MPI_MODE_UNIQUE_OPEN MPI::MODE_UNIQUE_OPEN

MPI_MODE_WRONLY MPI::MODE_WRONLY
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Datatype Decoding Constants
C type: const int (or unnamed enum) C++ type:
Fortran type: INTEGER const int (or unnamed enum)
MPI_COMBINER_CONTIGUOUS MPI::COMBINER_CONTIGUOUS

MPI_COMBINER_DARRAY MPI::COMBINER_DARRAY

MPI_COMBINER_DUP MPI::COMBINER_DUP

MPI_COMBINER_F90_COMPLEX MPI::COMBINER_F90_COMPLEX

MPI_COMBINER_F90_INTEGER MPI::COMBINER_F90_INTEGER

MPI_COMBINER_F90_REAL MPI::COMBINER_F90_REAL

MPI_COMBINER_HINDEXED_INTEGER MPI::COMBINER_HINDEXED_INTEGER

MPI_COMBINER_HINDEXED MPI::COMBINER_HINDEXED

MPI_COMBINER_HVECTOR_INTEGER MPI::COMBINER_HVECTOR_INTEGER

MPI_COMBINER_HVECTOR MPI::COMBINER_HVECTOR

MPI_COMBINER_INDEXED_BLOCK MPI::COMBINER_INDEXED_BLOCK

MPI_COMBINER_INDEXED MPI::COMBINER_INDEXED

MPI_COMBINER_NAMED MPI::COMBINER_NAMED

MPI_COMBINER_RESIZED MPI::COMBINER_RESIZED

MPI_COMBINER_STRUCT_INTEGER MPI::COMBINER_STRUCT_INTEGER

MPI_COMBINER_STRUCT MPI::COMBINER_STRUCT

MPI_COMBINER_SUBARRAY MPI::COMBINER_SUBARRAY

MPI_COMBINER_VECTOR MPI::COMBINER_VECTOR

Threads Constants
C type: const int (or unnamed enum) C++ type:
Fortran type: INTEGER const int (or unnamed enum)
MPI_THREAD_FUNNELED MPI::THREAD_FUNNELED

MPI_THREAD_MULTIPLE MPI::THREAD_MULTIPLE

MPI_THREAD_SERIALIZED MPI::THREAD_SERIALIZED

MPI_THREAD_SINGLE MPI::THREAD_SINGLE

File Operation Constants, Part 1
C type: const MPI_Offset (or unnamed enum) C++ type:
Fortran type: INTEGER (KIND=MPI_OFFSET_KIND) const MPI::Offset (or unnamed enum)
MPI_DISPLACEMENT_CURRENT MPI::DISPLACEMENT_CURRENT
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File Operation Constants, Part 2
C type: const int (or unnamed enum) C++ type:
Fortran type: INTEGER const int (or unnamed enum)
MPI_DISTRIBUTE_BLOCK MPI::DISTRIBUTE_BLOCK

MPI_DISTRIBUTE_CYCLIC MPI::DISTRIBUTE_CYCLIC

MPI_DISTRIBUTE_DFLT_DARG MPI::DISTRIBUTE_DFLT_DARG

MPI_DISTRIBUTE_NONE MPI::DISTRIBUTE_NONE

MPI_ORDER_C MPI::ORDER_C

MPI_ORDER_FORTRAN MPI::ORDER_FORTRAN

MPI_SEEK_CUR MPI::SEEK_CUR

MPI_SEEK_END MPI::SEEK_END

MPI_SEEK_SET MPI::SEEK_SET

F90 Datatype Matching Constants
C type: const int (or unnamed enum) C++ type:
Fortran type: INTEGER const int (or unnamed enum)
MPI_TYPECLASS_COMPLEX MPI::TYPECLASS_COMPLEX

MPI_TYPECLASS_INTEGER MPI::TYPECLASS_INTEGER

MPI_TYPECLASS_REAL MPI::TYPECLASS_REAL

Constants Specifying Empty or Ignored Input
C/Fortran name C++ name

C type / Fortran type C++ type
MPI_ARGVS_NULL MPI::ARGVS_NULL

char*** / 2-dim. array of CHARACTER*(*) const char ***

MPI_ARGV_NULL MPI::ARGV_NULL

char** / array of CHARACTER*(*) const char **

MPI_ERRCODES_IGNORE Not defined for C++
int* / INTEGER array

MPI_STATUSES_IGNORE Not defined for C++
MPI_Status* / INTEGER, DIMENSION(MPI_STATUS_SIZE,*)

MPI_STATUS_IGNORE Not defined for C++
MPI_Status* / INTEGER, DIMENSION(MPI_STATUS_SIZE)

MPI_UNWEIGHTED Not defined for C++

C Constants Specifying Ignored Input (no C++ or Fortran)
C type: MPI_Fint*
MPI_F_STATUSES_IGNORE

MPI_F_STATUS_IGNORE

C and C++ preprocessor Constants and Fortran Parameters
C/C++ type: const int (or unnamed enum)
Fortran type: INTEGER
MPI_SUBVERSION

MPI_VERSION
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A.1.2 Types

The following are defined C type definitions, included in the file mpi.h.

/* C opaque types */
MPI_Aint

MPI_Fint

MPI_Offset

MPI_Status

/* C handles to assorted structures */
MPI_Comm

MPI_Datatype

MPI_Errhandler

MPI_File

MPI_Group

MPI_Info

MPI_Op

MPI_Request

MPI_Win

// C++ opaque types (all within the MPI namespace)
MPI::Aint

MPI::Offset

MPI::Status

// C++ handles to assorted structures (classes,
// all within the MPI namespace)
MPI::Comm

MPI::Intracomm

MPI::Graphcomm

MPI::Distgraphcomm

MPI::Cartcomm

MPI::Intercomm

MPI::Datatype

MPI::Errhandler

MPI::Exception

MPI::File

MPI::Group

MPI::Info

MPI::Op

MPI::Request

MPI::Prequest

MPI::Grequest

MPI::Win
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A.1.3 Prototype definitions

The following are defined C typedefs for user-defined functions, also included in the file
mpi.h.

/* prototypes for user-defined functions */
typedef void MPI_User_function(void *invec, void *inoutvec, int *len,

MPI_Datatype *datatype);

typedef int MPI_Comm_copy_attr_function(MPI_Comm oldcomm,
int comm_keyval, void *extra_state, void *attribute_val_in,
void *attribute_val_out, int*flag);

typedef int MPI_Comm_delete_attr_function(MPI_Comm comm,
int comm_keyval, void *attribute_val, void *extra_state);

typedef int MPI_Win_copy_attr_function(MPI_Win oldwin, int win_keyval,
void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag);

typedef int MPI_Win_delete_attr_function(MPI_Win win, int win_keyval,
void *attribute_val, void *extra_state);

typedef int MPI_Type_copy_attr_function(MPI_Datatype oldtype,
int type_keyval, void *extra_state,
void *attribute_val_in, void *attribute_val_out, int *flag);

typedef int MPI_Type_delete_attr_function(MPI_Datatype type,
int type_keyval, void *attribute_val, void *extra_state);

typedef void MPI_Comm_errhandler_function(MPI_Comm *, int *, ...);
typedef void MPI_Win_errhandler_function(MPI_Win *, int *, ...);
typedef void MPI_File_errhandler_function(MPI_File *, int *, ...);

typedef int MPI_Grequest_query_function(void *extra_state,
MPI_Status *status);

typedef int MPI_Grequest_free_function(void *extra_state);
typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,
MPI_Aint *file_extent, void *extra_state);

typedef int MPI_Datarep_conversion_function(void *userbuf,
MPI_Datatype datatype, int count, void *filebuf,
MPI_Offset position, void *extra_state);

For Fortran, here are examples of how each of the user-defined subroutines should be
declared.

The user-function argument to MPI_OP_CREATE should be declared like this:

SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, TYPE)
<type> INVEC(LEN), INOUTVEC(LEN)
INTEGER LEN, TYPE
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The copy and delete function arguments to MPI_COMM_CREATE_KEYVAL should be
declared like these:

SUBROUTINE COMM_COPY_ATTR_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE,
ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT
LOGICAL FLAG

SUBROUTINE COMM_DELETE_ATTR_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL,
EXTRA_STATE, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The copy and delete function arguments to MPI_WIN_CREATE_KEYVAL should be
declared like these:

SUBROUTINE WIN_COPY_ATTR_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE,
ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT
LOGICAL FLAG

SUBROUTINE WIN_DELETE_ATTR_FN(WIN, WIN_KEYVAL, ATTRIBUTE_VAL,
EXTRA_STATE, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The copy and delete function arguments to MPI_TYPE_CREATE_KEYVAL should be
declared like these:

SUBROUTINE TYPE_COPY_ATTR_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE,
ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT
LOGICAL FLAG

SUBROUTINE TYPE_DELETE_ATTR_FN(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL,
EXTRA_STATE, IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The handler-function argument to MPI_COMM_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE COMM_ERRHANDLER_FUNCTION(COMM, ERROR_CODE)
INTEGER COMM, ERROR_CODE
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The handler-function argument to MPI_WIN_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE WIN_ERRHANDLER_FUNCTION(WIN, ERROR_CODE)
INTEGER WIN, ERROR_CODE

The handler-function argument to MPI_FILE_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE FILE_ERRHANDLER_FUNCTION(FILE, ERROR_CODE)
INTEGER FILE, ERROR_CODE

The query, free, and cancel function arguments to MPI_GREQUEST_START should be
declared like these:

SUBROUTINE GREQUEST_QUERY_FUNCTION(EXTRA_STATE, STATUS, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

SUBROUTINE GREQUEST_FREE_FUNCTION(EXTRA_STATE, IERROR)
INTEGER IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

SUBROUTINE GREQUEST_CANCEL_FUNCTION(EXTRA_STATE, COMPLETE, IERROR)
INTEGER IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
LOGICAL COMPLETE

The extend and conversion function arguments to MPI_REGISTER_DATAREP should
be declared like these:

SUBROUTINE DATAREP_EXTENT_FUNCTION(DATATYPE, EXTENT, EXTRA_STATE, IERROR)
INTEGER DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, EXTRA_STATE

SUBROUTINE DATAREP_CONVERSION_FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,
POSITION, EXTRA_STATE, IERROR)

<TYPE> USERBUF(*), FILEBUF(*)
INTEGER COUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) POSITION
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

The following are defined C++ typedefs, also included in the file mpi.h.

namespace MPI {
typedef void User_function(const void* invec, void *inoutvec,

int len, const Datatype& datatype);

typedef int Comm::Copy_attr_function(const Comm& oldcomm,
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int comm_keyval, void* extra_state, void* attribute_val_in,
void* attribute_val_out, bool& flag);

typedef int Comm::Delete_attr_function(Comm& comm, int
comm_keyval, void* attribute_val, void* extra_state);

typedef int Win::Copy_attr_function(const Win& oldwin,
int win_keyval, void* extra_state, void* attribute_val_in,
void* attribute_val_out, bool& flag);

typedef int Win::Delete_attr_function(Win& win, int
win_keyval, void* attribute_val, void* extra_state);

typedef int Datatype::Copy_attr_function(const Datatype& oldtype,
int type_keyval, void* extra_state,
const void* attribute_val_in, void* attribute_val_out,
bool& flag);

typedef int Datatype::Delete_attr_function(Datatype& type,
int type_keyval, void* attribute_val, void* extra_state);

typedef void Comm::Errhandler_function(Comm &, int *, ...);
typedef void Win::Errhandler_function(Win &, int *, ...);
typedef void File::Errhandler_function(File &, int *, ...);

typedef int Grequest::Query_function(void* extra_state, Status& status);
typedef int Grequest::Free_function(void* extra_state);
typedef int Grequest::Cancel_function(void* extra_state, bool complete);

typedef void Datarep_extent_function(const Datatype& datatype,
Aint& file_extent, void* extra_state);

typedef void Datarep_conversion_function(void* userbuf,
Datatype& datatype, int count, void* filebuf,
Offset position, void* extra_state);

}

A.1.4 Deprecated prototype definitions

The following are defined C typedefs for deprecated user-defined functions, also included in
the file mpi.h.

/* prototypes for user-defined functions */
typedef int MPI_Copy_function(MPI_Comm oldcomm, int keyval,

void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag);

typedef int MPI_Delete_function(MPI_Comm comm, int keyval,
void *attribute_val, void *extra_state);

typedef void MPI_Handler_function(MPI_Comm *, int *, ...);

The following are deprecated Fortran user-defined callback subroutine prototypes. The
deprecated copy and delete function arguments to MPI_KEYVAL_CREATE should be de-
clared like these:
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SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE,
ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)
INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR

The deprecated handler-function for error handlers should be declared like this:

SUBROUTINE HANDLER_FUNCTION(COMM, ERROR_CODE)
INTEGER COMM, ERROR_CODE

A.1.5 Info Keys

access_style

appnum

arch

cb_block_size

cb_buffer_size

cb_nodes

chunked_item

chunked_size

chunked

collective_buffering

file_perm

filename

file

host

io_node_list

ip_address

ip_port

nb_proc

no_locks

num_io_nodes

path

soft

striping_factor

striping_unit

wdir

A.1.6 Info Values

false

random

read_mostly

read_once
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reverse_sequential

sequential

true

write_mostly

write_once
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A.2 C Bindings

A.2.1 Point-to-Point Communication C Bindings

int MPI_Bsend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

int MPI_Bsend_init(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Buffer_attach(void* buffer, int size)

int MPI_Buffer_detach(void* buffer_addr, int* size)

int MPI_Cancel(MPI_Request *request)

int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)

int MPI_Ibsend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
MPI_Status *status)

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Irsend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Isend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Issend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status *status)

int MPI_Recv_init(void* buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Request_free(MPI_Request *request)

int MPI_Request_get_status(MPI_Request request, int *flag,
MPI_Status *status)

int MPI_Rsend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

int MPI_Rsend_init(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Send(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)
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int MPI_Send_init(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype,
int dest, int sendtag, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

int MPI_Sendrecv_replace(void* buf, int count, MPI_Datatype datatype,
int dest, int sendtag, int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

int MPI_Ssend(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

int MPI_Ssend_init(void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Start(MPI_Request *request)

int MPI_Startall(int count, MPI_Request *array_of_requests)

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

int MPI_Test_cancelled(MPI_Status *status, int *flag)

int MPI_Testall(int count, MPI_Request *array_of_requests, int *flag,
MPI_Status *array_of_statuses)

int MPI_Testany(int count, MPI_Request *array_of_requests, int *index,
int *flag, MPI_Status *status)

int MPI_Testsome(int incount, MPI_Request *array_of_requests,
int *outcount, int *array_of_indices,
MPI_Status *array_of_statuses)

int MPI_Wait(MPI_Request *request, MPI_Status *status)

int MPI_Waitall(int count, MPI_Request *array_of_requests,
MPI_Status *array_of_statuses)

int MPI_Waitany(int count, MPI_Request *array_of_requests, int *index,
MPI_Status *status)

int MPI_Waitsome(int incount, MPI_Request *array_of_requests,
int *outcount, int *array_of_indices,
MPI_Status *array_of_statuses)

A.2.2 Datatypes C Bindings

int MPI_Get_address(void *location, MPI_Aint *address)

int MPI_Get_elements(MPI_Status *status, MPI_Datatype datatype, int *count)
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int MPI_Pack(void* inbuf, int incount, MPI_Datatype datatype, void *outbuf,
int outsize, int *position, MPI_Comm comm)

int MPI_Pack_external(char *datarep, void *inbuf, int incount,
MPI_Datatype datatype, void *outbuf, MPI_Aint outsize,
MPI_Aint *position)

int MPI_Pack_external_size(char *datarep, int incount,
MPI_Datatype datatype, MPI_Aint *size)

int MPI_Pack_size(int incount, MPI_Datatype datatype, MPI_Comm comm,
int *size)

int MPI_Type_commit(MPI_Datatype *datatype)

int MPI_Type_contiguous(int count, MPI_Datatype oldtype,
MPI_Datatype *newtype)

int MPI_Type_create_darray(int size, int rank, int ndims,
int array_of_gsizes[], int array_of_distribs[], int
array_of_dargs[], int array_of_psizes[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_hindexed(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

int MPI_Type_create_hvector(int count, int blocklength, MPI_Aint stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_indexed_block(int count, int blocklength,
int array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

int MPI_Type_create_resized(MPI_Datatype oldtype, MPI_Aint lb, MPI_Aint
extent, MPI_Datatype *newtype)

int MPI_Type_create_struct(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[],
MPI_Datatype array_of_types[], MPI_Datatype *newtype)

int MPI_Type_create_subarray(int ndims, int array_of_sizes[],
int array_of_subsizes[], int array_of_starts[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_dup(MPI_Datatype type, MPI_Datatype *newtype)

int MPI_Type_free(MPI_Datatype *datatype)

int MPI_Type_get_contents(MPI_Datatype datatype, int max_integers,
int max_addresses, int max_datatypes, int array_of_integers[],
MPI_Aint array_of_addresses[],
MPI_Datatype array_of_datatypes[])

int MPI_Type_get_envelope(MPI_Datatype datatype, int *num_integers,
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int *num_addresses, int *num_datatypes, int *combiner)

int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint *lb,
MPI_Aint *extent)

int MPI_Type_get_true_extent(MPI_Datatype datatype, MPI_Aint *true_lb,
MPI_Aint *true_extent)

int MPI_Type_indexed(int count, int *array_of_blocklengths,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

int MPI_Type_size(MPI_Datatype datatype, int *size)

int MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Unpack(void* inbuf, int insize, int *position, void *outbuf,
int outcount, MPI_Datatype datatype, MPI_Comm comm)

int MPI_Unpack_external(char *datarep, void *inbuf, MPI_Aint insize,
MPI_Aint *position, void *outbuf, int outcount,
MPI_Datatype datatype)

A.2.3 Collective Communication C Bindings

int MPI_Allgather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

int MPI_Allgatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int *recvcounts, int *displs,
MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allreduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Alltoall(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

int MPI_Alltoallv(void* sendbuf, int *sendcounts, int *sdispls,
MPI_Datatype sendtype, void* recvbuf, int *recvcounts,
int *rdispls, MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Alltoallw(void *sendbuf, int sendcounts[], int sdispls[],
MPI_Datatype sendtypes[], void *recvbuf, int recvcounts[],
int rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm)

int MPI_Barrier(MPI_Comm comm)

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm )
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int MPI_Exscan(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Gather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

int MPI_Gatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int *recvcounts, int *displs,
MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Op_commutative(MPI_Op op, int *commute)

int MPI_Op_create(MPI_User_function *function, int commute, MPI_Op *op)

int MPI_Reduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

int MPI_Reduce_local(void* inbuf, void* inoutbuf, int count,
MPI_Datatype datatype, MPI_Op op)

int MPI_Reduce_scatter(void* sendbuf, void* recvbuf, int *recvcounts,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Reduce_scatter_block(void* sendbuf, void* recvbuf, int recvcount,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Scan(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm )

int MPI_Scatter(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

int MPI_Scatterv(void* sendbuf, int *sendcounts, int *displs,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_op_free( MPI_Op *op)

A.2.4 Groups, Contexts, Communicators, and Caching C Bindings

int MPI_COMM_DUP_FN(MPI_Comm oldcomm, int comm_keyval, void *extra_state,
void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_COMM_NULL_COPY_FN(MPI_Comm oldcomm, int comm_keyval,
void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag)

int MPI_COMM_NULL_DELETE_FN(MPI_Comm comm, int comm_keyval, void
*attribute_val, void *extra_state)

int MPI_Comm_compare(MPI_Comm comm1,MPI_Comm comm2, int *result)

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)
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int MPI_Comm_create_keyval(MPI_Comm_copy_attr_function *comm_copy_attr_fn,
MPI_Comm_delete_attr_function *comm_delete_attr_fn,
int *comm_keyval, void *extra_state)

int MPI_Comm_delete_attr(MPI_Comm comm, int comm_keyval)

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

int MPI_Comm_free(MPI_Comm *comm)

int MPI_Comm_free_keyval(int *comm_keyval)

int MPI_Comm_get_attr(MPI_Comm comm, int comm_keyval, void *attribute_val,
int *flag)

int MPI_Comm_get_name(MPI_Comm comm, char *comm_name, int *resultlen)

int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI_Comm_remote_group(MPI_Comm comm, MPI_Group *group)

int MPI_Comm_remote_size(MPI_Comm comm, int *size)

int MPI_Comm_set_attr(MPI_Comm comm, int comm_keyval, void *attribute_val)

int MPI_Comm_set_name(MPI_Comm comm, char *comm_name)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)

int MPI_Comm_test_inter(MPI_Comm comm, int *flag)

int MPI_Group_compare(MPI_Group group1,MPI_Group group2, int *result)

int MPI_Group_difference(MPI_Group group1, MPI_Group group2,
MPI_Group *newgroup)

int MPI_Group_excl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)

int MPI_Group_free(MPI_Group *group)

int MPI_Group_incl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)

int MPI_Group_intersection(MPI_Group group1, MPI_Group group2,
MPI_Group *newgroup)

int MPI_Group_range_excl(MPI_Group group, int n, int ranges[][3],
MPI_Group *newgroup)

int MPI_Group_range_incl(MPI_Group group, int n, int ranges[][3],
MPI_Group *newgroup)

int MPI_Group_rank(MPI_Group group, int *rank)

int MPI_Group_size(MPI_Group group, int *size)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



A.2. C BINDINGS 537

int MPI_Group_translate_ranks (MPI_Group group1, int n, int *ranks1,
MPI_Group group2, int *ranks2)

int MPI_Group_union(MPI_Group group1, MPI_Group group2,
MPI_Group *newgroup)

int MPI_Intercomm_create(MPI_Comm local_comm, int local_leader,
MPI_Comm peer_comm, int remote_leader, int tag,
MPI_Comm *newintercomm)

int MPI_Intercomm_merge(MPI_Comm intercomm, int high,
MPI_Comm *newintracomm)

int MPI_TYPE_DUP_FN(MPI_Datatype oldtype, int type_keyval,
void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag)

int MPI_TYPE_NULL_COPY_FN(MPI_Datatype oldtype, int type_keyval,
void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag)

int MPI_TYPE_NULL_DELETE_FN(MPI_Datatype type, int type_keyval, void
*attribute_val, void *extra_state)

int MPI_Type_create_keyval(MPI_Type_copy_attr_function *type_copy_attr_fn,
MPI_Type_delete_attr_function *type_delete_attr_fn,
int *type_keyval, void *extra_state)

int MPI_Type_delete_attr(MPI_Datatype type, int type_keyval)

int MPI_Type_free_keyval(int *type_keyval)

int MPI_Type_get_attr(MPI_Datatype type, int type_keyval, void
*attribute_val, int *flag)

int MPI_Type_get_name(MPI_Datatype type, char *type_name, int *resultlen)

int MPI_Type_set_attr(MPI_Datatype type, int type_keyval,
void *attribute_val)

int MPI_Type_set_name(MPI_Datatype type, char *type_name)

int MPI_WIN_DUP_FN(MPI_Win oldwin, int win_keyval, void *extra_state,
void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_WIN_NULL_COPY_FN(MPI_Win oldwin, int win_keyval, void *extra_state,
void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_WIN_NULL_DELETE_FN(MPI_Win win, int win_keyval, void
*attribute_val, void *extra_state)

int MPI_Win_create_keyval(MPI_Win_copy_attr_function *win_copy_attr_fn,
MPI_Win_delete_attr_function *win_delete_attr_fn,
int *win_keyval, void *extra_state)

int MPI_Win_delete_attr(MPI_Win win, int win_keyval)
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int MPI_Win_free_keyval(int *win_keyval)

int MPI_Win_get_attr(MPI_Win win, int win_keyval, void *attribute_val,
int *flag)

int MPI_Win_get_name(MPI_Win win, char *win_name, int *resultlen)

int MPI_Win_set_attr(MPI_Win win, int win_keyval, void *attribute_val)

int MPI_Win_set_name(MPI_Win win, char *win_name)

A.2.5 Process Topologies C Bindings

int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int *coords)

int MPI_Cart_create(MPI_Comm comm_old, int ndims, int *dims, int *periods,
int reorder, MPI_Comm *comm_cart)

int MPI_Cart_get(MPI_Comm comm, int maxdims, int *dims, int *periods,
int *coords)

int MPI_Cart_map(MPI_Comm comm, int ndims, int *dims, int *periods,
int *newrank)

int MPI_Cart_rank(MPI_Comm comm, int *coords, int *rank)

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)

int MPI_Cart_sub(MPI_Comm comm, int *remain_dims, MPI_Comm *newcomm)

int MPI_Cartdim_get(MPI_Comm comm, int *ndims)

int MPI_Dims_create(int nnodes, int ndims, int *dims)

int MPI_Dist_graph_create(MPI_Comm comm_old, int n, int sources[],
int degrees[], int destinations[], int weights[],
MPI_Info info, int reorder, MPI_Comm *comm_dist_graph)

int MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int indegree,
int sources[], int sourceweights[], int outdegree,
int destinations[], int destweights[], MPI_Info info,
int reorder, MPI_Comm *comm_dist_graph)

int MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree, int sources[],
int sourceweights[], int maxoutdegree, int destinations[],
int destweights[])

int MPI_Dist_graph_neighbors_count(MPI_Comm comm, int *indegree,
int *outdegree, int *weighted)

int MPI_Graph_create(MPI_Comm comm_old, int nnodes, int *index, int *edges,
int reorder, MPI_Comm *comm_graph)

int MPI_Graph_get(MPI_Comm comm, int maxindex, int maxedges, int *index,
int *edges)
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int MPI_Graph_map(MPI_Comm comm, int nnodes, int *index, int *edges,
int *newrank)

int MPI_Graph_neighbors(MPI_Comm comm, int rank, int maxneighbors,
int *neighbors)

int MPI_Graph_neighbors_count(MPI_Comm comm, int rank, int *nneighbors)

int MPI_Graphdims_get(MPI_Comm comm, int *nnodes, int *nedges)

int MPI_Topo_test(MPI_Comm comm, int *status)

A.2.6 MPI Environmenta Management C Bindings

double MPI_Wtick(void)

double MPI_Wtime(void)

int MPI_Abort(MPI_Comm comm, int errorcode)

int MPI_Add_error_class(int *errorclass)

int MPI_Add_error_code(int errorclass, int *errorcode)

int MPI_Add_error_string(int errorcode, char *string)

int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)

int MPI_Comm_call_errhandler(MPI_Comm comm, int errorcode)

int MPI_Comm_create_errhandler(MPI_Comm_errhandler_function *function,
MPI_Errhandler *errhandler)

int MPI_Comm_get_errhandler(MPI_Comm comm, MPI_Errhandler *errhandler)

int MPI_Comm_set_errhandler(MPI_Comm comm, MPI_Errhandler errhandler)

int MPI_Errhandler_free(MPI_Errhandler *errhandler)

int MPI_Error_class(int errorcode, int *errorclass)

int MPI_Error_string(int errorcode, char *string, int *resultlen)

int MPI_File_call_errhandler(MPI_File fh, int errorcode)

int MPI_File_create_errhandler(MPI_File_errhandler_function *function,
MPI_Errhandler *errhandler)

int MPI_File_get_errhandler(MPI_File file, MPI_Errhandler *errhandler)

int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler errhandler)

int MPI_Finalize(void)

int MPI_Finalized(int *flag)

int MPI_Free_mem(void *base)

int MPI_Get_processor_name(char *name, int *resultlen)
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int MPI_Get_version(int *version, int *subversion)

int MPI_Init(int *argc, char ***argv)

int MPI_Initialized(int *flag)

int MPI_Win_call_errhandler(MPI_Win win, int errorcode)

int MPI_Win_create_errhandler(MPI_Win_errhandler_function *function,
MPI_Errhandler *errhandler)

int MPI_Win_get_errhandler(MPI_Win win, MPI_Errhandler *errhandler)

int MPI_Win_set_errhandler(MPI_Win win, MPI_Errhandler errhandler)

A.2.7 The Info Object C Bindings

int MPI_Info_create(MPI_Info *info)

int MPI_Info_delete(MPI_Info info, char *key)

int MPI_Info_dup(MPI_Info info, MPI_Info *newinfo)

int MPI_Info_free(MPI_Info *info)

int MPI_Info_get(MPI_Info info, char *key, int valuelen, char *value,
int *flag)

int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)

int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)

int MPI_Info_get_valuelen(MPI_Info info, char *key, int *valuelen,
int *flag)

int MPI_Info_set(MPI_Info info, char *key, char *value)

A.2.8 Process Creation and Management C Bindings

int MPI_Close_port(char *port_name)

int MPI_Comm_accept(char *port_name, MPI_Info info, int root,
MPI_Comm comm, MPI_Comm *newcomm)

int MPI_Comm_connect(char *port_name, MPI_Info info, int root,
MPI_Comm comm, MPI_Comm *newcomm)

int MPI_Comm_disconnect(MPI_Comm *comm)

int MPI_Comm_get_parent(MPI_Comm *parent)

int MPI_Comm_join(int fd, MPI_Comm *intercomm)

int MPI_Comm_spawn(char *command, char *argv[], int maxprocs, MPI_Info
info, int root, MPI_Comm comm, MPI_Comm *intercomm,
int array_of_errcodes[])
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int MPI_Comm_spawn_multiple(int count, char *array_of_commands[],
char **array_of_argv[], int array_of_maxprocs[],
MPI_Info array_of_info[], int root, MPI_Comm comm,
MPI_Comm *intercomm, int array_of_errcodes[])

int MPI_Lookup_name(char *service_name, MPI_Info info, char *port_name)

int MPI_Open_port(MPI_Info info, char *port_name)

int MPI_Publish_name(char *service_name, MPI_Info info, char *port_name)

int MPI_Unpublish_name(char *service_name, MPI_Info info, char *port_name)

A.2.9 One-Sided Communications C Bindings

int MPI_Accumulate(void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype
origin_datatype, int target_rank, MPI_Aint target_disp, int
target_count, MPI_Datatype target_datatype, MPI_Win win)

int MPI_Put(void *origin_addr, int origin_count, MPI_Datatype
origin_datatype, int target_rank, MPI_Aint target_disp, int
target_count, MPI_Datatype target_datatype, MPI_Win win)

int MPI_Win_complete(MPI_Win win)

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)

int MPI_Win_fence(int assert, MPI_Win win)

int MPI_Win_free(MPI_Win *win)

int MPI_Win_get_group(MPI_Win win, MPI_Group *group)

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

int MPI_Win_test(MPI_Win win, int *flag)

int MPI_Win_unlock(int rank, MPI_Win win)

int MPI_Win_wait(MPI_Win win)

A.2.10 External Interfaces C Bindings

int MPI_Grequest_complete(MPI_Request request)
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int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,
MPI_Grequest_free_function *free_fn,
MPI_Grequest_cancel_function *cancel_fn, void *extra_state,
MPI_Request *request)

int MPI_Init_thread(int *argc, char *((*argv)[]), int required,
int *provided)

int MPI_Is_thread_main(int *flag)

int MPI_Query_thread(int *provided)

int MPI_Status_set_cancelled(MPI_Status *status, int flag)

int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype datatype,
int count)

A.2.11 I/O C Bindings

int MPI_File_close(MPI_File *fh)

int MPI_File_delete(char *filename, MPI_Info info)

int MPI_File_get_amode(MPI_File fh, int *amode)

int MPI_File_get_atomicity(MPI_File fh, int *flag)

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,
MPI_Offset *disp)

int MPI_File_get_group(MPI_File fh, MPI_Group *group)

int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)

int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)

int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)

int MPI_File_get_size(MPI_File fh, MPI_Offset *size)

int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,
MPI_Aint *extent)

int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,
MPI_Datatype *filetype, char *datarep)

int MPI_File_iread(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iread_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)
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int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

int MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info,
MPI_File *fh)

int MPI_File_preallocate(MPI_File fh, MPI_Offset size)

int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
MPI_Status *status)

int MPI_File_read_all(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_all_begin(MPI_File fh, void *buf, int count,
MPI_Datatype datatype)

int MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype)

int MPI_File_read_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_read_ordered(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,
MPI_Datatype datatype)

int MPI_File_read_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_read_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

int MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)

int MPI_File_set_atomicity(MPI_File fh, int flag)

int MPI_File_set_info(MPI_File fh, MPI_Info info)

int MPI_File_set_size(MPI_File fh, MPI_Offset size)

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
MPI_Datatype filetype, char *datarep, MPI_Info info)

int MPI_File_sync(MPI_File fh)
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int MPI_File_write(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_all(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_all_begin(MPI_File fh, void *buf, int count,
MPI_Datatype datatype)

int MPI_File_write_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype)

int MPI_File_write_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_write_ordered(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_ordered_begin(MPI_File fh, void *buf, int count,
MPI_Datatype datatype)

int MPI_File_write_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_write_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_Register_datarep(char *datarep,
MPI_Datarep_conversion_function *read_conversion_fn,
MPI_Datarep_conversion_function *write_conversion_fn,
MPI_Datarep_extent_function *dtype_file_extent_fn,
void *extra_state)

A.2.12 Language Bindings C Bindings

int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype)

int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)

int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype)

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *type)

MPI_Fint MPI_Comm_c2f(MPI_Comm comm)

MPI_Comm MPI_Comm_f2c(MPI_Fint comm)

MPI_Fint MPI_Errhandler_c2f(MPI_Errhandler errhandler)

MPI_Errhandler MPI_Errhandler_f2c(MPI_Fint errhandler)
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MPI_Fint MPI_File_c2f(MPI_File file)

MPI_File MPI_File_f2c(MPI_Fint file)

MPI_Fint MPI_Group_c2f(MPI_Group group)

MPI_Group MPI_Group_f2c(MPI_Fint group)

MPI_Fint MPI_Info_c2f(MPI_Info info)

MPI_Info MPI_Info_f2c(MPI_Fint info)

MPI_Fint MPI_Op_c2f(MPI_Op op)

MPI_Op MPI_Op_f2c(MPI_Fint op)

MPI_Fint MPI_Request_c2f(MPI_Request request)

MPI_Request MPI_Request_f2c(MPI_Fint request)

int MPI_Status_c2f(MPI_Status *c_status, MPI_Fint *f_status)

int MPI_Status_f2c(MPI_Fint *f_status, MPI_Status *c_status)

MPI_Fint MPI_Type_c2f(MPI_Datatype datatype)

MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)

MPI_Fint MPI_Win_c2f(MPI_Win win)

MPI_Win MPI_Win_f2c(MPI_Fint win)

A.2.13 Profiling Interface C Bindings

int MPI_Pcontrol(const int level, ...)

A.2.14 Deprecated C Bindings

int MPI_Address(void* location, MPI_Aint *address)

int MPI_Attr_delete(MPI_Comm comm, int keyval)

int MPI_Attr_get(MPI_Comm comm, int keyval, void *attribute_val, int *flag)

int MPI_Attr_put(MPI_Comm comm, int keyval, void* attribute_val)

int MPI_DUP_FN(MPI_Comm oldcomm, int keyval, void *extra_state,
void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_Errhandler_create(MPI_Handler_function *function,
MPI_Errhandler *errhandler)

int MPI_Errhandler_get(MPI_Comm comm, MPI_Errhandler *errhandler)

int MPI_Errhandler_set(MPI_Comm comm, MPI_Errhandler errhandler)

int MPI_Keyval_create(MPI_Copy_function *copy_fn, MPI_Delete_function
*delete_fn, int *keyval, void* extra_state)
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int MPI_Keyval_free(int *keyval)

int MPI_NULL_COPY_FN(MPI_Comm oldcomm, int keyval, void *extra_state,
void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_NULL_DELETE_FN(MPI_Comm comm, int keyval, void *attribute_val,
void *extra_state)

int MPI_Type_extent(MPI_Datatype datatype, MPI_Aint *extent)

int MPI_Type_hindexed(int count, int *array_of_blocklengths,
MPI_Aint *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

int MPI_Type_hvector(int count, int blocklength, MPI_Aint stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_lb(MPI_Datatype datatype, MPI_Aint* displacement)

int MPI_Type_struct(int count, int *array_of_blocklengths,
MPI_Aint *array_of_displacements,
MPI_Datatype *array_of_types, MPI_Datatype *newtype)

int MPI_Type_ub(MPI_Datatype datatype, MPI_Aint* displacement)
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A.3 Fortran Bindings

A.3.1 Point-to-Point Communication Fortran Bindings

MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_BSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)
<type> BUFFER(*)
INTEGER SIZE, IERROR

MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)
<type> BUFFER_ADDR(*)
INTEGER SIZE, IERROR

MPI_CANCEL(REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI_IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
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<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE),
IERROR

MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI_REQUEST_FREE(REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI_REQUEST_GET_STATUS( REQUEST, FLAG, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_RSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,
RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,
SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_SENDRECV_REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,
COMM, STATUS, IERROR)

<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,
STATUS(MPI_STATUS_SIZE), IERROR

MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_SSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_START(REQUEST, IERROR)
INTEGER REQUEST, IERROR
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MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR

MPI_TEST(REQUEST, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

MPI_TESTALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY_OF_REQUESTS(*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

MPI_TESTANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),
IERROR

MPI_TESTSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
ARRAY_OF_STATUSES, IERROR)

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

MPI_TEST_CANCELLED(STATUS, FLAG, IERROR)
LOGICAL FLAG
INTEGER STATUS(MPI_STATUS_SIZE), IERROR

MPI_WAIT(REQUEST, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*)
INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),
IERROR

MPI_WAITSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
ARRAY_OF_STATUSES, IERROR)

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

A.3.2 Datatypes Fortran Bindings

MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)
<type> LOCATION(*)
INTEGER IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS

MPI_GET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

MPI_PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)
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<type> INBUF(*), OUTBUF(*)
INTEGER INCOUNT, DATATYPE, OUTSIZE, POSITION, COMM, IERROR

MPI_PACK_EXTERNAL(DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE,
POSITION, IERROR)

INTEGER INCOUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) OUTSIZE, POSITION
CHARACTER*(*) DATAREP
<type> INBUF(*), OUTBUF(*)

MPI_PACK_EXTERNAL_SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)
INTEGER INCOUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
CHARACTER*(*) DATAREP

MPI_PACK_SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)
INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR

MPI_TYPE_COMMIT(DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS, ARRAY_OF_GSIZES,
ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS, ARRAY_OF_PSIZES, ORDER,
OLDTYPE, NEWTYPE, IERROR)

INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*), ARRAY_OF_DISTRIBS(*),
ARRAY_OF_DARGS(*), ARRAY_OF_PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_CREATE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS,
ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

MPI_TYPE_CREATE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE,
IERROR)

INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) STRIDE

MPI_TYPE_CREATE_INDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS(*), OLDTYPE,
NEWTYPE, IERROR

MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)
INTEGER OLDTYPE, NEWTYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_CREATE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS,
ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*), NEWTYPE,
IERROR
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INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, ARRAY_OF_SUBSIZES,
ARRAY_OF_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)

INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*),
ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_DUP(TYPE, NEWTYPE, IERROR)
INTEGER TYPE, NEWTYPE, IERROR

MPI_TYPE_FREE(DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

MPI_TYPE_GET_CONTENTS(DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
ARRAY_OF_INTEGERS, ARRAY_OF_ADDRESSES, ARRAY_OF_DATATYPES,
IERROR)

INTEGER DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
ARRAY_OF_INTEGERS(*), ARRAY_OF_DATATYPES(*), IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_ADDRESSES(*)

MPI_TYPE_GET_ENVELOPE(DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES,
COMBINER, IERROR)

INTEGER DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES, COMBINER,
IERROR

MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)
INTEGER DATATYPE, IERROR
INTEGER(KIND = MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_GET_TRUE_EXTENT(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)
INTEGER DATATYPE, IERROR
INTEGER(KIND = MPI_ADDRESS_KIND) TRUE_LB, TRUE_EXTENT

MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),
OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_SIZE(DATATYPE, SIZE, IERROR)
INTEGER DATATYPE, SIZE, IERROR

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

MPI_UNPACK(INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM,
IERROR)

<type> INBUF(*), OUTBUF(*)
INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR

MPI_UNPACK_EXTERNAL(DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,
DATATYPE, IERROR)

INTEGER OUTCOUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) INSIZE, POSITION
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CHARACTER*(*) DATAREP
<type> INBUF(*), OUTBUF(*)

A.3.3 Collective Communication Fortran Bindings

MPI_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,
IERROR

MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,
RDISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),
RECVTYPE, COMM, IERROR

MPI_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,
RDISPLS, RECVTYPES, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),
RDISPLS(*), RECVTYPES(*), COMM, IERROR

MPI_BARRIER(COMM, IERROR)
INTEGER COMM, IERROR

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

MPI_EXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR
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MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,
COMM, IERROR

MPI_OP_COMMUTATIVE(OP, COMMUTE, IERROR)
LOGICAL COMMUTE
INTEGER OP, IERROR

MPI_OP_CREATE( FUNCTION, COMMUTE, OP, IERROR)
EXTERNAL FUNCTION
LOGICAL COMMUTE
INTEGER OP, IERROR

MPI_OP_FREE( OP, IERROR)
INTEGER OP, IERROR

MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

MPI_REDUCE_LOCAL(INBUF, INOUBUF, COUNT, DATATYPE, OP, IERROR)
<type> INBUF(*), INOUTBUF(*)
INTEGER COUNT, DATATYPE, OP, IERROR

MPI_REDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,
IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR

MPI_REDUCE_SCATTER_BLOCK(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP, COMM,
IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER RECVCOUNT, DATATYPE, OP, COMM, IERROR

MPI_SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI_SCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,
COMM, IERROR
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A.3.4 Groups, Contexts, Communicators, and Caching Fortran Bindings

MPI_COMM_COMPARE(COMM1, COMM2, RESULT, IERROR)
INTEGER COMM1, COMM2, RESULT, IERROR

MPI_COMM_CREATE(COMM, GROUP, NEWCOMM, IERROR)
INTEGER COMM, GROUP, NEWCOMM, IERROR

MPI_COMM_CREATE_KEYVAL(COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN, COMM_KEYVAL,
EXTRA_STATE, IERROR)

EXTERNAL COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN
INTEGER COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_COMM_DELETE_ATTR(COMM, COMM_KEYVAL, IERROR)
INTEGER COMM, COMM_KEYVAL, IERROR

MPI_COMM_DUP(COMM, NEWCOMM, IERROR)
INTEGER COMM, NEWCOMM, IERROR

MPI_COMM_DUP_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT
LOGICAL FLAG

MPI_COMM_FREE(COMM, IERROR)
INTEGER COMM, IERROR

MPI_COMM_FREE_KEYVAL(COMM_KEYVAL, IERROR)
INTEGER COMM_KEYVAL, IERROR

MPI_COMM_GET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
INTEGER COMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
LOGICAL FLAG

MPI_COMM_GET_NAME(COMM, COMM_NAME, RESULTLEN, IERROR)
INTEGER COMM, RESULTLEN, IERROR
CHARACTER*(*) COMM_NAME

MPI_COMM_GROUP(COMM, GROUP, IERROR)
INTEGER COMM, GROUP, IERROR

MPI_COMM_NULL_COPY_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT
LOGICAL FLAG

MPI_COMM_NULL_DELETE_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE,
IERROR)
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INTEGER COMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

MPI_COMM_RANK(COMM, RANK, IERROR)
INTEGER COMM, RANK, IERROR

MPI_COMM_REMOTE_GROUP(COMM, GROUP, IERROR)
INTEGER COMM, GROUP, IERROR

MPI_COMM_REMOTE_SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

MPI_COMM_SET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, IERROR)
INTEGER COMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_COMM_SET_NAME(COMM, COMM_NAME, IERROR)
INTEGER COMM, IERROR
CHARACTER*(*) COMM_NAME

MPI_COMM_SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)
INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR

MPI_COMM_TEST_INTER(COMM, FLAG, IERROR)
INTEGER COMM, IERROR
LOGICAL FLAG

MPI_GROUP_COMPARE(GROUP1, GROUP2, RESULT, IERROR)
INTEGER GROUP1, GROUP2, RESULT, IERROR

MPI_GROUP_DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)
INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

MPI_GROUP_FREE(GROUP, IERROR)
INTEGER GROUP, IERROR

MPI_GROUP_INCL(GROUP, N, RANKS, NEWGROUP, IERROR)
INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

MPI_GROUP_INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_RANGE_EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)
INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

MPI_GROUP_RANGE_INCL(GROUP, N, RANGES, NEWGROUP, IERROR)
INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

MPI_GROUP_RANK(GROUP, RANK, IERROR)
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INTEGER GROUP, RANK, IERROR

MPI_GROUP_SIZE(GROUP, SIZE, IERROR)
INTEGER GROUP, SIZE, IERROR

MPI_GROUP_TRANSLATE_RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)
INTEGER GROUP1, N, RANKS1(*), GROUP2, RANKS2(*), IERROR

MPI_GROUP_UNION(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_INTERCOMM_CREATE(LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER,
TAG, NEWINTERCOMM, IERROR)

INTEGER LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER, TAG,
NEWINTERCOMM, IERROR

MPI_INTERCOMM_MERGE(INTERCOMM, HIGH, INTRACOMM, IERROR)
INTEGER INTERCOMM, INTRACOMM, IERROR
LOGICAL HIGH

MPI_TYPE_CREATE_KEYVAL(TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN, TYPE_KEYVAL,
EXTRA_STATE, IERROR)

EXTERNAL TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN
INTEGER TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_TYPE_DELETE_ATTR(TYPE, TYPE_KEYVAL, IERROR)
INTEGER TYPE, TYPE_KEYVAL, IERROR

MPI_TYPE_DUP_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT
LOGICAL FLAG

MPI_TYPE_FREE_KEYVAL(TYPE_KEYVAL, IERROR)
INTEGER TYPE_KEYVAL, IERROR

MPI_TYPE_GET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
INTEGER TYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
LOGICAL FLAG

MPI_TYPE_GET_NAME(TYPE, TYPE_NAME, RESULTLEN, IERROR)
INTEGER TYPE, RESULTLEN, IERROR
CHARACTER*(*) TYPE_NAME

MPI_TYPE_NULL_COPY_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT
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LOGICAL FLAG

MPI_TYPE_NULL_DELETE_FN(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE,
IERROR)

INTEGER TYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

MPI_TYPE_SET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, IERROR)
INTEGER TYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_TYPE_SET_NAME(TYPE, TYPE_NAME, IERROR)
INTEGER TYPE, IERROR
CHARACTER*(*) TYPE_NAME

MPI_WIN_CREATE_KEYVAL(WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN, WIN_KEYVAL,
EXTRA_STATE, IERROR)

EXTERNAL WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN
INTEGER WIN_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_WIN_DELETE_ATTR(WIN, WIN_KEYVAL, IERROR)
INTEGER WIN, WIN_KEYVAL, IERROR

MPI_WIN_DUP_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT
LOGICAL FLAG

MPI_WIN_FREE_KEYVAL(WIN_KEYVAL, IERROR)
INTEGER WIN_KEYVAL, IERROR

MPI_WIN_GET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
INTEGER WIN, WIN_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
LOGICAL FLAG

MPI_WIN_GET_NAME(WIN, WIN_NAME, RESULTLEN, IERROR)
INTEGER WIN, RESULTLEN, IERROR
CHARACTER*(*) WIN_NAME

MPI_WIN_NULL_COPY_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT
LOGICAL FLAG

MPI_WIN_NULL_DELETE_FN(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR)
INTEGER WIN, WIN_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE
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MPI_WIN_SET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, IERROR)
INTEGER WIN, WIN_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_WIN_SET_NAME(WIN, WIN_NAME, IERROR)
INTEGER WIN, IERROR
CHARACTER*(*) WIN_NAME

A.3.5 Process Topologies Fortran Bindings

MPI_CARTDIM_GET(COMM, NDIMS, IERROR)
INTEGER COMM, NDIMS, IERROR

MPI_CART_COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)
INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR

MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS, REORDER, COMM_CART, IERROR)
INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR
LOGICAL PERIODS(*), REORDER

MPI_CART_GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)
INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERROR
LOGICAL PERIODS(*)

MPI_CART_MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)
INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERROR
LOGICAL PERIODS(*)

MPI_CART_RANK(COMM, COORDS, RANK, IERROR)
INTEGER COMM, COORDS(*), RANK, IERROR

MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR)
INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR

MPI_CART_SUB(COMM, REMAIN_DIMS, NEWCOMM, IERROR)
INTEGER COMM, NEWCOMM, IERROR
LOGICAL REMAIN_DIMS(*)

MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)
INTEGER NNODES, NDIMS, DIMS(*), IERROR

MPI_DIST_GRAPH_CREATE(COMM_OLD, N, SOURCES, DEGREES, DESTINATIONS, WEIGHTS,
INFO, REORDER, COMM_DIST_GRAPH, IERROR)

INTEGER COMM_OLD, N, SOURCES(*), DEGREES(*), DESTINATIONS(*),
WEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR
LOGICAL REORDER

MPI_DIST_GRAPH_CREATE_ADJACENT(COMM_OLD, INDEGREE, SOURCES, SOURCEWEIGHTS,
OUTDEGREE, DESTINATIONS, DESTWEIGHTS, INFO, REORDER,
COMM_DIST_GRAPH, IERROR)

INTEGER COMM_OLD, INDEGREE, SOURCES(*), SOURCEWEIGHTS(*), OUTDEGREE,
DESTINATIONS(*), DESTWEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR

LOGICAL REORDER
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MPI_DIST_GRAPH_NEIGHBORS(COMM, MAXINDEGREE, SOURCES, SOURCEWEIGHTS,
MAXOUTDEGREE, DESTINATIONS, DESTWEIGHTS, IERROR)

INTEGER COMM, MAXINDEGREE, SOURCES(*), SOURCEWEIGHTS(*), MAXOUTDEGREE,
DESTINATIONS(*), DESTWEIGHTS(*), IERROR

MPI_DIST_GRAPH_NEIGHBORS_COUNT(COMM, INDEGREE, OUTDEGREE, WEIGHTED, IERROR)
INTEGER COMM, INDEGREE, OUTDEGREE, IERROR
LOGICAL WEIGHTED

MPI_GRAPHDIMS_GET(COMM, NNODES, NEDGES, IERROR)
INTEGER COMM, NNODES, NEDGES, IERROR

MPI_GRAPH_CREATE(COMM_OLD, NNODES, INDEX, EDGES, REORDER, COMM_GRAPH,
IERROR)

INTEGER COMM_OLD, NNODES, INDEX(*), EDGES(*), COMM_GRAPH, IERROR
LOGICAL REORDER

MPI_GRAPH_GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)
INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(*), IERROR

MPI_GRAPH_MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)
INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERROR

MPI_GRAPH_NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)
INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR

MPI_GRAPH_NEIGHBORS_COUNT(COMM, RANK, NNEIGHBORS, IERROR)
INTEGER COMM, RANK, NNEIGHBORS, IERROR

MPI_TOPO_TEST(COMM, STATUS, IERROR)
INTEGER COMM, STATUS, IERROR

A.3.6 MPI Environmenta Management Fortran Bindings

DOUBLE PRECISION MPI_WTICK()

DOUBLE PRECISION MPI_WTIME()

MPI_ABORT(COMM, ERRORCODE, IERROR)
INTEGER COMM, ERRORCODE, IERROR

MPI_ADD_ERROR_CLASS(ERRORCLASS, IERROR)
INTEGER ERRORCLASS, IERROR

MPI_ADD_ERROR_CODE(ERRORCLASS, ERRORCODE, IERROR)
INTEGER ERRORCLASS, ERRORCODE, IERROR

MPI_ADD_ERROR_STRING(ERRORCODE, STRING, IERROR)
INTEGER ERRORCODE, IERROR
CHARACTER*(*) STRING

MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)
INTEGER INFO, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



560 ANNEX A. LANGUAGE BINDINGS SUMMARY

MPI_COMM_CALL_ERRHANDLER(COMM, ERRORCODE, IERROR)
INTEGER COMM, ERRORCODE, IERROR

MPI_COMM_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

MPI_COMM_GET_ERRHANDLER(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

MPI_COMM_SET_ERRHANDLER(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

MPI_ERRHANDLER_FREE(ERRHANDLER, IERROR)
INTEGER ERRHANDLER, IERROR

MPI_ERROR_CLASS(ERRORCODE, ERRORCLASS, IERROR)
INTEGER ERRORCODE, ERRORCLASS, IERROR

MPI_ERROR_STRING(ERRORCODE, STRING, RESULTLEN, IERROR)
INTEGER ERRORCODE, RESULTLEN, IERROR
CHARACTER*(*) STRING

MPI_FILE_CALL_ERRHANDLER(FH, ERRORCODE, IERROR)
INTEGER FH, ERRORCODE, IERROR

MPI_FILE_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

MPI_FILE_GET_ERRHANDLER(FILE, ERRHANDLER, IERROR)
INTEGER FILE, ERRHANDLER, IERROR

MPI_FILE_SET_ERRHANDLER(FILE, ERRHANDLER, IERROR)
INTEGER FILE, ERRHANDLER, IERROR

MPI_FINALIZE(IERROR)
INTEGER IERROR

MPI_FINALIZED(FLAG, IERROR)
LOGICAL FLAG
INTEGER IERROR

MPI_FREE_MEM(BASE, IERROR)
<type> BASE(*)
INTEGER IERROR

MPI_GET_PROCESSOR_NAME( NAME, RESULTLEN, IERROR)
CHARACTER*(*) NAME
INTEGER RESULTLEN,IERROR

MPI_GET_VERSION(VERSION, SUBVERSION, IERROR)
INTEGER VERSION, SUBVERSION, IERROR

MPI_INIT(IERROR)
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INTEGER IERROR

MPI_INITIALIZED(FLAG, IERROR)
LOGICAL FLAG
INTEGER IERROR

MPI_WIN_CALL_ERRHANDLER(WIN, ERRORCODE, IERROR)
INTEGER WIN, ERRORCODE, IERROR

MPI_WIN_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

MPI_WIN_GET_ERRHANDLER(WIN, ERRHANDLER, IERROR)
INTEGER WIN, ERRHANDLER, IERROR

MPI_WIN_SET_ERRHANDLER(WIN, ERRHANDLER, IERROR)
INTEGER WIN, ERRHANDLER, IERROR

A.3.7 The Info Object Fortran Bindings

MPI_INFO_CREATE(INFO, IERROR)
INTEGER INFO, IERROR

MPI_INFO_DELETE(INFO, KEY, IERROR)
INTEGER INFO, IERROR
CHARACTER*(*) KEY

MPI_INFO_DUP(INFO, NEWINFO, IERROR)
INTEGER INFO, NEWINFO, IERROR

MPI_INFO_FREE(INFO, IERROR)
INTEGER INFO, IERROR

MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)
INTEGER INFO, VALUELEN, IERROR
CHARACTER*(*) KEY, VALUE
LOGICAL FLAG

MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR)
INTEGER INFO, NKEYS, IERROR

MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)
INTEGER INFO, N, IERROR
CHARACTER*(*) KEY

MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)
INTEGER INFO, VALUELEN, IERROR
LOGICAL FLAG
CHARACTER*(*) KEY

MPI_INFO_SET(INFO, KEY, VALUE, IERROR)
INTEGER INFO, IERROR
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CHARACTER*(*) KEY, VALUE

A.3.8 Process Creation and Management Fortran Bindings

MPI_CLOSE_PORT(PORT_NAME, IERROR)
CHARACTER*(*) PORT_NAME
INTEGER IERROR

MPI_COMM_ACCEPT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)
CHARACTER*(*) PORT_NAME
INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI_COMM_CONNECT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)
CHARACTER*(*) PORT_NAME
INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI_COMM_DISCONNECT(COMM, IERROR)
INTEGER COMM, IERROR

MPI_COMM_GET_PARENT(PARENT, IERROR)
INTEGER PARENT, IERROR

MPI_COMM_JOIN(FD, INTERCOMM, IERROR)
INTEGER FD, INTERCOMM, IERROR

MPI_COMM_SPAWN(COMMAND, ARGV, MAXPROCS, INFO, ROOT, COMM, INTERCOMM,
ARRAY_OF_ERRCODES, IERROR)

CHARACTER*(*) COMMAND, ARGV(*)
INTEGER INFO, MAXPROCS, ROOT, COMM, INTERCOMM, ARRAY_OF_ERRCODES(*),
IERROR

MPI_COMM_SPAWN_MULTIPLE(COUNT, ARRAY_OF_COMMANDS, ARRAY_OF_ARGV,
ARRAY_OF_MAXPROCS, ARRAY_OF_INFO, ROOT, COMM, INTERCOMM,
ARRAY_OF_ERRCODES, IERROR)

INTEGER COUNT, ARRAY_OF_INFO(*), ARRAY_OF_MAXPROCS(*), ROOT, COMM,
INTERCOMM, ARRAY_OF_ERRCODES(*), IERROR
CHARACTER*(*) ARRAY_OF_COMMANDS(*), ARRAY_OF_ARGV(COUNT, *)

MPI_LOOKUP_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)
CHARACTER*(*) SERVICE_NAME, PORT_NAME
INTEGER INFO, IERROR

MPI_OPEN_PORT(INFO, PORT_NAME, IERROR)
CHARACTER*(*) PORT_NAME
INTEGER INFO, IERROR

MPI_PUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)
INTEGER INFO, IERROR
CHARACTER*(*) SERVICE_NAME, PORT_NAME

MPI_UNPUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)
INTEGER INFO, IERROR
CHARACTER*(*) SERVICE_NAME, PORT_NAME
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A.3.9 One-Sided Communications Fortran Bindings

MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,
TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*)
INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP
INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE,TARGET_RANK, TARGET_COUNT,
TARGET_DATATYPE, OP, WIN, IERROR

MPI_GET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,
TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)
INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP
INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
TARGET_DATATYPE, WIN, IERROR

MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,
TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)
INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP
INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
TARGET_DATATYPE, WIN, IERROR

MPI_WIN_COMPLETE(WIN, IERROR)
INTEGER WIN, IERROR

MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)
<type> BASE(*)
INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

MPI_WIN_FENCE(ASSERT, WIN, IERROR)
INTEGER ASSERT, WIN, IERROR

MPI_WIN_FREE(WIN, IERROR)
INTEGER WIN, IERROR

MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)
INTEGER WIN, GROUP, IERROR

MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)
INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR

MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)
INTEGER GROUP, ASSERT, WIN, IERROR

MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)
INTEGER GROUP, ASSERT, WIN, IERROR

MPI_WIN_TEST(WIN, FLAG, IERROR)
INTEGER WIN, IERROR
LOGICAL FLAG

MPI_WIN_UNLOCK(RANK, WIN, IERROR)
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INTEGER RANK, WIN, IERROR

MPI_WIN_WAIT(WIN, IERROR)
INTEGER WIN, IERROR

A.3.10 External Interfaces Fortran Bindings

MPI_GREQUEST_COMPLETE(REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI_GREQUEST_START(QUERY_FN, FREE_FN, CANCEL_FN, EXTRA_STATE, REQUEST,
IERROR)

INTEGER REQUEST, IERROR
EXTERNAL QUERY_FN, FREE_FN, CANCEL_FN
INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)
INTEGER REQUIRED, PROVIDED, IERROR

MPI_IS_THREAD_MAIN(FLAG, IERROR)
LOGICAL FLAG
INTEGER IERROR

MPI_QUERY_THREAD(PROVIDED, IERROR)
INTEGER PROVIDED, IERROR

MPI_STATUS_SET_CANCELLED(STATUS, FLAG, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

MPI_STATUS_SET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

A.3.11 I/O Fortran Bindings

MPI_FILE_CLOSE(FH, IERROR)
INTEGER FH, IERROR

MPI_FILE_DELETE(FILENAME, INFO, IERROR)
CHARACTER*(*) FILENAME
INTEGER INFO, IERROR

MPI_FILE_GET_AMODE(FH, AMODE, IERROR)
INTEGER FH, AMODE, IERROR

MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)
INTEGER FH, IERROR
LOGICAL FLAG

MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)
INTEGER FH, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, DISP
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MPI_FILE_GET_GROUP(FH, GROUP, IERROR)
INTEGER FH, GROUP, IERROR

MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)
INTEGER FH, INFO_USED, IERROR

MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)
INTEGER FH, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)
INTEGER FH, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_SIZE(FH, SIZE, IERROR)
INTEGER FH, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)
INTEGER FH, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)
INTEGER FH, ETYPE, FILETYPE, IERROR
CHARACTER*(*) DATAREP
INTEGER(KIND=MPI_OFFSET_KIND) DISP

MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)
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CHARACTER*(*) FILENAME
INTEGER COMM, AMODE, INFO, FH, IERROR

MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)
INTEGER FH, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ORDERED_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
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MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)
INTEGER FH, WHENCE, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)
INTEGER FH, WHENCE, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)
INTEGER FH, IERROR
LOGICAL FLAG

MPI_FILE_SET_INFO(FH, INFO, IERROR)
INTEGER FH, INFO, IERROR

MPI_FILE_SET_SIZE(FH, SIZE, IERROR)
INTEGER FH, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)
INTEGER FH, ETYPE, FILETYPE, INFO, IERROR
CHARACTER*(*) DATAREP
INTEGER(KIND=MPI_OFFSET_KIND) DISP

MPI_FILE_SYNC(FH, IERROR)
INTEGER FH, IERROR

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
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INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ORDERED_END(FH, BUF, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_REGISTER_DATAREP(DATAREP, READ_CONVERSION_FN, WRITE_CONVERSION_FN,
DTYPE_FILE_EXTENT_FN, EXTRA_STATE, IERROR)

CHARACTER*(*) DATAREP
EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
INTEGER IERROR

A.3.12 Language Bindings Fortran Bindings

MPI_SIZEOF(X, SIZE, IERROR)
<type> X
INTEGER SIZE, IERROR

MPI_TYPE_CREATE_F90_COMPLEX(P, R, NEWTYPE, IERROR)
INTEGER P, R, NEWTYPE, IERROR

MPI_TYPE_CREATE_F90_INTEGER(R, NEWTYPE, IERROR)
INTEGER R, NEWTYPE, IERROR

MPI_TYPE_CREATE_F90_REAL(P, R, NEWTYPE, IERROR)
INTEGER P, R, NEWTYPE, IERROR

MPI_TYPE_MATCH_SIZE(TYPECLASS, SIZE, TYPE, IERROR)
INTEGER TYPECLASS, SIZE, TYPE, IERROR
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A.3.13 Profiling Interface Fortran Bindings

MPI_PCONTROL(LEVEL)
INTEGER LEVEL

A.3.14 Deprecated Fortran Bindings

MPI_ADDRESS(LOCATION, ADDRESS, IERROR)
<type> LOCATION(*)
INTEGER ADDRESS, IERROR

MPI_ATTR_DELETE(COMM, KEYVAL, IERROR)
INTEGER COMM, KEYVAL, IERROR

MPI_ATTR_GET(COMM, KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR
LOGICAL FLAG

MPI_ATTR_PUT(COMM, KEYVAL, ATTRIBUTE_VAL, IERROR)
INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

MPI_DUP_FN(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, IERR
LOGICAL FLAG

MPI_ERRHANDLER_CREATE(FUNCTION, ERRHANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

MPI_ERRHANDLER_GET(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

MPI_ERRHANDLER_SET(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

MPI_KEYVAL_CREATE(COPY_FN, DELETE_FN, KEYVAL, EXTRA_STATE, IERROR)
EXTERNAL COPY_FN, DELETE_FN
INTEGER KEYVAL, EXTRA_STATE, IERROR

MPI_KEYVAL_FREE(KEYVAL, IERROR)
INTEGER KEYVAL, IERROR

MPI_NULL_COPY_FN(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, IERR
LOGICAL FLAG

MPI_NULL_DELETE_FN(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR)
INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR
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MPI_TYPE_EXTENT(DATATYPE, EXTENT, IERROR)
INTEGER DATATYPE, EXTENT, IERROR

MPI_TYPE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),
OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_LB( DATATYPE, DISPLACEMENT, IERROR)
INTEGER DATATYPE, DISPLACEMENT, IERROR

MPI_TYPE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
ARRAY_OF_TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),
ARRAY_OF_TYPES(*), NEWTYPE, IERROR

MPI_TYPE_UB( DATATYPE, DISPLACEMENT, IERROR)
INTEGER DATATYPE, DISPLACEMENT, IERROR

SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, IERR
LOGICAL FLAG

SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)
INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR
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A.4 C++ Bindings (deprecated)

A.4.1 Point-to-Point Communication C++ Bindings

namespace MPI {

{void Attach_buffer(void* buffer, int size) (binding deprecated, see
Section 15.2) }

{void Comm::Bsend(const void* buf, int count, const Datatype& datatype,
int dest, int tag) const (binding deprecated, see Section 15.2) }

{Prequest Comm::Bsend_init(const void* buf, int count, const
Datatype& datatype, int dest, int tag) const (binding deprecated,
see Section 15.2) }

{void Request::Cancel() const (binding deprecated, see Section 15.2) }

{int Detach_buffer(void*& buffer) (binding deprecated, see Section 15.2) }

{void Request::Free() (binding deprecated, see Section 15.2) }

{int Status::Get_count(const Datatype& datatype) const (binding deprecated,
see Section 15.2) }

{int Status::Get_error() const (binding deprecated, see Section 15.2) }

{int Status::Get_source() const (binding deprecated, see Section 15.2) }

{bool Request::Get_status() const (binding deprecated, see Section 15.2) }

{bool Request::Get_status(Status& status) const (binding deprecated, see
Section 15.2) }

{int Status::Get_tag() const (binding deprecated, see Section 15.2) }

{Request Comm::Ibsend(const void* buf, int count, const
Datatype& datatype, int dest, int tag) const (binding deprecated,
see Section 15.2) }

{bool Comm::Iprobe(int source, int tag) const (binding deprecated, see
Section 15.2) }

{bool Comm::Iprobe(int source, int tag, Status& status) const (binding
deprecated, see Section 15.2) }

{Request Comm::Irecv(void* buf, int count, const Datatype& datatype,
int source, int tag) const (binding deprecated, see Section 15.2) }

{Request Comm::Irsend(const void* buf, int count, const
Datatype& datatype, int dest, int tag) const (binding deprecated,
see Section 15.2) }

{bool Status::Is_cancelled() const (binding deprecated, see Section 15.2) }

{Request Comm::Isend(const void* buf, int count, const
Datatype& datatype, int dest, int tag) const (binding deprecated,
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see Section 15.2) }

{Request Comm::Issend(const void* buf, int count, const
Datatype& datatype, int dest, int tag) const (binding deprecated,
see Section 15.2) }

{void Comm::Probe(int source, int tag) const (binding deprecated, see
Section 15.2) }

{void Comm::Probe(int source, int tag, Status& status) const (binding
deprecated, see Section 15.2) }

{void Comm::Recv(void* buf, int count, const Datatype& datatype,
int source, int tag) const (binding deprecated, see Section 15.2) }

{void Comm::Recv(void* buf, int count, const Datatype& datatype,
int source, int tag, Status& status) const (binding deprecated,
see Section 15.2) }

{Prequest Comm::Recv_init(void* buf, int count, const Datatype& datatype,
int source, int tag) const (binding deprecated, see Section 15.2) }

{void Comm::Rsend(const void* buf, int count, const Datatype& datatype,
int dest, int tag) const (binding deprecated, see Section 15.2) }

{Prequest Comm::Rsend_init(const void* buf, int count, const
Datatype& datatype, int dest, int tag) const (binding deprecated,
see Section 15.2) }

{void Comm::Send(const void* buf, int count, const Datatype& datatype,
int dest, int tag) const (binding deprecated, see Section 15.2) }

{Prequest Comm::Send_init(const void* buf, int count, const
Datatype& datatype, int dest, int tag) const (binding deprecated,
see Section 15.2) }

{void Comm::Sendrecv(const void *sendbuf, int sendcount, const
Datatype& sendtype, int dest, int sendtag, void *recvbuf,
int recvcount, const Datatype& recvtype, int source,
int recvtag) const (binding deprecated, see Section 15.2) }

{void Comm::Sendrecv(const void *sendbuf, int sendcount, const
Datatype& sendtype, int dest, int sendtag, void *recvbuf,
int recvcount, const Datatype& recvtype, int source,
int recvtag, Status& status) const (binding deprecated, see
Section 15.2) }

{void Comm::Sendrecv_replace(void* buf, int count, const
Datatype& datatype, int dest, int sendtag, int source,
int recvtag) const (binding deprecated, see Section 15.2) }

{void Comm::Sendrecv_replace(void* buf, int count, const
Datatype& datatype, int dest, int sendtag, int source,
int recvtag, Status& status) const (binding deprecated, see
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A.4. C++ BINDINGS (DEPRECATED) 573

Section 15.2) }

{void Status::Set_error(int error) (binding deprecated, see Section 15.2) }

{void Status::Set_source(int source) (binding deprecated, see Section 15.2) }

{void Status::Set_tag(int tag) (binding deprecated, see Section 15.2) }

{void Comm::Ssend(const void* buf, int count, const Datatype& datatype,
int dest, int tag) const (binding deprecated, see Section 15.2) }

{Prequest Comm::Ssend_init(const void* buf, int count, const
Datatype& datatype, int dest, int tag) const (binding deprecated,
see Section 15.2) }

{void Prequest::Start() (binding deprecated, see Section 15.2) }

{static void Prequest::Startall(int count, Prequest array_of_requests[])
(binding deprecated, see Section 15.2) }

{bool Request::Test() (binding deprecated, see Section 15.2) }

{bool Request::Test(Status& status) (binding deprecated, see Section 15.2) }

{static bool Request::Testall(int count, Request array_of_requests[])
(binding deprecated, see Section 15.2) }

{static bool Request::Testall(int count, Request array_of_requests[],
Status array_of_statuses[]) (binding deprecated, see Section 15.2) }

{static bool Request::Testany(int count, Request array_of_requests[],
int& index) (binding deprecated, see Section 15.2) }

{static bool Request::Testany(int count, Request array_of_requests[],
int& index, Status& status) (binding deprecated, see Section 15.2) }

{static int Request::Testsome(int incount, Request array_of_requests[],
int array_of_indices[]) (binding deprecated, see Section 15.2) }

{static int Request::Testsome(int incount, Request array_of_requests[],
int array_of_indices[], Status array_of_statuses[]) (binding
deprecated, see Section 15.2) }

{void Request::Wait() (binding deprecated, see Section 15.2) }

{void Request::Wait(Status& status) (binding deprecated, see Section 15.2) }

{static void Request::Waitall(int count, Request array_of_requests[])
(binding deprecated, see Section 15.2) }

{static void Request::Waitall(int count, Request array_of_requests[],
Status array_of_statuses[]) (binding deprecated, see Section 15.2) }

{static int Request::Waitany(int count, Request array_of_requests[])
(binding deprecated, see Section 15.2) }
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574 ANNEX A. LANGUAGE BINDINGS SUMMARY

{static int Request::Waitany(int count, Request array_of_requests[],
Status& status) (binding deprecated, see Section 15.2) }

{static int Request::Waitsome(int incount, Request array_of_requests[],
int array_of_indices[]) (binding deprecated, see Section 15.2) }

{static int Request::Waitsome(int incount, Request array_of_requests[],
int array_of_indices[], Status array_of_statuses[]) (binding
deprecated, see Section 15.2) }

};

A.4.2 Datatypes C++ Bindings

namespace MPI {

{void Datatype::Commit() (binding deprecated, see Section 15.2) }

{Datatype Datatype::Create_contiguous(int count) const (binding deprecated,
see Section 15.2) }

{Datatype Datatype::Create_darray(int size, int rank, int ndims,
const int array_of_gsizes[], const int array_of_distribs[],
const int array_of_dargs[], const int array_of_psizes[],
int order) const (binding deprecated, see Section 15.2) }

{Datatype Datatype::Create_hindexed(int count,
const int array_of_blocklengths[],
const Aint array_of_displacements[]) const (binding deprecated,
see Section 15.2) }

{Datatype Datatype::Create_hvector(int count, int blocklength, Aint
stride) const (binding deprecated, see Section 15.2) }

{Datatype Datatype::Create_indexed(int count,
const int array_of_blocklengths[],
const int array_of_displacements[]) const (binding deprecated, see
Section 15.2) }

{Datatype Datatype::Create_indexed_block(int count, int blocklength,
const int array_of_displacements[]) const (binding deprecated, see
Section 15.2) }

{Datatype Datatype::Create_resized(const Aint lb, const Aint extent)
const (binding deprecated, see Section 15.2) }

{static Datatype Datatype::Create_struct(int count,
const int array_of_blocklengths[], const Aint
array_of_displacements[], const Datatype array_of_types[])
(binding deprecated, see Section 15.2) }

{Datatype Datatype::Create_subarray(int ndims,
const int array_of_sizes[], const int array_of_subsizes[],
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const int array_of_starts[], int order) const (binding
deprecated, see Section 15.2) }

{Datatype Datatype::Create_vector(int count, int blocklength, int stride)
const (binding deprecated, see Section 15.2) }

{Datatype Datatype::Dup() const (binding deprecated, see Section 15.2) }

{void Datatype::Free() (binding deprecated, see Section 15.2) }

{Aint Get_address(void* location) (binding deprecated, see Section 15.2) }

{void Datatype::Get_contents(int max_integers, int max_addresses,
int max_datatypes, int array_of_integers[],
Aint array_of_addresses[], Datatype array_of_datatypes[])
const (binding deprecated, see Section 15.2) }

{int Status::Get_elements(const Datatype& datatype) const (binding
deprecated, see Section 15.2) }

{void Datatype::Get_envelope(int& num_integers, int& num_addresses,
int& num_datatypes, int& combiner) const (binding deprecated, see
Section 15.2) }

{void Datatype::Get_extent(Aint& lb, Aint& extent) const (binding deprecated,
see Section 15.2) }

{int Datatype::Get_size() const (binding deprecated, see Section 15.2) }

{void Datatype::Get_true_extent(Aint& true_lb, Aint& true_extent) const
(binding deprecated, see Section 15.2) }

{void Datatype::Pack(const void* inbuf, int incount, void *outbuf,
int outsize, int& position, const Comm &comm) const (binding
deprecated, see Section 15.2) }

{void Datatype::Pack_external(const char* datarep, const void* inbuf,
int incount, void* outbuf, Aint outsize, Aint& position) const
(binding deprecated, see Section 15.2) }

{Aint Datatype::Pack_external_size(const char* datarep, int incount)
const (binding deprecated, see Section 15.2) }

{int Datatype::Pack_size(int incount, const Comm& comm) const (binding
deprecated, see Section 15.2) }

{void Datatype::Unpack(const void* inbuf, int insize, void *outbuf,
int outcount, int& position, const Comm& comm) const (binding
deprecated, see Section 15.2) }

{void Datatype::Unpack_external(const char* datarep, const void* inbuf,
Aint insize, Aint& position, void* outbuf, int outcount) const
(binding deprecated, see Section 15.2) }

};
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A.4.3 Collective Communication C++ Bindings

namespace MPI {

{void Comm::Allgather(const void* sendbuf, int sendcount, const
Datatype& sendtype, void* recvbuf, int recvcount,
const Datatype& recvtype) const = 0 (binding deprecated, see
Section 15.2) }

{void Comm::Allgatherv(const void* sendbuf, int sendcount, const
Datatype& sendtype, void* recvbuf, const int recvcounts[],
const int displs[], const Datatype& recvtype) const = 0
(binding deprecated, see Section 15.2) }

{void Comm::Allreduce(const void* sendbuf, void* recvbuf, int count,
const Datatype& datatype, const Op& op) const = 0 (binding
deprecated, see Section 15.2) }

{void Comm::Alltoall(const void* sendbuf, int sendcount, const
Datatype& sendtype, void* recvbuf, int recvcount,
const Datatype& recvtype) const = 0 (binding deprecated, see
Section 15.2) }

{void Comm::Alltoallv(const void* sendbuf, const int sendcounts[],
const int sdispls[], const Datatype& sendtype, void* recvbuf,
const int recvcounts[], const int rdispls[],
const Datatype& recvtype) const = 0 (binding deprecated, see
Section 15.2) }

{void Comm::Alltoallw(const void* sendbuf, const int sendcounts[], const
int sdispls[], const Datatype sendtypes[], void* recvbuf,
const int recvcounts[], const int rdispls[], const Datatype
recvtypes[]) const = 0 (binding deprecated, see Section 15.2) }

{void Comm::Barrier() const = 0 (binding deprecated, see Section 15.2) }

{void Comm::Bcast(void* buffer, int count, const Datatype& datatype,
int root) const = 0 (binding deprecated, see Section 15.2) }

{void Intracomm::Exscan(const void* sendbuf, void* recvbuf, int count,
const Datatype& datatype, const Op& op) const (binding
deprecated, see Section 15.2) }

{void Op::Free() (binding deprecated, see Section 15.2) }

{void Comm::Gather(const void* sendbuf, int sendcount, const
Datatype& sendtype, void* recvbuf, int recvcount,
const Datatype& recvtype, int root) const = 0 (binding
deprecated, see Section 15.2) }

{void Comm::Gatherv(const void* sendbuf, int sendcount, const
Datatype& sendtype, void* recvbuf, const int recvcounts[],
const int displs[], const Datatype& recvtype, int root)
const = 0 (binding deprecated, see Section 15.2) }
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A.4. C++ BINDINGS (DEPRECATED) 577

{void Op::Init(User_function* function, bool commute) (binding deprecated,
see Section 15.2) }

{bool Op::Is_commutative() const (binding deprecated, see Section 15.2) }

{void Comm::Reduce(const void* sendbuf, void* recvbuf, int count,
const Datatype& datatype, const Op& op, int root) const = 0
(binding deprecated, see Section 15.2) }

{void Op::Reduce_local(const void* inbuf, void* inoutbuf, int count,
const Datatype& datatype) const (binding deprecated, see
Section 15.2) }

{void Comm::Reduce_scatter(const void* sendbuf, void* recvbuf,
int recvcounts[], const Datatype& datatype, const Op& op)
const = 0 (binding deprecated, see Section 15.2) }

{void Comm::Reduce_scatter_block(const void* sendbuf, void* recvbuf,
int recvcount, const Datatype& datatype, const Op& op)
const = 0 (binding deprecated, see Section 15.2) }

{void Intracomm::Scan(const void* sendbuf, void* recvbuf, int count,
const Datatype& datatype, const Op& op) const (binding
deprecated, see Section 15.2) }

{void Comm::Scatter(const void* sendbuf, int sendcount, const
Datatype& sendtype, void* recvbuf, int recvcount,
const Datatype& recvtype, int root) const = 0 (binding
deprecated, see Section 15.2) }

{void Comm::Scatterv(const void* sendbuf, const int sendcounts[],
const int displs[], const Datatype& sendtype, void* recvbuf,
int recvcount, const Datatype& recvtype, int root) const = 0
(binding deprecated, see Section 15.2) }

};

A.4.4 Groups, Contexts, Communicators, and Caching C++ Bindings

namespace MPI {

{Comm& Comm::Clone() const = 0 (binding deprecated, see Section 15.2) }

{Cartcomm& Cartcomm::Clone() const (binding deprecated, see Section 15.2) }

{Distgraphcomm& Distgraphcomm::Clone() const (binding deprecated, see
Section 15.2) }

{Graphcomm& Graphcomm::Clone() const (binding deprecated, see Section 15.2) }

{Intercomm& Intercomm::Clone() const (binding deprecated, see Section 15.2) }

{Intracomm& Intracomm::Clone() const (binding deprecated, see Section 15.2) }
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578 ANNEX A. LANGUAGE BINDINGS SUMMARY

{static int Comm::Compare(const Comm& comm1, const Comm& comm2) (binding
deprecated, see Section 15.2) }

{static int Group::Compare(const Group& group1, const Group& group2)
(binding deprecated, see Section 15.2) }

{Intracomm Intracomm::Create(const Group& group) const (binding deprecated,
see Section 15.2) }

{Intercomm Intercomm::Create(const Group& group) const (binding deprecated,
see Section 15.2) }

{Intercomm Intracomm::Create_intercomm(int local_leader, const
Comm& peer_comm, int remote_leader, int tag) const (binding
deprecated, see Section 15.2) }

{static int Comm::Create_keyval(Comm::Copy_attr_function*
comm_copy_attr_fn,
Comm::Delete_attr_function* comm_delete_attr_fn,
void* extra_state) (binding deprecated, see Section 15.2) }

{static int Datatype::Create_keyval(Datatype::Copy_attr_function*
type_copy_attr_fn, Datatype::Delete_attr_function*
type_delete_attr_fn, void* extra_state) (binding deprecated, see
Section 15.2) }

{static int Win::Create_keyval(Win::Copy_attr_function* win_copy_attr_fn,
Win::Delete_attr_function* win_delete_attr_fn,
void* extra_state) (binding deprecated, see Section 15.2) }

{void Comm::Delete_attr(int comm_keyval) (binding deprecated, see Section 15.2) }

{void Datatype::Delete_attr(int type_keyval) (binding deprecated, see
Section 15.2) }

{void Win::Delete_attr(int win_keyval) (binding deprecated, see Section 15.2) }

{static Group Group::Difference(const Group& group1, const Group& group2)
(binding deprecated, see Section 15.2) }

{Cartcomm Cartcomm::Dup() const (binding deprecated, see Section 15.2) }

{Distgraphcomm Distgraphcomm::Dup() const (binding deprecated, see Section 15.2)
}

{Graphcomm Graphcomm::Dup() const (binding deprecated, see Section 15.2) }

{Intercomm Intercomm::Dup() const (binding deprecated, see Section 15.2) }

{Intracomm Intracomm::Dup() const (binding deprecated, see Section 15.2) }

{Group Group::Excl(int n, const int ranks[]) const (binding deprecated, see
Section 15.2) }

{void Comm::Free() (binding deprecated, see Section 15.2) }
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{void Group::Free() (binding deprecated, see Section 15.2) }

{static void Comm::Free_keyval(int& comm_keyval) (binding deprecated, see
Section 15.2) }

{static void Datatype::Free_keyval(int& type_keyval) (binding deprecated, see
Section 15.2) }

{static void Win::Free_keyval(int& win_keyval) (binding deprecated, see
Section 15.2) }

{bool Comm::Get_attr(int comm_keyval, void* attribute_val) const (binding
deprecated, see Section 15.2) }

{bool Datatype::Get_attr(int type_keyval, void* attribute_val) const
(binding deprecated, see Section 15.2) }

{bool Win::Get_attr(int win_keyval, void* attribute_val) const (binding
deprecated, see Section 15.2) }

{Group Comm::Get_group() const (binding deprecated, see Section 15.2) }

{void Comm::Get_name(char* comm_name, int& resultlen) const (binding
deprecated, see Section 15.2) }

{void Datatype::Get_name(char* type_name, int& resultlen) const (binding
deprecated, see Section 15.2) }

{void Win::Get_name(char* win_name, int& resultlen) const (binding
deprecated, see Section 15.2) }

{int Comm::Get_rank() const (binding deprecated, see Section 15.2) }

{int Group::Get_rank() const (binding deprecated, see Section 15.2) }

{Group Intercomm::Get_remote_group() const (binding deprecated, see
Section 15.2) }

{int Intercomm::Get_remote_size() const (binding deprecated, see Section 15.2) }

{int Comm::Get_size() const (binding deprecated, see Section 15.2) }

{int Group::Get_size() const (binding deprecated, see Section 15.2) }

{Group Group::Incl(int n, const int ranks[]) const (binding deprecated, see
Section 15.2) }

{static Group Group::Intersect(const Group& group1, const Group& group2)
(binding deprecated, see Section 15.2) }

{bool Comm::Is_inter() const (binding deprecated, see Section 15.2) }

{Intracomm Intercomm::Merge(bool high) const (binding deprecated, see
Section 15.2) }

{Group Group::Range_excl(int n, const int ranges[][3]) const (binding
deprecated, see Section 15.2) }
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{Group Group::Range_incl(int n, const int ranges[][3]) const (binding
deprecated, see Section 15.2) }

{void Comm::Set_attr(int comm_keyval, const void* attribute_val) const
(binding deprecated, see Section 15.2) }

{void Datatype::Set_attr(int type_keyval, const void* attribute_val)
(binding deprecated, see Section 15.2) }

{void Win::Set_attr(int win_keyval, const void* attribute_val) (binding
deprecated, see Section 15.2) }

{void Comm::Set_name(const char* comm_name) (binding deprecated, see
Section 15.2) }

{void Datatype::Set_name(const char* type_name) (binding deprecated, see
Section 15.2) }

{void Win::Set_name(const char* win_name) (binding deprecated, see Section 15.2)
}

{Intercomm Intercomm::Split(int color, int key) const (binding deprecated,
see Section 15.2) }

{Intracomm Intracomm::Split(int color, int key) const (binding deprecated,
see Section 15.2) }

{static void Group::Translate_ranks (const Group& group1, int n,
const int ranks1[], const Group& group2, int ranks2[]) (binding
deprecated, see Section 15.2) }

{static Group Group::Union(const Group& group1, const Group& group2)
(binding deprecated, see Section 15.2) }

};

A.4.5 Process Topologies C++ Bindings

namespace MPI {

{void Compute_dims(int nnodes, int ndims, int dims[]) (binding deprecated,
see Section 15.2) }

{Cartcomm Intracomm::Create_cart(int ndims, const int dims[],
const bool periods[], bool reorder) const (binding deprecated, see
Section 15.2) }

{Graphcomm Intracomm::Create_graph(int nnodes, const int index[],
const int edges[], bool reorder) const (binding deprecated, see
Section 15.2) }

{Distgraphcomm Intracomm::Dist_graph_create(int n, const int sources[],
const int degrees[], const int destinations[],
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const int weights[], const Info& info, bool reorder) const
(binding deprecated, see Section 15.2) }

{Distgraphcomm Intracomm::Dist_graph_create(int n, const int sources[],
const int degrees[], const int destinations[],
const Info& info, bool reorder) const (binding deprecated, see
Section 15.2) }

{Distgraphcomm Intracomm::Dist_graph_create_adjacent(int indegree,
const int sources[], const int sourceweights[], int outdegree,
const int destinations[], const int destweights[],
const Info& info, bool reorder) const (binding deprecated, see
Section 15.2) }

{Distgraphcomm Intracomm::Dist_graph_create_adjacent(int indegree,
const int sources[], int outdegree, const int destinations[],
const Info& info, bool reorder) const (binding deprecated, see
Section 15.2) }

{int Cartcomm::Get_cart_rank(const int coords[]) const (binding deprecated,
see Section 15.2) }

{void Cartcomm::Get_coords(int rank, int maxdims, int coords[]) const
(binding deprecated, see Section 15.2) }

{int Cartcomm::Get_dim() const (binding deprecated, see Section 15.2) }

{void Graphcomm::Get_dims(int nnodes[], int nedges[]) const (binding
deprecated, see Section 15.2) }

{void Distgraphcomm::Get_dist_neighbors(int maxindegree, int sources[],
int sourceweights[], int maxoutdegree, int destinations[],
int destweights[]) (binding deprecated, see Section 15.2) }

{void Distgraphcomm::Get_dist_neighbors_count(int rank, int indegree[],
int outdegree[], bool& weighted) const (binding deprecated, see
Section 15.2) }

{void Graphcomm::Get_neighbors(int rank, int maxneighbors, int
neighbors[]) const (binding deprecated, see Section 15.2) }

{int Graphcomm::Get_neighbors_count(int rank) const (binding deprecated, see
Section 15.2) }

{void Cartcomm::Get_topo(int maxdims, int dims[], bool periods[],
int coords[]) const (binding deprecated, see Section 15.2) }

{void Graphcomm::Get_topo(int maxindex, int maxedges, int index[],
int edges[]) const (binding deprecated, see Section 15.2) }

{int Comm::Get_topology() const (binding deprecated, see Section 15.2) }

{int Cartcomm::Map(int ndims, const int dims[], const bool periods[])
const (binding deprecated, see Section 15.2) }
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{int Graphcomm::Map(int nnodes, const int index[], const int edges[])
const (binding deprecated, see Section 15.2) }

{void Cartcomm::Shift(int direction, int disp, int& rank_source,
int& rank_dest) const (binding deprecated, see Section 15.2) }

{Cartcomm Cartcomm::Sub(const bool remain_dims[]) const (binding deprecated,
see Section 15.2) }

};

A.4.6 MPI Environmenta Management C++ Bindings

namespace MPI {

{void Comm::Abort(int errorcode) (binding deprecated, see Section 15.2) }

{int Add_error_class() (binding deprecated, see Section 15.2) }

{int Add_error_code(int errorclass) (binding deprecated, see Section 15.2) }

{void Add_error_string(int errorcode, const char* string) (binding
deprecated, see Section 15.2) }

{void* Alloc_mem(Aint size, const Info& info) (binding deprecated, see
Section 15.2) }

{void Comm::Call_errhandler(int errorcode) const (binding deprecated, see
Section 15.2) }

{void File::Call_errhandler(int errorcode) const (binding deprecated, see
Section 15.2) }

{void Win::Call_errhandler(int errorcode) const (binding deprecated, see
Section 15.2) }

{static Errhandler Comm::Create_errhandler(Comm::Errhandler_function*
function) (binding deprecated, see Section 15.2) }

{static Errhandler File::Create_errhandler(File::Errhandler_function*
function) (binding deprecated, see Section 15.2) }

{static Errhandler Win::Create_errhandler(Win::Errhandler_function*
function) (binding deprecated, see Section 15.2) }

{void Finalize() (binding deprecated, see Section 15.2) }

{void Errhandler::Free() (binding deprecated, see Section 15.2) }

{void Free_mem(void *base) (binding deprecated, see Section 15.2) }

{Errhandler Comm::Get_errhandler() const (binding deprecated, see Section 15.2) }

{Errhandler File::Get_errhandler() const (binding deprecated, see Section 15.2) }

{Errhandler Win::Get_errhandler() const (binding deprecated, see Section 15.2) }
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{int Get_error_class(int errorcode) (binding deprecated, see Section 15.2) }

{void Get_error_string(int errorcode, char* name, int& resultlen) (binding
deprecated, see Section 15.2) }

{void Get_processor_name(char* name, int& resultlen) (binding deprecated, see
Section 15.2) }

{void Get_version(int& version, int& subversion) (binding deprecated, see
Section 15.2) }

{void Init() (binding deprecated, see Section 15.2) }

{void Init(int& argc, char**& argv) (binding deprecated, see Section 15.2) }

{bool Is_finalized() (binding deprecated, see Section 15.2) }

{bool Is_initialized() (binding deprecated, see Section 15.2) }

{void Comm::Set_errhandler(const Errhandler& errhandler) (binding deprecated,
see Section 15.2) }

{void File::Set_errhandler(const Errhandler& errhandler) (binding deprecated,
see Section 15.2) }

{void Win::Set_errhandler(const Errhandler& errhandler) (binding deprecated,
see Section 15.2) }

{double Wtick() (binding deprecated, see Section 15.2) }

{double Wtime() (binding deprecated, see Section 15.2) }

};

A.4.7 The Info Object C++ Bindings

namespace MPI {

{static Info Info::Create() (binding deprecated, see Section 15.2) }

{void Info::Delete(const char* key) (binding deprecated, see Section 15.2) }

{Info Info::Dup() const (binding deprecated, see Section 15.2) }

{void Info::Free() (binding deprecated, see Section 15.2) }

{bool Info::Get(const char* key, int valuelen, char* value) const (binding
deprecated, see Section 15.2) }

{int Info::Get_nkeys() const (binding deprecated, see Section 15.2) }

{void Info::Get_nthkey(int n, char* key) const (binding deprecated, see
Section 15.2) }

{bool Info::Get_valuelen(const char* key, int& valuelen) const (binding
deprecated, see Section 15.2) }
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{void Info::Set(const char* key, const char* value) (binding deprecated, see
Section 15.2) }

};

A.4.8 Process Creation and Management C++ Bindings

namespace MPI {

{Intercomm Intracomm::Accept(const char* port_name, const Info& info,
int root) const (binding deprecated, see Section 15.2) }

{void Close_port(const char* port_name) (binding deprecated, see Section 15.2) }

{Intercomm Intracomm::Connect(const char* port_name, const Info& info,
int root) const (binding deprecated, see Section 15.2) }

{void Comm::Disconnect() (binding deprecated, see Section 15.2) }

{static Intercomm Comm::Get_parent() (binding deprecated, see Section 15.2) }

{static Intercomm Comm::Join(const int fd) (binding deprecated, see
Section 15.2) }

{void Lookup_name(const char* service_name, const Info& info,
char* port_name) (binding deprecated, see Section 15.2) }

{void Open_port(const Info& info, char* port_name) (binding deprecated, see
Section 15.2) }

{void Publish_name(const char* service_name, const Info& info,
const char* port_name) (binding deprecated, see Section 15.2) }

{Intercomm Intracomm::Spawn(const char* command, const char* argv[],
int maxprocs, const Info& info, int root) const (binding
deprecated, see Section 15.2) }

{Intercomm Intracomm::Spawn(const char* command, const char* argv[],
int maxprocs, const Info& info, int root,
int array_of_errcodes[]) const (binding deprecated, see
Section 15.2) }

{Intercomm Intracomm::Spawn_multiple(int count,
const char* array_of_commands[], const char** array_of_argv[],
const int array_of_maxprocs[], const Info array_of_info[],
int root) (binding deprecated, see Section 15.2) }

{Intercomm Intracomm::Spawn_multiple(int count,
const char* array_of_commands[], const char** array_of_argv[],
const int array_of_maxprocs[], const Info array_of_info[],
int root, int array_of_errcodes[]) (binding deprecated, see
Section 15.2) }
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{void Unpublish_name(const char* service_name, const Info& info,
const char* port_name) (binding deprecated, see Section 15.2) }

};

A.4.9 One-Sided Communications C++ Bindings

namespace MPI {

{void Win::Accumulate(const void* origin_addr, int origin_count, const
Datatype& origin_datatype, int target_rank, Aint target_disp,
int target_count, const Datatype& target_datatype, const Op&
op) const (binding deprecated, see Section 15.2) }

{void Win::Complete() const (binding deprecated, see Section 15.2) }

{static Win Win::Create(const void* base, Aint size, int disp_unit, const
Info& info, const Intracomm& comm) (binding deprecated, see
Section 15.2) }

{void Win::Fence(int assert) const (binding deprecated, see Section 15.2) }

{void Win::Free() (binding deprecated, see Section 15.2) }

{void Win::Get(void *origin_addr, int origin_count, const Datatype&
origin_datatype, int target_rank, Aint target_disp, int
target_count, const Datatype& target_datatype) const (binding
deprecated, see Section 15.2) }

{Group Win::Get_group() const (binding deprecated, see Section 15.2) }

{void Win::Lock(int lock_type, int rank, int assert) const (binding
deprecated, see Section 15.2) }

{void Win::Post(const Group& group, int assert) const (binding deprecated,
see Section 15.2) }

{void Win::Put(const void* origin_addr, int origin_count, const Datatype&
origin_datatype, int target_rank, Aint target_disp, int
target_count, const Datatype& target_datatype) const (binding
deprecated, see Section 15.2) }

{void Win::Start(const Group& group, int assert) const (binding deprecated,
see Section 15.2) }

{bool Win::Test() const (binding deprecated, see Section 15.2) }

{void Win::Unlock(int rank) const (binding deprecated, see Section 15.2) }

{void Win::Wait() const (binding deprecated, see Section 15.2) }

};
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A.4.10 External Interfaces C++ Bindings

namespace MPI {

{void Grequest::Complete() (binding deprecated, see Section 15.2) }

{int Init_thread(int required) (binding deprecated, see Section 15.2) }

{int Init_thread(int& argc, char**& argv, int required) (binding deprecated,
see Section 15.2) }

{bool Is_thread_main() (binding deprecated, see Section 15.2) }

{int Query_thread() (binding deprecated, see Section 15.2) }

{void Status::Set_cancelled(bool flag) (binding deprecated, see Section 15.2) }

{void Status::Set_elements(const Datatype& datatype, int count) (binding
deprecated, see Section 15.2) }

{static Grequest Grequest::Start(const Grequest::Query_function*
query_fn, const Grequest::Free_function* free_fn,
const Grequest::Cancel_function* cancel_fn, void *extra_state)
(binding deprecated, see Section 15.2) }

};

A.4.11 I/O C++ Bindings

namespace MPI {

{void File::Close() (binding deprecated, see Section 15.2) }

{static void File::Delete(const char* filename, const Info& info) (binding
deprecated, see Section 15.2) }

{int File::Get_amode() const (binding deprecated, see Section 15.2) }

{bool File::Get_atomicity() const (binding deprecated, see Section 15.2) }

{Offset File::Get_byte_offset(const Offset disp) const (binding deprecated,
see Section 15.2) }

{Group File::Get_group() const (binding deprecated, see Section 15.2) }

{Info File::Get_info() const (binding deprecated, see Section 15.2) }

{Offset File::Get_position() const (binding deprecated, see Section 15.2) }

{Offset File::Get_position_shared() const (binding deprecated, see Section 15.2)
}

{Offset File::Get_size() const (binding deprecated, see Section 15.2) }

{Aint File::Get_type_extent(const Datatype& datatype) const (binding
deprecated, see Section 15.2) }
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{void File::Get_view(Offset& disp, Datatype& etype, Datatype& filetype,
char* datarep) const (binding deprecated, see Section 15.2) }

{Request File::Iread(void* buf, int count, const Datatype& datatype)
(binding deprecated, see Section 15.2) }

{Request File::Iread_at(Offset offset, void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{Request File::Iread_shared(void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{Request File::Iwrite(const void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{Request File::Iwrite_at(Offset offset, const void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{Request File::Iwrite_shared(const void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{static File File::Open(const Intracomm& comm, const char* filename,
int amode, const Info& info) (binding deprecated, see Section 15.2) }

{void File::Preallocate(Offset size) (binding deprecated, see Section 15.2) }

{void File::Read(void* buf, int count, const Datatype& datatype) (binding
deprecated, see Section 15.2) }

{void File::Read(void* buf, int count, const Datatype& datatype, Status&
status) (binding deprecated, see Section 15.2) }

{void File::Read_all(void* buf, int count, const Datatype& datatype)
(binding deprecated, see Section 15.2) }

{void File::Read_all(void* buf, int count, const Datatype& datatype,
Status& status) (binding deprecated, see Section 15.2) }

{void File::Read_all_begin(void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{void File::Read_all_end(void* buf) (binding deprecated, see Section 15.2) }

{void File::Read_all_end(void* buf, Status& status) (binding deprecated, see
Section 15.2) }

{void File::Read_at(Offset offset, void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{void File::Read_at(Offset offset, void* buf, int count,
const Datatype& datatype, Status& status) (binding deprecated, see
Section 15.2) }

{void File::Read_at_all(Offset offset, void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }
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{void File::Read_at_all(Offset offset, void* buf, int count,
const Datatype& datatype, Status& status) (binding deprecated, see
Section 15.2) }

{void File::Read_at_all_begin(Offset offset, void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{void File::Read_at_all_end(void* buf) (binding deprecated, see Section 15.2) }

{void File::Read_at_all_end(void* buf, Status& status) (binding deprecated,
see Section 15.2) }

{void File::Read_ordered(void* buf, int count, const Datatype& datatype)
(binding deprecated, see Section 15.2) }

{void File::Read_ordered(void* buf, int count, const Datatype& datatype,
Status& status) (binding deprecated, see Section 15.2) }

{void File::Read_ordered_begin(void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{void File::Read_ordered_end(void* buf) (binding deprecated, see Section 15.2) }

{void File::Read_ordered_end(void* buf, Status& status) (binding deprecated,
see Section 15.2) }

{void File::Read_shared(void* buf, int count, const Datatype& datatype)
(binding deprecated, see Section 15.2) }

{void File::Read_shared(void* buf, int count, const Datatype& datatype,
Status& status) (binding deprecated, see Section 15.2) }

{void Register_datarep(const char* datarep,
Datarep_conversion_function* read_conversion_fn,
Datarep_conversion_function* write_conversion_fn,
Datarep_extent_function* dtype_file_extent_fn,
void* extra_state) (binding deprecated, see Section 15.2) }

{void File::Seek(Offset offset, int whence) (binding deprecated, see
Section 15.2) }

{void File::Seek_shared(Offset offset, int whence) (binding deprecated, see
Section 15.2) }

{void File::Set_atomicity(bool flag) (binding deprecated, see Section 15.2) }

{void File::Set_info(const Info& info) (binding deprecated, see Section 15.2) }

{void File::Set_size(Offset size) (binding deprecated, see Section 15.2) }

{void File::Set_view(Offset disp, const Datatype& etype,
const Datatype& filetype, const char* datarep,
const Info& info) (binding deprecated, see Section 15.2) }

{void File::Sync() (binding deprecated, see Section 15.2) }
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{void File::Write(const void* buf, int count, const Datatype& datatype)
(binding deprecated, see Section 15.2) }

{void File::Write(const void* buf, int count, const Datatype& datatype,
Status& status) (binding deprecated, see Section 15.2) }

{void File::Write_all(const void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{void File::Write_all(const void* buf, int count,
const Datatype& datatype, Status& status) (binding deprecated, see
Section 15.2) }

{void File::Write_all_begin(const void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{void File::Write_all_end(const void* buf) (binding deprecated, see
Section 15.2) }

{void File::Write_all_end(const void* buf, Status& status) (binding
deprecated, see Section 15.2) }

{void File::Write_at(Offset offset, const void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{void File::Write_at(Offset offset, const void* buf, int count,
const Datatype& datatype, Status& status) (binding deprecated, see
Section 15.2) }

{void File::Write_at_all(Offset offset, const void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{void File::Write_at_all(Offset offset, const void* buf, int count,
const Datatype& datatype, Status& status) (binding deprecated, see
Section 15.2) }

{void File::Write_at_all_begin(Offset offset, const void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{void File::Write_at_all_end(const void* buf) (binding deprecated, see
Section 15.2) }

{void File::Write_at_all_end(const void* buf, Status& status) (binding
deprecated, see Section 15.2) }

{void File::Write_ordered(const void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{void File::Write_ordered(const void* buf, int count,
const Datatype& datatype, Status& status) (binding deprecated, see
Section 15.2) }

{void File::Write_ordered_begin(const void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }
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{void File::Write_ordered_end(const void* buf) (binding deprecated, see
Section 15.2) }

{void File::Write_ordered_end(const void* buf, Status& status) (binding
deprecated, see Section 15.2) }

{void File::Write_shared(const void* buf, int count,
const Datatype& datatype) (binding deprecated, see Section 15.2) }

{void File::Write_shared(const void* buf, int count,
const Datatype& datatype, Status& status) (binding deprecated, see
Section 15.2) }

};

A.4.12 Language Bindings C++ Bindings

namespace MPI {

{static Datatype Datatype::Create_f90_complex(int p, int r) (binding
deprecated, see Section 15.2) }

{static Datatype Datatype::Create_f90_integer(int r) (binding deprecated, see
Section 15.2) }

{static Datatype Datatype::Create_f90_real(int p, int r) (binding deprecated,
see Section 15.2) }

Exception::Exception(int error_code)

{int Exception::Get_error_class() const (binding deprecated, see Section 15.2) }

{int Exception::Get_error_code() const (binding deprecated, see Section 15.2) }

{const char* Exception::Get_error_string() const (binding deprecated, see
Section 15.2) }

{static Datatype Datatype::Match_size(int typeclass, int size) (binding
deprecated, see Section 15.2) }

};

A.4.13 Profiling Interface C++ Bindings

namespace MPI {

{void Pcontrol(const int level, ...) (binding deprecated, see Section 15.2) }

};
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A.4.14 C++ Bindings on all MPI Classes

The C++ language requires all classes to have four special functions: a default constructor,
a copy constructor, a destructor, and an assignment operator. The bindings for these func-
tions are listed below; their semantics are discussed in Section 16.1.5. The two constructors
are not virtual. The bindings prototype functions are using the type 〈CLASS〉 rather than
listing each function for every MPI class. The token 〈CLASS〉 can be replaced with valid MPI-
2 class names, such as Group, Datatype, etc., except when noted. In addition, bindings are
provided for comparison and inter-language operability from Sections 16.1.5 and 16.1.9.

A.4.15 Construction / Destruction

namespace MPI {

〈CLASS〉::〈CLASS〉()

〈CLASS〉::∼〈CLASS〉()

};

A.4.16 Copy / Assignment

namespace MPI {

〈CLASS〉::〈CLASS〉(const 〈CLASS〉& data)

〈CLASS〉& 〈CLASS〉::operator=(const 〈CLASS〉& data)

};

A.4.17 Comparison

Since Status instances are not handles to underlying MPI objects, the operator==() and
operator!=() functions are not defined on the Status class.

namespace MPI {

bool 〈CLASS〉::operator==(const 〈CLASS〉& data) const

bool 〈CLASS〉::operator!=(const 〈CLASS〉& data) const

};

A.4.18 Inter-language Operability

Since there are no C++ MPI::STATUS_IGNORE and MPI::STATUSES_IGNORE objects, the
result of promoting the C or Fortran handles (MPI_STATUS_IGNORE and
MPI_STATUSES_IGNORE) to C++ is undefined.

namespace MPI {
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〈CLASS〉& 〈CLASS〉::operator=(const MPI_〈CLASS〉& data)

〈CLASS〉::〈CLASS〉(const MPI_〈CLASS〉& data)

〈CLASS〉::operator MPI_〈CLASS〉() const

};
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Annex B

Change-Log

This annex summarizes changes from the previous version of the MPI standard to the
version presented by this document. Only significant changes (i.e., clarifications and new
features) that might either require implementation effort in the MPI libraries or change
the understanding of MPI from a user’s perspective are presented. Editorial modifications,
formatting, typo corrections and minor clarifications are not shown.

B.1 Changes from Version 2.1 to Version 2.2

1. Section 2.5.4 on page 14.
It is now guaranteed that predefined named constant handles (as other constants)
can be used in initialization expressions or assignments, i.e., also before the call to
MPI_INIT.

2. Section 2.6 on page 16, Section 2.6.4 on page 18, and Section 16.1 on page 467.
The C++ language bindings have been deprecated and may be removed in a future
version of the MPI specification.

3. Section 3.2.2 on page 27.
MPI_CHAR for printable characters is now defined for C type char (instead of signed
char). This change should not have any impact on applications nor on MPI libraries
(except some comment lines), because printable characters could and can be stored in
any of the C types char, signed char, and unsigned char, and MPI_CHAR is not allowed
for predefined reduction operations.

4. Section 3.2.2 on page 27.
MPI_(U)INT{8,16,32,64}_T, MPI_AINT, MPI_OFFSET, MPI_C_BOOL,
MPI_C_COMPLEX, MPI_C_FLOAT_COMPLEX, MPI_C_DOUBLE_COMPLEX, and
MPI_C_LONG_DOUBLE_COMPLEX are now valid predefined MPI datatypes.

5. Section 3.4 on page 38, Section 3.7.2 on page 50, Section 3.9 on page 69, and Section 5.1
on page 131.
The read access restriction on the send buffer for blocking, non blocking and collective
API has been lifted. It is permitted to access for read the send buffer while the
operation is in progress.

6. Section 3.7 on page 48.
The Advice to users for IBSEND and IRSEND was slightly changed.
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7. Section 3.7.3 on page 53.
The advice to free an active request was removed in the Advice to users for
MPI_REQUEST_FREE.

8. Section 3.7.6 on page 64.
MPI_REQUEST_GET_STATUS changed to permit inactive or null requests as input.

9. Section 5.8 on page 157.
“In place” option is added to MPI_ALLTOALL, MPI_ALLTOALLV, and
MPI_ALLTOALLW for intracommunicators.

10. Section 5.9.2 on page 164.
Predefined parameterized datatypes (e.g., returned by MPI_TYPE_CREATE_F90_REAL)
and optional named predefined datatypes (e.g. MPI_REAL8) have been added to the
list of valid datatypes in reduction operations.

11. Section 5.9.2 on page 164.
MPI_(U)INT{8,16,32,64}_T are all considered C integer types for the purposes of the
predefined reduction operators. MPI_AINT and MPI_OFFSET are considered Fortran
integer types. MPI_C_BOOL is considered a Logical type.
MPI_C_COMPLEX, MPI_C_FLOAT_COMPLEX, MPI_C_DOUBLE_COMPLEX, and
MPI_C_LONG_DOUBLE_COMPLEX are considered Complex types.

12. Section 5.9.7 on page 176.
The local routines MPI_REDUCE_LOCAL and MPI_OP_COMMUTATIVE have been
added.

13. Section 5.10.1 on page 178.
The collective function MPI_REDUCE_SCATTER_BLOCK is added to the MPI stan-
dard.

14. Section 5.11.2 on page 181.
Added in place argument to MPI_EXSCAN.

15. Section 6.4.2 on page 200, and Section 6.6 on page 216.
Implementations that did not implement MPI_COMM_CREATE on intercommuni-
cators will need to add that functionality. As the standard described the behav-
ior of this operation on intercommunicators, it is believed that most implementa-
tions already provide this functionality. Note also that the C++ binding for both
MPI_COMM_CREATE and MPI_COMM_SPLIT explicitly allow Intercomms.

16. Section 6.4.2 on page 200.
MPI_COMM_CREATE is extended to allow several disjoint subgroups as input if comm
is an intracommunicator. If comm is an intercommunicator it was clarified that all
processes in the same local group of comm must specify the same value for group.

17. Section 7.5.4 on page 252.
New functions for a scalable distributed graph topology interface has been added.
In this section, the functions MPI_DIST_GRAPH_CREATE_ADJACENT and
MPI_DIST_GRAPH_CREATE, the constants MPI_UNWEIGHTED, and the derived C++
class Distgraphcomm were added.
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B.1. CHANGES FROM VERSION 2.1 TO VERSION 2.2 595

18. Section 7.5.5 on page 257.
For the scalable distributed graph topology interface, the functions
MPI_DIST_NEIGHBORS_COUNT and MPI_DIST_NEIGHBORS and the constant
MPI_DIST_GRAPH were added.

19. Section 7.5.5 on page 257.
Remove ambiguity regarding duplicated neighbors with MPI_GRAPH_NEIGHBORS
and MPI_GRAPH_NEIGHBORS_COUNT.

20. Section 8.1.1 on page 271.
The subversion number changed from 1 to 2.

21. Section 8.3 on page 276, Section 15.2 on page 465, and Annex A.1.3 on page 525.
Changed function pointer typedef names MPI_{Comm,File,Win}_errhandler_fn to
MPI_{Comm,File,Win}_errhandler_function. Deprecated old “_fn” names.

22. Section 8.7.1 on page 295.
Attribute deletion callbacks on MPI_COMM_SELF are now called in LIFO order. Imple-
mentors must now also register all implementation-internal attribute deletion callbacks
on MPI_COMM_SELF before returning from MPI_INIT/MPI_INIT_THREAD.

23. Section 11.3.4 on page 345.
The restriction added in MPI 2.1 that the operation MPI_REPLACE in
MPI_ACCUMULATE can be used only with predefined datatypes has been removed.
MPI_REPLACE can now be used even with derived datatypes, as it was in MPI 2.0.
Also, a clarification has been made that MPI_REPLACE can be used only in
MPI_ACCUMULATE, not in collective operations that do reductions, such as
MPI_REDUCE and others.

24. Section 12.2 on page 373.
Add “*” to the query_fn, free_fn, and cancel_fn arguments to the C++ binding for
MPI::Grequest::Start() for consistency with the rest of MPI functions that take function
pointer arguments.

25. Section 13.5.2 on page 431, and Table 13.2 on page 433.
MPI_(U)INT{8,16,32,64}_T, MPI_AINT, MPI_OFFSET, MPI_C_COMPLEX,
MPI_C_FLOAT_COMPLEX, MPI_C_DOUBLE_COMPLEX, MPI_C_LONG_DOUBLE_COMPLEX,
and MPI_C_BOOL are added as predefined datatypes in the external32 representation.

26. Section 16.3.7 on page 505.
The description was modified that it only describes how an MPI implementation be-
haves, but not how MPI stores attributes internally. The erroneous MPI-2.1 Example
16.17 was replaced with three new examples 16.17, 16.18, and 16.19 on pages 506-508
explicitly detailing cross-language attribute behavior. Implementations that matched
the behavior of the old example will need to be updated.

27. Annex A.1.1 on page 513.
Removed type MPI::Fint (compare MPI_Fint in Section A.1.2 on page 524).
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28. Annex A.1.1 on page 513. Table Named Predefined Datatypes.
Added MPI_(U)INT{8,16,32,64}_T, MPI_AINT, MPI_OFFSET, MPI_C_BOOL,
MPI_C_FLOAT_COMPLEX, MPI_C_COMPLEX, MPI_C_DOUBLE_COMPLEX, and
MPI_C_LONG_DOUBLE_COMPLEX are added as predefined datatypes.

B.2 Changes from Version 2.0 to Version 2.1

1. Section 3.2.2 on page 27, Section 16.1.6 on page 471, and Annex A.1 on page 513.
In addition, the MPI_LONG_LONG should be added as an optional type; it is a syn-
onym for MPI_LONG_LONG_INT.

2. Section 3.2.2 on page 27, Section 16.1.6 on page 471, and Annex A.1 on page 513.
MPI_LONG_LONG_INT, MPI_LONG_LONG (as synonym), MPI_UNSIGNED_LONG_LONG,
MPI_SIGNED_CHAR, and MPI_WCHAR are moved from optional to official and they
are therefore defined for all three language bindings.

3. Section 3.2.5 on page 31.
MPI_GET_COUNT with zero-length datatypes: The value returned as the count
argument of MPI_GET_COUNT for a datatype of length zero where zero bytes have
been transferred is zero. If the number of bytes transferred is greater than zero,
MPI_UNDEFINED is returned.

4. Section 4.1 on page 77.
General rule about derived datatypes: Most datatype constructors have replication
count or block length arguments. Allowed values are non-negative integers. If the
value is zero, no elements are generated in the type map and there is no effect on
datatype bounds or extent.

5. Section 4.3 on page 127.
MPI_BYTE should be used to send and receive data that is packed using
MPI_PACK_EXTERNAL.

6. Section 5.9.6 on page 175.
If comm is an intercommunicator in MPI_ALLREDUCE, then both groups should
provide count and datatype arguments that specify the same type signature (i.e., it is
not necessary that both groups provide the same count value).

7. Section 6.3.1 on page 192.
MPI_GROUP_TRANSLATE_RANKS and MPI_PROC_NULL: MPI_PROC_NULL is a valid
rank for input to MPI_GROUP_TRANSLATE_RANKS, which returns MPI_PROC_NULL

as the translated rank.

8. Section 6.7 on page 224.
About the attribute caching functions:

Advice to implementors. High-quality implementations should raise an er-
ror when a keyval that was created by a call to MPI_XXX_CREATE_KEYVAL
is used with an object of the wrong type with a call to
MPI_YYY_GET_ATTR, MPI_YYY_SET_ATTR, MPI_YYY_DELETE_ATTR, or
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MPI_YYY_FREE_KEYVAL. To do so, it is necessary to maintain, with each key-
val, information on the type of the associated user function. (End of advice to
implementors.)

9. Section 6.8 on page 238.
In MPI_COMM_GET_NAME: In C, a null character is additionally stored at
name[resultlen]. resultlen cannot be larger then MPI_MAX_OBJECT_NAME-1. In For-
tran, name is padded on the right with blank characters. resultlen cannot be larger
then MPI_MAX_OBJECT_NAME.

10. Section 7.4 on page 246.
About MPI_GRAPH_CREATE and MPI_CART_CREATE: All input arguments must
have identical values on all processes of the group of comm_old.

11. Section 7.5.1 on page 248.
In MPI_CART_CREATE: If ndims is zero then a zero-dimensional Cartesian topology
is created. The call is erroneous if it specifies a grid that is larger than the group size
or if ndims is negative.

12. Section 7.5.3 on page 250.
In MPI_GRAPH_CREATE: If the graph is empty, i.e., nnodes == 0, then
MPI_COMM_NULL is returned in all processes.

13. Section 7.5.3 on page 250.
In MPI_GRAPH_CREATE: A single process is allowed to be defined multiple times
in the list of neighbors of a process (i.e., there may be multiple edges between two
processes). A process is also allowed to be a neighbor to itself (i.e., a self loop in the
graph). The adjacency matrix is allowed to be non-symmetric.

Advice to users. Performance implications of using multiple edges or a non-
symmetric adjacency matrix are not defined. The definition of a node-neighbor
edge does not imply a direction of the communication. (End of advice to users.)

14. Section 7.5.5 on page 257.
In MPI_CARTDIM_GET and MPI_CART_GET: If comm is associated with a zero-
dimensional Cartesian topology, MPI_CARTDIM_GET returns ndims=0 and
MPI_CART_GET will keep all output arguments unchanged.

15. Section 7.5.5 on page 257.
In MPI_CART_RANK: If comm is associated with a zero-dimensional Cartesian topol-
ogy, coord is not significant and 0 is returned in rank.

16. Section 7.5.5 on page 257.
In MPI_CART_COORDS: If comm is associated with a zero-dimensional Cartesian
topology, coords will be unchanged.

17. Section 7.5.6 on page 265.
In MPI_CART_SHIFT: It is erroneous to call MPI_CART_SHIFT with a direction
that is either negative or greater than or equal to the number of dimensions in the
Cartesian communicator. This implies that it is erroneous to call MPI_CART_SHIFT
with a comm that is associated with a zero-dimensional Cartesian topology.
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598 ANNEX B. CHANGE-LOG

18. Section 7.5.7 on page 266.
In MPI_CART_SUB: If all entries in remain_dims are false or comm is already associ-
ated with a zero-dimensional Cartesian topology then newcomm is associated with a
zero-dimensional Cartesian topology.

18.1. Section 8.1.1 on page 271.
The subversion number changed from 0 to 1.

19. Section 8.1.2 on page 272.
In MPI_GET_PROCESSOR_NAME: In C, a null character is additionally stored at
name[resultlen]. resultlen cannot be larger then MPI_MAX_PROCESSOR_NAME-1. In
Fortran, name is padded on the right with blank characters. resultlen cannot be larger
then MPI_MAX_PROCESSOR_NAME.

20. Section 8.3 on page 276.
MPI_{COMM,WIN,FILE}_GET_ERRHANDLER behave as if a new error handler object
is created. That is, once the error handler is no longer needed,
MPI_ERRHANDLER_FREE should be called with the error handler returned from
MPI_ERRHANDLER_GET or MPI_{COMM,WIN,FILE}_GET_ERRHANDLER to mark
the error handler for deallocation. This provides behavior similar to that of
MPI_COMM_GROUP and MPI_GROUP_FREE.

21. Section 8.7 on page 290, see explanations to MPI_FINALIZE.
MPI_FINALIZE is collective over all connected processes. If no processes were spawned,
accepted or connected then this means over MPI_COMM_WORLD; otherwise it is col-
lective over the union of all processes that have been and continue to be connected,
as explained in Section 10.5.4 on page 330.

22. Section 8.7 on page 290.
About MPI_ABORT:

Advice to users. Whether the errorcode is returned from the executable or from
the MPI process startup mechanism (e.g., mpiexec), is an aspect of quality of the
MPI library but not mandatory. (End of advice to users.)

Advice to implementors. Where possible, a high-quality implementation will try
to return the errorcode from the MPI process startup mechanism (e.g. mpiexec
or singleton init). (End of advice to implementors.)

23. Section 9 on page 299.
An implementation must support info objects as caches for arbitrary (key, value)
pairs, regardless of whether it recognizes the key. Each function that takes hints in
the form of an MPI_Info must be prepared to ignore any key it does not recognize. This
description of info objects does not attempt to define how a particular function should
react if it recognizes a key but not the associated value. MPI_INFO_GET_NKEYS,
MPI_INFO_GET_NTHKEY, MPI_INFO_GET_VALUELEN, and MPI_INFO_GET must
retain all (key,value) pairs so that layered functionality can also use the Info object.

24. Section 11.3 on page 339.
MPI_PROC_NULL is a valid target rank in the MPI RMA calls MPI_ACCUMULATE,
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B.2. CHANGES FROM VERSION 2.0 TO VERSION 2.1 599

MPI_GET, and MPI_PUT. The effect is the same as for MPI_PROC_NULL in MPI point-
to-point communication. See also item 25 in this list.

25. Section 11.3 on page 339.
After any RMA operation with rank MPI_PROC_NULL, it is still necessary to finish
the RMA epoch with the synchronization method that started the epoch. See also
item 24 in this list.

26. Section 11.3.4 on page 345.
MPI_REPLACE in MPI_ACCUMULATE, like the other predefined operations, is defined
only for the predefined MPI datatypes.

27. Section 13.2.8 on page 398.
About MPI_FILE_SET_VIEW and MPI_FILE_SET_INFO: When an info object that
specifies a subset of valid hints is passed to MPI_FILE_SET_VIEW or
MPI_FILE_SET_INFO, there will be no effect on previously set or defaulted hints that
the info does not specify.

28. Section 13.2.8 on page 398.
About MPI_FILE_GET_INFO: If no hint exists for the file associated with fh, a handle
to a newly created info object is returned that contains no key/value pair.

29. Section 13.3 on page 401.
If a file does not have the mode MPI_MODE_SEQUENTIAL, then
MPI_DISPLACEMENT_CURRENT is invalid as disp in MPI_FILE_SET_VIEW.

30. Section 13.5.2 on page 431.
The bias of 16 byte doubles was defined with 10383. The correct value is 16383.

31. Section 16.1.4 on page 468.
In the example in this section, the buffer should be declared as const void* buf.

32. Section 16.2.5 on page 489.
About MPI_TYPE_CREATE_F90_xxxx:

Advice to implementors. An application may often repeat a call to
MPI_TYPE_CREATE_F90_xxxx with the same combination of (xxxx,p,r). The
application is not allowed to free the returned predefined, unnamed datatype
handles. To prevent the creation of a potentially huge amount of handles, the
MPI implementation should return the same datatype handle for the same (
REAL/COMPLEX/INTEGER,p,r) combination. Checking for the combination (
p,r) in the preceding call to MPI_TYPE_CREATE_F90_xxxx and using a hash-
table to find formerly generated handles should limit the overhead of finding
a previously generated datatype with same combination of (xxxx,p,r). (End of
advice to implementors.)

33. Section A.1.1 on page 513.
MPI_BOTTOM is defined as void * const MPI::BOTTOM.
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Examples Index

This index lists code examples throughout the text. Some examples are referred to by
content; others are listed by the major MPI function that they are demonstrating. MPI
functions listed in all capital letter are Fortran examples; MPI functions listed in mixed
case are C/C++ examples.

Attributes between languages, 506

C++ declarations in mpi.h, 478
C++ deriving from C++ MPI class, 469
C++ handle assignement and comparison

operators, 475
C++ handle assignment operator, 470
C++ handle scope destruction, 470
C++ illegal communicator handle initial-

ization, 475
C++ MPI class comparison operator, 469
C++ profiling example, 479, 480
C/C++ handle conversion, 500, 501
C/Fortran handle conversion, 499
Client-server code, 63

with blocking probe, 66
with blocking probe, wrong, 66

Datatype
3D array, 112
absolute addresses, 117
array of structures, 114
elaborate example, 124, 126
matching type, 102
matrix transpose, 113
union, 119

Datatypes
matching, 35
not matching, 35
untyped, 36

Deadlock
if not buffered, 45
with MPI_Bcast, 183, 184
wrong message exchange, 44

Fortran 90 copying and sequence problem,
482, 483

Fortran 90 derived types, 484
Fortran 90 heterogeneous communication,

496
Fortran 90 illegal KIND, 492
Fortran 90 MPI_TYPE_MATCH_SIZE im-

plementation, 495
Fortran 90 register optimization, 486

Intercommunicator, 204, 206
Interlanguage communication, 510
Intertwined matching pairs, 43

Message exchange, 44
MPI::Comm::Probe, 34
MPI_ACCUMULATE, 346
MPI_ADDRESS, 95
MPI_Address, 114, 117, 119, 124
MPI_Aint, 114
MPI_Allgather, 156
MPI_ALLOC_MEM, 275
MPI_Alloc_mem, 276
MPI_ALLREDUCE, 176
MPI_Barrier, 292, 293, 362, 366–368
MPI_Bcast, 138, 183, 184
MPI_BSEND, 42, 43
MPI_Buffer_attach, 46, 292
MPI_Buffer_detach, 46
MPI_BYTE, 36
MPI_Cancel, 293
MPI_CART_COORDS, 266
MPI_CART_GET, 268
MPI_CART_RANK, 266, 268
MPI_CART_SHIFT, 266
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MPI_CART_SUB, 267
MPI_CHARACTER, 36
MPI_Comm_create, 204
MPI_Comm_group, 204
MPI_Comm_remote_size, 206
MPI_COMM_SPAWN, 310
MPI_Comm_spawn, 310
MPI_COMM_SPAWN_MULTIPLE, 315
MPI_Comm_spawn_multiple, 315
MPI_Comm_split, 206
MPI_DIMS_CREATE, 249, 268
MPI_DIST_GRAPH_CREATE, 256
MPI_Dist_graph_create, 256
MPI_DIST_GRAPH_CREATE_ADJACENT,

256
MPI_FILE_CLOSE, 411, 414
MPI_FILE_GET_AMODE, 397
MPI_FILE_IREAD, 414
MPI_FILE_OPEN, 411, 414
MPI_FILE_READ, 411
MPI_FILE_SET_ATOMICITY, 443
MPI_FILE_SET_VIEW, 411, 414
MPI_FILE_SYNC, 444
MPI_Finalize, 292–294
MPI_FREE_MEM, 275
MPI_Gather, 126, 142, 143, 147
MPI_Gatherv, 126, 144–147
MPI_GET, 342, 344
MPI_Get, 361, 362, 366, 367
MPI_GET_ADDRESS, 95, 503
MPI_Get_address, 114, 117, 119, 124
MPI_GET_COUNT, 103
MPI_GET_ELEMENTS, 103
MPI_GRAPH_CREATE, 250, 262
MPI_GRAPH_NEIGHBORS, 262
MPI_GRAPH_NEIGHBORS_COUNT, 262
MPI_Grequest_complete, 377
MPI_Grequest_start, 377
MPI_Group_free, 204
MPI_Group_incl, 204
MPI_Iprobe, 293
MPI_IRECV, 55–57, 63
MPI_ISEND, 55, 56, 63
MPI_Op_create, 174, 182
MPI_Pack, 124, 126
MPI_Pack_size, 126
MPI_PROBE, 66
MPI_Put, 353, 358, 360, 361, 367, 368

MPI_RECV, 35, 36, 42–45, 57, 66, 102
MPI_REDUCE, 166, 169
MPI_Reduce, 169, 170, 174
MPI_REQUEST_FREE, 56
MPI_Request_free, 292
MPI_Scan, 182
MPI_Scatter, 152
MPI_Scatterv, 152, 153
MPI_SEND, 35, 36, 44, 45, 57, 66, 102
MPI_Send, 114, 117, 119, 124
MPI_SENDRECV, 112, 113
MPI_SENDRECV_REPLACE, 266
MPI_SSEND, 43, 57
MPI_Test_cancelled, 293
MPI_TYPE_COMMIT, 99, 112, 113, 342
MPI_Type_commit, 114, 117, 119, 124,

143–147, 153, 182
MPI_TYPE_CONTIGUOUS, 79, 96, 102,

103
MPI_Type_contiguous, 143
MPI_TYPE_CREATE_DARRAY, 93
MPI_TYPE_CREATE_HVECTOR, 112,

113
MPI_Type_create_hvector, 114, 117
MPI_TYPE_CREATE_INDEXED_BLOCK,

342
MPI_TYPE_CREATE_STRUCT, 86, 96,

113
MPI_Type_create_struct, 114, 117, 119,

124, 145, 147, 182
MPI_TYPE_CREATE_SUBARRAY, 450
MPI_TYPE_EXTENT, 112, 113, 342, 344,

346
MPI_Type_extent, 114
MPI_TYPE_FREE, 342
MPI_Type_get_contents, 119
MPI_Type_get_envelope, 119
MPI_TYPE_HVECTOR, 112, 113
MPI_Type_hvector, 114, 117
MPI_TYPE_INDEXED, 83, 112
MPI_Type_indexed, 114, 117
MPI_TYPE_STRUCT, 86, 96, 113
MPI_Type_struct, 114, 117, 119, 124, 145,

147, 182
MPI_TYPE_VECTOR, 80, 81, 112, 113
MPI_Type_vector, 144, 146, 153
MPI_Unpack, 124, 126
MPI_WAIT, 55–57, 63, 414
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MPI_WAITANY, 63
MPI_WAITSOME, 63
MPI_Win_complete, 353, 361, 362, 367,

368
MPI_WIN_CREATE, 342, 344, 346
MPI_WIN_FENCE, 342, 344, 346
MPI_Win_fence, 360, 361
MPI_Win_lock, 358, 366–368
MPI_Win_post, 361, 362, 367, 368
MPI_Win_start, 353, 361, 362, 367, 368
MPI_Win_unlock, 358, 366–368
MPI_Win_wait, 361, 362, 367, 368
mpiexec, 298

Non-deterministic program with MPI_Bcast,
184

Non-overtaking messages, 42
Nonblocking operations, 55, 56

message ordering, 56
progress, 57

Profiling interface, 455

Threads and MPI, 382
Typemap, 79–81, 83, 86, 93
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MPI Constant and Predefined
Handle Index

This index lists predefined MPI constants and handles.

MPI::*_NULL, 469
MPI::_LONG_LONG, 471
MPI::ANY_SOURCE, 515
MPI::ANY_TAG, 515
MPI::APPNUM, 521
MPI::ARGV_NULL, 523
MPI::ARGVS_NULL, 523
MPI::BAND, 519
MPI::BOOL, 472, 474, 517
MPI::BOR, 519
MPI::BOTTOM, 514
MPI::BSEND_OVERHEAD, 515
MPI::BXOR, 519
MPI::BYTE, 471, 472, 474, 516, 517
MPI::CART, 520
MPI::CHAR, 472, 516
MPI::CHARACTER, 472, 517
MPI::COMBINER_CONTIGUOUS, 522
MPI::COMBINER_DARRAY, 522
MPI::COMBINER_DUP, 522
MPI::COMBINER_F90_COMPLEX, 522
MPI::COMBINER_F90_INTEGER, 522
MPI::COMBINER_F90_REAL, 522
MPI::COMBINER_HINDEXED, 522
MPI::COMBINER_HINDEXED_INTEGER,

522
MPI::COMBINER_HVECTOR, 522
MPI::COMBINER_HVECTOR_INTEGER,

522
MPI::COMBINER_INDEXED, 522
MPI::COMBINER_INDEXED_BLOCK, 522
MPI::COMBINER_NAMED, 522
MPI::COMBINER_RESIZED, 522
MPI::COMBINER_STRUCT, 522

MPI::COMBINER_STRUCT_INTEGER,
522

MPI::COMBINER_SUBARRAY, 522
MPI::COMBINER_VECTOR, 522
MPI::COMM_NULL, 471, 475, 519
MPI::COMM_SELF, 518
MPI::COMM_WORLD, 518
MPI::COMPLEX, 472, 474, 517
MPI::CONGRUENT, 518
MPI::DATATYPE_NULL, 519
MPI::DISPLACEMENT_CURRENT, 522
MPI::DIST_GRAPH, 520
MPI::DISTRIBUTE_BLOCK, 523
MPI::DISTRIBUTE_CYCLIC, 523
MPI::DISTRIBUTE_DFLT_DARG, 523
MPI::DISTRIBUTE_NONE, 523
MPI::DOUBLE, 472, 474, 516
MPI::DOUBLE_COMPLEX, 472, 474, 517
MPI::DOUBLE_INT, 473, 518
MPI::DOUBLE_PRECISION, 472, 474, 517
MPI::DUP_FN, 521
MPI::ERR_ACCESS, 514
MPI::ERR_AMODE, 514
MPI::ERR_ARG, 513
MPI::ERR_ASSERT, 514
MPI::ERR_BAD_FILE, 514
MPI::ERR_BASE, 514
MPI::ERR_BUFFER, 513
MPI::ERR_COMM, 513
MPI::ERR_CONVERSION, 514
MPI::ERR_COUNT, 513
MPI::ERR_DIMS, 513
MPI::ERR_DISP, 514
MPI::ERR_DUP_DATAREP, 514
MPI::ERR_FILE, 514
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MPI Constant and Predefined Handle Index 609

MPI::ERR_FILE_EXISTS, 514
MPI::ERR_FILE_IN_USE, 514
MPI::ERR_GROUP, 513
MPI::ERR_IN_STATUS, 514
MPI::ERR_INFO, 514
MPI::ERR_INFO_KEY, 514
MPI::ERR_INFO_NOKEY, 514
MPI::ERR_INFO_VALUE, 514
MPI::ERR_INTERN, 513
MPI::ERR_IO, 514
MPI::ERR_KEYVAL, 514
MPI::ERR_LASTCODE, 514
MPI::ERR_LOCKTYPE, 514
MPI::ERR_NAME, 514
MPI::ERR_NO_MEM, 514
MPI::ERR_NO_SPACE, 514
MPI::ERR_NO_SUCH_FILE, 514
MPI::ERR_NOT_SAME, 514
MPI::ERR_OP, 513
MPI::ERR_OTHER, 513
MPI::ERR_PENDING, 513
MPI::ERR_PORT, 514
MPI::ERR_QUOTA, 514
MPI::ERR_RANK, 513
MPI::ERR_READ_ONLY, 514
MPI::ERR_REQUEST, 513
MPI::ERR_RMA_CONFLICT, 514
MPI::ERR_RMA_SYNC, 514
MPI::ERR_ROOT, 513
MPI::ERR_SERVICE, 514
MPI::ERR_SIZE, 514
MPI::ERR_SPAWN, 514
MPI::ERR_TAG, 513
MPI::ERR_TOPOLOGY, 513
MPI::ERR_TRUNCATE, 513
MPI::ERR_TYPE, 513
MPI::ERR_UNKNOWN, 513
MPI::ERR_UNSUPPORTED_DATAREP,

514
MPI::ERR_UNSUPPORTED_OPERATION,

514
MPI::ERR_WIN, 514
MPI::ERRHANDLER_NULL, 519
MPI::ERRORS_ARE_FATAL, 19, 515
MPI::ERRORS_RETURN, 19, 515
MPI::ERRORS_THROW_EXCEPTIONS,

19, 23, 277, 515
MPI::F_COMPLEX, 472, 474, 517

MPI::F_COMPLEX16, 473, 474
MPI::F_COMPLEX32, 473, 474
MPI::F_COMPLEX4, 473, 474
MPI::F_COMPLEX8, 473, 474
MPI::F_DOUBLE_COMPLEX, 473, 474,

517
MPI::FILE_NULL, 519
MPI::FLOAT, 472, 474, 516
MPI::FLOAT_INT, 473, 518
MPI::GRAPH, 520
MPI::GROUP_EMPTY, 519
MPI::GROUP_NULL, 519
MPI::HOST, 518
MPI::IDENT, 518
MPI::IN_PLACE, 514
MPI::INFO_NULL, 519
MPI::INT, 471, 472, 516
MPI::INTEGER, 471, 472, 517
MPI::INTEGER1, 473, 474, 517
MPI::INTEGER16, 473, 474
MPI::INTEGER2, 473, 474, 517
MPI::INTEGER4, 473, 474, 517
MPI::INTEGER8, 473, 474, 517
MPI::IO, 518
MPI::KEYVAL_INVALID, 515
MPI::LAND, 519
MPI::LASTUSEDCODE, 521
MPI::LB, 518
MPI::LOCK_EXCLUSIVE, 515
MPI::LOCK_SHARED, 515
MPI::LOGICAL, 472, 474, 517
MPI::LONG, 471, 472, 516
MPI::LONG_DOUBLE, 472, 474, 516
MPI::LONG_DOUBLE_COMPLEX, 472,

474, 517
MPI::LONG_DOUBLE_INT, 473, 518
MPI::LONG_INT, 473, 518
MPI::LONG_LONG, 472, 516
MPI::LONG_LONG_INT, 516
MPI::LOR, 519
MPI::LXOR, 519
MPI::MAX, 519
MPI::MAX_DATAREP_STRING, 515
MPI::MAX_ERROR_STRING, 515
MPI::MAX_INFO_KEY, 515
MPI::MAX_INFO_VAL, 515
MPI::MAX_OBJECT_NAME, 515
MPI::MAX_PORT_NAME, 515
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610 MPI Constant and Predefined Handle Index

MPI::MAX_PROCESSOR_NAME, 515
MPI::MAXLOC, 474, 519
MPI::MIN, 519
MPI::MINLOC, 474, 519
MPI::MODE_APPEND, 521
MPI::MODE_CREATE, 521
MPI::MODE_DELETE_ON_CLOSE, 521
MPI::MODE_EXCL, 521
MPI::MODE_NOCHECK, 521
MPI::MODE_NOPRECEDE, 521
MPI::MODE_NOPUT, 521
MPI::MODE_NOSTORE, 521
MPI::MODE_NOSUCCEED, 521
MPI::MODE_RDONLY, 521
MPI::MODE_RDWR, 521
MPI::MODE_SEQUENTIAL, 521
MPI::MODE_UNIQUE_OPEN, 521
MPI::MODE_WRONLY, 521
MPI::NULL_COPY_FN, 521
MPI::NULL_DELETE_FN, 521
MPI::OP_NULL, 519
MPI::ORDER_C, 523
MPI::ORDER_FORTRAN, 523
MPI::PACKED, 471, 472, 516, 517
MPI::PROC_NULL, 515
MPI::PROD, 519
MPI::REAL, 472, 474, 517
MPI::REAL16, 473, 474
MPI::REAL2, 473, 474, 517
MPI::REAL4, 473, 474, 517
MPI::REAL8, 473, 474, 517
MPI::REPLACE, 519
MPI::REQUEST_NULL, 519
MPI::ROOT, 515
MPI::SEEK_CUR, 523
MPI::SEEK_END, 523
MPI::SEEK_SET, 523
MPI::SHORT, 471, 472, 516
MPI::SHORT_INT, 473, 518
MPI::SIGNED_CHAR, 471, 472, 516
MPI::SIMILAR, 518
MPI::SUCCESS, 513
MPI::SUM, 519
MPI::TAG_UB, 518
MPI::THREAD_FUNNELED, 522
MPI::THREAD_MULTIPLE, 522
MPI::THREAD_SERIALIZED, 522
MPI::THREAD_SINGLE, 522

MPI::TWODOUBLE_PRECISION, 473, 518
MPI::TWOINT, 473, 518
MPI::TWOINTEGER, 473, 518
MPI::TWOREAL, 473, 518
MPI::TYPECLASS_COMPLEX, 523
MPI::TYPECLASS_INTEGER, 523
MPI::TYPECLASS_REAL, 523
MPI::UB, 518
MPI::UNDEFINED, 515
MPI::UNEQUAL, 518
MPI::UNIVERSE_SIZE, 521
MPI::UNSIGNED, 471, 472, 516
MPI::UNSIGNED_CHAR, 471, 472, 516
MPI::UNSIGNED_LONG, 471, 472, 516
MPI::UNSIGNED_LONG_LONG, 471, 472,

516
MPI::UNSIGNED_SHORT, 471, 472, 516
MPI::WCHAR, 472, 516
MPI::WIN_BASE, 521
MPI::WIN_DISP_UNIT, 521
MPI::WIN_NULL, 519
MPI::WIN_SIZE, 521
MPI::WTIME_IS_GLOBAL, 518
MPI_2DOUBLE_PRECISION, 168, 169,

518
MPI_2INT, 168, 169, 518
MPI_2INTEGER, 168, 169, 518
MPI_2REAL, 168, 169, 518
MPI_ADDRESS_KIND, 15, 15, 106, 481,

505, 506, 515
MPI_AINT, 29, 165, 516, 517, 593–596
MPI_ANY_SOURCE, 30, 31, 42, 52, 53,

65–67, 71, 74, 75, 243, 273, 515
MPI_ANY_TAG, 14, 30, 31, 33, 52, 53,

65–67, 71, 74–76, 515
MPI_APPNUM, 329, 330, 521
MPI_ARGV_NULL, 15, 310, 311, 481, 523
MPI_ARGVS_NULL, 15, 314, 481, 523
MPI_BAND, 165, 166, 519
MPI_BOR, 165, 166, 519
MPI_BOTTOM, 10, 15, 16, 34, 94, 104,

134, 254, 255, 312, 481, 484, 486,
489, 503, 504, 510, 514, 599

MPI_BSEND_OVERHEAD, 48, 274, 515
MPI_BXOR, 165, 166, 519
MPI_BYTE, 27, 28, 35–37, 127, 166, 390,

429, 430, 441, 471, 510, 516, 517,
596
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MPI_C_BOOL, 28, 165, 516, 593–596
MPI_C_COMPLEX, 28, 516, 593–596
MPI_C_DOUBLE_COMPLEX, 28, 166, 516,

593–596
MPI_C_FLOAT_COMPLEX, 28, 165, 516,

593–596
MPI_C_LONG_DOUBLE_COMPLEX, 28,

166, 516, 593–596
MPI_CART, 258, 520
MPI_CHAR, 28, 38, 86, 167, 516, 593
MPI_CHARACTER, 27, 36–38, 167, 517
MPI_COMBINER_CONTIGUOUS, 106,

110, 522
MPI_COMBINER_DARRAY, 106, 111, 522
MPI_COMBINER_DUP, 106, 109, 522
MPI_COMBINER_F90_COMPLEX, 106,

111, 522
MPI_COMBINER_F90_INTEGER, 106, 111,

522
MPI_COMBINER_F90_REAL, 106, 111,

522
MPI_COMBINER_HINDEXED, 106, 110,

522
MPI_COMBINER_HINDEXED_INTEGER,

106, 110, 522
MPI_COMBINER_HVECTOR, 106, 110,

522
MPI_COMBINER_HVECTOR_INTEGER,

106, 110, 522
MPI_COMBINER_INDEXED, 106, 110,

522
MPI_COMBINER_INDEXED_BLOCK, 106,

110, 522
MPI_COMBINER_NAMED, 106, 109, 522
MPI_COMBINER_RESIZED, 106, 111, 522
MPI_COMBINER_STRUCT, 106, 110, 522
MPI_COMBINER_STRUCT_INTEGER,

106, 110, 522
MPI_COMBINER_SUBARRAY, 106, 111,

522
MPI_COMBINER_VECTOR, 106, 110, 522
MPI_COMM_NULL, 191, 203–206, 208,

240, 248, 250, 312, 331, 332, 519,
597

MPI_COMM_PARENT, 240
MPI_COMM_SELF, 191, 224, 240, 295,

331, 391, 518, 595

MPI_COMM_WORLD, 14, 24, 29, 191–
193, 199, 200, 211, 219, 220, 240,
248, 272, 273, 276, 278, 286, 293–
295, 297, 305, 306, 308, 309, 313–
315, 328–331, 385, 428, 447, 498,
509, 518, 598

MPI_COMPLEX, 27, 165, 432, 490, 517
MPI_COMPLEX16, 166, 517
MPI_COMPLEX32, 166, 517
MPI_COMPLEX4, 166, 517
MPI_COMPLEX8, 166, 517
MPI_CONGRUENT, 200, 218, 518
MPI_CONVERSION_FN_NULL, 436
MPI_DATATYPE, 19
MPI_DATATYPE_NULL, 100, 519
MPI_DISPLACEMENT_CURRENT, 402,

522, 599
MPI_DIST_GRAPH, 258, 520, 595
MPI_DISTRIBUTE_BLOCK, 91, 523
MPI_DISTRIBUTE_CYCLIC, 91, 523
MPI_DISTRIBUTE_DFLT_DARG, 91, 523
MPI_DISTRIBUTE_NONE, 91, 523
MPI_DOUBLE, 28, 165, 489, 516
MPI_DOUBLE_COMPLEX, 27, 166, 432,

490, 517
MPI_DOUBLE_INT, 168, 169, 518
MPI_DOUBLE_PRECISION, 27, 165, 490,

517
MPI_DUP_FN, 521
MPI_ERR_ACCESS, 285, 394, 448, 514
MPI_ERR_AMODE, 285, 393, 448, 514
MPI_ERR_ARG, 284, 513
MPI_ERR_ASSERT, 284, 363, 514
MPI_ERR_BAD_FILE, 285, 448, 514
MPI_ERR_BASE, 275, 284, 363, 514
MPI_ERR_BUFFER, 284, 513
MPI_ERR_COMM, 284, 513
MPI_ERR_CONVERSION, 285, 437, 448,

514
MPI_ERR_COUNT, 284, 513
MPI_ERR_DIMS, 284, 513
MPI_ERR_DISP, 284, 363, 514
MPI_ERR_DUP_DATAREP, 285, 434, 448,

514
MPI_ERR_FILE, 285, 448, 514
MPI_ERR_FILE_EXISTS, 285, 448, 514
MPI_ERR_FILE_IN_USE, 285, 394, 448,

514
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MPI_ERR_GROUP, 284, 513
MPI_ERR_IN_STATUS, 32, 34, 53, 60,

62, 278, 284, 376, 406, 477, 514
MPI_ERR_INFO, 284, 514
MPI_ERR_INFO_KEY, 284, 300, 514
MPI_ERR_INFO_NOKEY, 284, 301, 514
MPI_ERR_INFO_VALUE, 284, 300, 514
MPI_ERR_INTERN, 284, 513
MPI_ERR_IO, 285, 448, 514
MPI_ERR_KEYVAL, 236, 284, 514
MPI_ERR_LASTCODE, 283, 285–287, 514
MPI_ERR_LOCKTYPE, 284, 363, 514
MPI_ERR_NAME, 284, 325, 514
MPI_ERR_NO_MEM, 275, 284, 514
MPI_ERR_NO_SPACE, 285, 448, 514
MPI_ERR_NO_SUCH_FILE, 285, 394, 448,

514
MPI_ERR_NOT_SAME, 285, 448, 514
MPI_ERR_OP, 284, 513
MPI_ERR_OTHER, 283, 284, 513
MPI_ERR_PENDING, 60, 284, 513
MPI_ERR_PORT, 284, 322, 514
MPI_ERR_QUOTA, 285, 448, 514
MPI_ERR_RANK, 284, 513
MPI_ERR_READ_ONLY, 285, 448, 514
MPI_ERR_REQUEST, 284, 513
MPI_ERR_RMA_CONFLICT, 284, 363,

514
MPI_ERR_RMA_SYNC, 284, 363, 514
MPI_ERR_ROOT, 284, 513
MPI_ERR_SERVICE, 284, 324, 514
MPI_ERR_SIZE, 284, 363, 514
MPI_ERR_SPAWN, 284, 311, 312, 514
MPI_ERR_TAG, 284, 513
MPI_ERR_TOPOLOGY, 284, 513
MPI_ERR_TRUNCATE, 284, 513
MPI_ERR_TYPE, 284, 513
MPI_ERR_UNKNOWN, 283, 284, 513
MPI_ERR_UNSUPPORTED_DATAREP,

285, 448, 514
MPI_ERR_UNSUPPORTED_OPERATION,

285, 448, 514
MPI_ERR_WIN, 284, 363, 514
MPI_ERRCODES_IGNORE, 15, 312, 481,

523
MPI_ERRHANDLER_NULL, 282, 519
MPI_ERROR, 32, 53, 515
MPI_ERROR_STRING, 283

MPI_ERRORS_ARE_FATAL, 276, 277, 288,
363, 447, 515

MPI_ERRORS_RETURN, 276, 277, 289,
447, 509, 515

MPI_F_STATUS_IGNORE, 502, 523
MPI_F_STATUSES_IGNORE, 502, 523
MPI_FILE_NULL, 394, 447, 519
MPI_FLOAT, 28, 86, 163, 165, 431, 516
MPI_FLOAT_INT, 12, 168, 169, 518
MPI_GRAPH, 258, 520
MPI_GROUP_EMPTY, 190, 195, 196, 202–

204, 519
MPI_GROUP_NULL, 190, 198, 519
MPI_HOST, 272, 518
MPI_IDENT, 193, 200, 518
MPI_IN_PLACE, 15, 134, 160, 481, 489,

514
MPI_INFO_NULL, 256, 303, 311, 321, 393,

394, 403, 519
MPI_INT, 12, 28, 78, 165, 431, 432, 489,

509, 511, 516
MPI_INT16_T, 28, 165, 516, 593–596
MPI_INT32_T, 28, 165, 516, 593–596
MPI_INT64_T, 28, 165, 516, 593–596
MPI_INT8_T, 28, 165, 516, 593–596
MPI_INTEGER, 27, 35, 165, 489, 490,

511, 517
MPI_INTEGER1, 27, 165, 517
MPI_INTEGER16, 165, 517
MPI_INTEGER2, 27, 165, 431, 517
MPI_INTEGER4, 27, 165, 517
MPI_INTEGER8, 165, 494, 517
MPI_INTEGER_KIND, 15, 106, 505, 515
MPI_IO, 272, 273, 518
MPI_KEYVAL_INVALID, 228–230, 515
MPI_LAND, 165, 166, 519
MPI_LASTUSEDCODE, 286, 521
MPI_LB, 16, 17, 89, 92, 96–98, 101, 430,

518
MPI_LOCK_EXCLUSIVE, 357, 515
MPI_LOCK_SHARED, 357, 515
MPI_LOGICAL, 27, 165, 517
MPI_LONG, 28, 165, 516
MPI_LONG_DOUBLE, 28, 165, 516
MPI_LONG_DOUBLE_INT, 168, 518
MPI_LONG_INT, 168, 169, 518
MPI_LONG_LONG, 28, 165, 516, 596
MPI_LONG_LONG_INT, 28, 165, 516, 596
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MPI_LOR, 165, 166, 519
MPI_LXOR, 165, 166, 519
MPI_MAX, 163, 165, 166, 181, 519
MPI_MAX_DATAREP_STRING, 15, 404,

434, 515
MPI_MAX_ERROR_STRING, 15, 282, 287,

515
MPI_MAX_INFO_KEY, 15, 284, 299, 301,

302, 515
MPI_MAX_INFO_VAL, 15, 284, 299, 515
MPI_MAX_OBJECT_NAME, 15, 239, 240,

515, 597
MPI_MAX_PORT_NAME, 15, 320, 515
MPI_MAX_PROCESSOR_NAME, 15, 274,

515, 598
MPI_MAXLOC, 165, 167, 168, 171, 519
MPI_MIN, 165, 166, 519
MPI_MINLOC, 165, 167, 168, 171, 519
MPI_MODE_APPEND, 392, 393, 521
MPI_MODE_CREATE, 392, 393, 400, 521
MPI_MODE_DELETE_ON_CLOSE, 392–

394, 521
MPI_MODE_EXCL, 392, 393, 521
MPI_MODE_NOCHECK, 359, 360, 521
MPI_MODE_NOPRECEDE, 359, 360, 521
MPI_MODE_NOPUT, 359, 360, 521
MPI_MODE_NOSTORE, 359, 360, 521
MPI_MODE_NOSUCCEED, 359, 360, 521
MPI_MODE_RDONLY, 392, 393, 398, 521
MPI_MODE_RDWR, 392, 393, 521
MPI_MODE_SEQUENTIAL, 392, 393, 395,

396, 402, 407, 410, 420, 440, 521,
599

MPI_MODE_UNIQUE_OPEN, 392, 393,
521

MPI_MODE_WRONLY, 392, 393, 521
MPI_NULL_COPY_FN, 521
MPI_NULL_DELETE_FN, 521
MPI_OFFSET, 29, 165, 516, 517, 593–596
MPI_OFFSET_KIND, 15, 16, 29, 442, 481,

515
MPI_OP_NULL, 174, 519
MPI_ORDER_C, 14, 88, 91, 92, 523
MPI_ORDER_FORTRAN, 14, 88, 91, 523
MPI_PACKED, 27, 28, 35, 122, 123, 127,

432, 471, 510, 516, 517
MPI_PROC_NULL, 26, 75, 76, 137, 138,

140, 142, 150, 151, 164, 193, 265,

272, 273, 339, 515, 596, 598, 599
MPI_PROD, 165, 166, 519
MPI_REAL, 27, 35, 165, 432, 489, 490,

496, 517
MPI_REAL16, 165, 517
MPI_REAL2, 27, 165, 517
MPI_REAL4, 27, 165, 489, 494, 517
MPI_REAL8, 27, 165, 489, 517, 594
MPI_REPLACE, 346, 519, 595, 599
MPI_REQUEST_NULL, 53–55, 58–61, 376,

519
MPI_ROOT, 137, 515
MPI_SEEK_CUR, 415, 421, 523
MPI_SEEK_END, 415, 421, 523
MPI_SEEK_SET, 415, 416, 421, 523
MPI_SHORT, 28, 165, 516
MPI_SHORT_INT, 168, 518
MPI_SIGNED_CHAR, 28, 165, 167, 516,

596
MPI_SIMILAR, 193, 200, 218, 518
MPI_SOURCE, 32, 515
MPI_STATUS, 21, 33, 34, 53
MPI_STATUS_IGNORE, 10, 15, 33, 34,

375, 406, 481, 489, 502, 510, 523,
591

MPI_STATUS_SIZE, 15, 32, 515
MPI_STATUSES_IGNORE, 14, 15, 34, 375,

376, 481, 502, 523, 591
MPI_SUBVERSION, 272, 523
MPI_SUCCESS, 17, 18, 53, 60, 62, 227–

232, 234, 235, 283, 284, 288, 289,
312, 437, 462, 463, 513

MPI_SUM, 165, 166, 509, 519
MPI_TAG, 32, 515
MPI_TAG_UB, 29, 272, 505, 509, 518
MPI_THREAD_FUNNELED, 384, 385, 522
MPI_THREAD_MULTIPLE, 385, 387, 522
MPI_THREAD_SERIALIZED, 385, 522
MPI_THREAD_SINGLE, 384–386, 522
MPI_TYPECLASS_COMPLEX, 495, 523
MPI_TYPECLASS_INTEGER, 495, 523
MPI_TYPECLASS_REAL, 495, 523
MPI_UB, 12, 16, 17, 89, 93, 96–98, 101,

430, 518
MPI_UINT16_T, 28, 165, 516, 593–596
MPI_UINT32_T, 28, 165, 516, 593–596
MPI_UINT64_T, 28, 165, 516, 593–596
MPI_UINT8_T, 28, 165, 516, 593–596
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MPI_UNDEFINED, 33, 58, 59, 61, 62,
103, 192, 193, 206, 258, 267, 268,
491, 515, 596

MPI_UNEQUAL, 193, 200, 218, 518
MPI_UNIVERSE_SIZE, 308, 328, 521
MPI_UNSIGNED, 28, 165, 516
MPI_UNSIGNED_CHAR, 28, 165, 167,

516
MPI_UNSIGNED_LONG, 28, 165, 516
MPI_UNSIGNED_LONG_LONG, 28, 165,

516, 596
MPI_UNSIGNED_SHORT, 28, 165, 516
MPI_UNWEIGHTED, 15, 253–256, 263,

264, 481, 523, 594
MPI_VERSION, 272, 523
MPI_WCHAR, 28, 167, 241, 432, 516, 596
MPI_WIN_BASE, 338, 509, 521
MPI_WIN_DISP_UNIT, 338, 521
MPI_WIN_NULL, 338, 519
MPI_WIN_SIZE, 338, 521
MPI_WTIME_IS_GLOBAL, 272, 273, 290,

505, 518

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



MPI Declarations Index

This index refers to declarations needed in C/C++, such as address kind integers, handles,
etc. The underlined page numbers is the “main” reference (sometimes there are more than
one when key concepts are discussed in multiple areas).

MPI::Aint, 15, 15, 19, 79, 79, 81, 84, 86,
94, 97, 98, 107, 127, 128, 336, 340,
342, 345, 431, 434, 459–462, 504,
504, 505, 524

MPI::Cartcomm, 248, 468, 474, 524
MPI::Comm, 26, 194, 199–202, 205, 208,

217, 218, 220, 226, 229, 230, 468,
474, 475, 524

MPI::Datatype, 19, 79, 468, 524
MPI::Distgraphcomm, 474, 524, 594
MPI::Errhandler, 278, 279–282, 464, 465,

468, 499, 524
MPI::Exception, 19, 23, 468, 476, 524
MPI::File, 281, 282, 288, 391, 393, 395–

399, 401, 403, 407–421, 423–427,
431, 439, 440, 468, 499, 524

MPI::Graphcomm, 250, 468, 474, 524
MPI::Grequest, 374, 374, 468, 524
MPI::Group, 192, 192, 193–198, 202, 218,

338, 353, 354, 397, 468, 499, 524
MPI::Info, 274, 299, 299, 300–303, 308,

311, 313, 320–325, 391, 394, 398,
399, 401, 468, 499, 524

MPI::Intercomm, 468, 474, 524
MPI::Intracomm, 468, 474, 524
MPI::Offset, 16, 16, 19, 395, 396, 401, 403,

407–410, 415, 416, 420, 421, 423,
424, 435, 442, 524

MPI::Op, 163, 171, 174, 175, 177–181, 345,
468, 499, 524

MPI::Prequest, 70, 468, 524
MPI::Request, 50–52, 53, 54, 55, 57–62,

64, 67, 69–72, 374, 377, 409, 410,
413, 414, 418, 468, 499, 524

MPI::Status, 30, 32, 53, 54, 57–62, 64–66,
68, 74, 75, 102, 374, 380, 407–409,
411–413, 417, 419, 420, 423–427,
468, 469, 502, 524

MPI::Win, 231–233, 241, 242, 280, 288,
336, 337, 338, 340, 342, 345, 352–
355, 357, 468, 499, 524

MPI_Aint, 15, 15, 18, 29, 79, 79, 81, 84,
86, 94, 97, 98, 107, 127, 128, 336,
340, 342, 345, 431, 434, 459–462,
482, 504, 504, 505, 506, 524

MPI_Comm, 26, 194, 199–202, 205, 208,
217, 218, 220, 226, 229, 230, 518,
519, 524

MPI_Datatype, 79, 486, 516–519, 524
MPI_Errhandler, 278, 279–282, 464, 465,

499, 515, 519, 524
MPI_File, 281, 282, 288, 391, 393, 395–

399, 401, 403, 407–421, 423–427,
431, 439, 440, 499, 519, 524

MPI_Fint, 499, 523, 524, 595
MPI_Group, 192, 192, 193–198, 202, 218,

338, 353, 354, 397, 499, 519, 524
MPI_Info, 274, 299, 299, 300–303, 308,

311, 313, 320–325, 391, 394, 398,
399, 401, 499, 519, 524, 598

MPI_Offset, 16, 16, 18, 29, 395, 396, 401,
403, 407–410, 415, 416, 420, 421,
423, 424, 435, 442, 442, 498, 524

MPI_Op, 163, 171, 174, 175, 177–181, 345,
499, 519, 524

MPI_Request, 50–52, 53, 54, 55, 57–62,
64, 67, 69–72, 374, 377, 409, 410,
413, 414, 418, 499, 519, 524
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MPI_Status, 30, 32, 53, 54, 57–62, 64–66,
68, 74, 75, 102, 374, 380, 407–409,
411–413, 417, 419, 420, 423–427,
502, 523, 524

MPI_Win, 231–233, 241, 242, 280, 288,
336, 337, 338, 340, 342, 345, 352–
355, 357, 499, 519, 524

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



MPI Callback Function Prototype
Index

This index lists the C typedef names for callback routines, such as those used with attribute
caching or user-defined reduction operations. C++ names for these typedefs and Fortran
example prototypes are given near the text of the C name.

MPI_Comm_copy_attr_function, 17, 226,
520, 525

MPI_Comm_delete_attr_function, 17, 226,
520, 525

MPI_Comm_errhandler_fn, 466, 595
MPI_Comm_errhandler_function, 17, 278,

466, 525, 595
MPI_Copy_function, 17, 462, 521, 528
MPI_Datarep_conversion_function, 435, 525
MPI_Datarep_extent_function, 434, 525
MPI_Delete_function, 17, 463, 521, 528
MPI_File_errhandler_fn, 466, 595
MPI_File_errhandler_function, 281, 466,

525, 595
MPI_Grequest_cancel_function, 376, 525
MPI_Grequest_free_function, 375, 525
MPI_Grequest_query_function, 374, 525
MPI_Handler_function, 17, 464, 528
MPI_Type_copy_attr_function, 234, 520,

525
MPI_Type_delete_attr_function, 234, 520,

525
MPI_User_function, 172, 525
MPI_Win_copy_attr_function, 231, 520,

525
MPI_Win_delete_attr_function, 231, 520,

525
MPI_Win_errhandler_fn, 466, 595
MPI_Win_errhandler_function, 280, 466,

525, 595
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MPI Function Index

The underlined page numbers refer to the function definitions.

MPI_ABORT, 172, 276, 291, 294, 330, 498,
598

MPI_ACCUMULATE, 335, 339, 345, 346,
347, 369, 595, 598, 599

MPI_ADD_ERROR_CLASS, 286, 286
MPI_ADD_ERROR_CODE, 287
MPI_ADD_ERROR_STRING, 287, 287
MPI_ADDRESS, 17, 94, 461, 505
MPI_ALLGATHER, 131, 135, 154, 154,

155–157
MPI_ALLGATHERV, 131, 135, 155, 156
MPI_ALLOC_MEM, 274, 275, 284, 337,

341, 358, 481
MPI_ALLREDUCE, 131, 134, 135, 164,

171, 175, 175, 596
MPI_ALLTOALL, 131, 135, 157, 157, 158–

160, 594
MPI_ALLTOALLV, 131, 134, 135, 159,

159, 160, 162, 594
MPI_ALLTOALLW, 131, 135, 160, 161,

162, 594
MPI_ATTR_DELETE, 17, 230, 236, 463,

464
MPI_ATTR_GET, 17, 230, 236, 464, 506
MPI_ATTR_PUT, 17, 229, 236, 463, 506,

509
MPI_BARRIER, 131, 135, 137, 137, 444
MPI_BCAST, 131, 135, 138, 138, 164, 469
MPI_BSEND, 40, 48, 274, 292
MPI_BSEND_INIT, 70, 72
MPI_BUFFER_ATTACH, 21, 46, 54
MPI_BUFFER_DETACH, 46, 292
MPI_CANCEL, 42, 54, 65, 67, 68, 69, 373,

376, 377
MPI_CART_COORDS, 247, 261, 261, 597
MPI_CART_CREATE, 217, 246–248, 248,

249, 250, 259, 266, 267, 597

MPI_CART_GET, 247, 259, 260, 597
MPI_CART_MAP, 247, 267, 267, 268
MPI_CART_RANK, 247, 260, 260, 597
MPI_CART_SHIFT, 247, 265, 265, 266,

597
MPI_CART_SUB, 247, 266, 266, 267, 268,

598
MPI_CARTDIM_GET, 247, 259, 259, 597
MPI_CLOSE_PORT, 320, 321, 323
MPI_COMM_ACCEPT, 319–321, 321, 322,

329, 330
MPI_COMM_C2F, 499
MPI_COMM_CALL_ERRHANDLER, 288,

289
MPI_COMM_CLONE, 475
MPI_COMM_COMPARE, 200, 218
MPI_COMM_CONNECT, 284, 322, 322,

329, 330
MPI_COMM_CREATE, 198, 202, 203–206,

247, 594
MPI_COMM_CREATE_ERRHANDLER,

17, 277, 278, 279, 464, 526
MPI_COMM_CREATE_KEYVAL, 17, 224,

226, 228, 236, 462, 505, 526, 596
MPI_COMM_DELETE_ATTR, 17, 224,

228, 229, 230, 236, 464
MPI_COMM_DISCONNECT, 236, 313, 330,

331, 331
MPI_COMM_DUP, 194, 198, 201, 202, 203,

208, 219, 221, 225, 227, 230, 236,
243, 462

MPI_COMM_DUP_FN, 17, 227, 227, 228,
520

MPI_COMM_F2C, 499
MPI_COMM_FREE, 198, 202, 208, 208,

219, 221, 228–230, 236, 295, 313,
330, 331, 463, 471
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MPI_COMM_FREE_KEYVAL, 17, 224,
228, 236, 463

MPI_COMM_GET_ATTR, 17, 224, 229,
229, 236, 272, 463, 506, 509

MPI_COMM_GET_ERRHANDLER, 17,
277, 279, 465, 598

MPI_COMM_GET_NAME, 239, 239, 240,
597

MPI_COMM_GET_PARENT, 240, 309,
312, 312, 313

MPI_COMM_GROUP, 14, 192, 194, 194,
198–200, 218, 277, 598

MPI_COMM_JOIN, 331, 332, 333
MPI_COMM_NULL_COPY_FN, 17, 227,

227, 228, 520
MPI_COMM_NULL_DELETE_FN, 17, 228,

228, 520
MPI_COMM_RANK, 199, 199, 218
MPI_COMM_REMOTE_GROUP, 218
MPI_COMM_REMOTE_SIZE, 218, 219
MPI_COMM_SET_ATTR, 17, 224, 228,

229, 236, 463, 506, 509
MPI_COMM_SET_ERRHANDLER, 17, 277,

279, 465
MPI_COMM_SET_NAME, 238, 239
MPI_COMM_SIZE, 21, 199, 199, 200, 218
MPI_COMM_SPAWN, 297, 306–308, 308,

309, 311–316, 328, 329
MPI_COMM_SPAWN_MULTIPLE, 297,

306, 307, 312, 313, 314, 315, 329
MPI_COMM_SPLIT, 203, 205, 205, 206,

207, 243, 247, 248, 250, 267, 268,
594

MPI_COMM_TEST_INTER, 217, 217
MPI_DIMS_CREATE, 247–249, 249
MPI_DIST_GRAPH_CREATE, 246, 247,

252, 254, 255–257, 264, 265, 594
MPI_Dist_graph_create, 255
MPI_DIST_GRAPH_CREATE_ADJACENT,

246, 247, 252, 252, 253, 256, 264,
265, 594

MPI_DIST_GRAPH_NEIGHBOR_COUNT,
265

MPI_DIST_GRAPH_NEIGHBORS, 263,
264, 264

MPI_DIST_GRAPH_NEIGHBORS_COUNT,
263, 263, 264

MPI_DIST_NEIGHBORS, 247, 595

MPI_DIST_NEIGHBORS_COUNT, 247,
595

MPI_DUP_FN, 17, 227, 462, 463
MPI_ERRHANDLER_C2F, 499
MPI_ERRHANDLER_CREATE, 17, 278,

464
MPI_ERRHANDLER_F2C, 499
MPI_ERRHANDLER_FREE, 277, 282, 598
MPI_ERRHANDLER_GET, 17, 277, 279,

465, 598
MPI_ERRHANDLER_SET, 17, 279, 465
MPI_ERROR_CLASS, 283, 283, 285
MPI_ERROR_STRING, 282, 283, 285, 287
MPI_EXSCAN, 131, 135, 164, 171, 181,

181, 594
MPI_FILE_C2F, 499
MPI_FILE_CALL_ERRHANDLER, 288,

289
MPI_FILE_CLOSE, 331, 391, 393, 394
MPI_FILE_CREATE_ERRHANDLER, 277,

281, 281, 527
MPI_FILE_DELETE, 393, 394, 394, 398,

400, 447
MPI_FILE_F2C, 499
MPI_FILE_GET_AMODE, 397, 397
MPI_FILE_GET_ATOMICITY, 440, 440
MPI_FILE_GET_BYTE_OFFSET, 410, 416,

416, 421
MPI_FILE_GET_ERRHANDLER, 277, 282,

447, 598
MPI_FILE_GET_GROUP, 397, 397
MPI_FILE_GET_INFO, 399, 399, 400, 599
MPI_FILE_GET_POSITION, 415, 416
MPI_FILE_GET_POSITION_SHARED, 420,

421, 421, 440
MPI_FILE_GET_SIZE, 396, 396, 442
MPI_FILE_GET_TYPE_EXTENT, 430,

431, 437
MPI_FILE_GET_VIEW, 403, 403, 404
MPI_FILE_IREAD, 404, 413, 414, 422,

438
MPI_FILE_IREAD_AT, 404, 409, 410
MPI_FILE_IREAD_SHARED, 404, 418,

418
MPI_FILE_IWRITE, 404, 414, 415
MPI_FILE_IWRITE_AT, 404, 410, 410
MPI_FILE_IWRITE_SHARED, 404, 418,

419
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MPI_FILE_OPEN, 285, 383, 391, 391, 392,
393, 398–400, 402, 416, 441, 442,
447, 448

MPI_FILE_PREALLOCATE, 395, 395, 396,
438, 442, 443

MPI_FILE_READ, 404, 411, 411, 412, 414,
442, 443

MPI_FILE_READ_ALL, 404, 412, 412, 422,
423

MPI_FILE_READ_ALL_BEGIN, 404, 422,
423, 425, 438

MPI_FILE_READ_ALL_END, 404, 422,
423, 425, 438

MPI_FILE_READ_AT, 404, 407, 407, 408,
410

MPI_FILE_READ_AT_ALL, 404, 407, 408
MPI_FILE_READ_AT_ALL_BEGIN, 404,

423
MPI_FILE_READ_AT_ALL_END, 404, 423
MPI_FILE_READ_ORDERED, 404, 419,

420
MPI_FILE_READ_ORDERED_BEGIN, 404,

426
MPI_FILE_READ_ORDERED_END, 404,

427
MPI_FILE_READ_SHARED, 404, 417, 417,

418, 420
MPI_FILE_SEEK, 415, 415, 416
MPI_FILE_SEEK_SHARED, 420, 420, 421,

440
MPI_FILE_SET_ATOMICITY, 393, 439,

439
MPI_FILE_SET_ERRHANDLER, 277, 281,

447
MPI_FILE_SET_INFO, 398, 398, 399, 400,

599
MPI_FILE_SET_SIZE, 395, 395, 396, 438,

441–443
MPI_FILE_SET_VIEW, 89, 285, 392, 398–

401, 401, 402, 403, 416, 421, 429,
434, 442, 448, 599

MPI_FILE_SYNC, 394, 404, 438–440, 440,
445

MPI_FILE_WRITE, 404, 405, 412, 413,
415, 442

MPI_FILE_WRITE_ALL, 404, 413, 413
MPI_FILE_WRITE_ALL_BEGIN, 404, 425
MPI_FILE_WRITE_ALL_END, 404, 426

MPI_FILE_WRITE_AT, 404, 405, 408, 408,
409, 410

MPI_FILE_WRITE_AT_ALL, 404, 409,
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MPI_RSEND_INIT, 71
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MPI_TYPE_STRUCT, 17, 86, 96, 106,
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