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Shared-memory architectures & machines 

M 

P P P P 

Shared-memory 
model 

Naive, shared memory (programming) model: processors 
execute processes, processes are not synchronized, special 
methods for sharing memory between processes, NUMA 
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M 

P 

cache 

Cache: small, fast memory, close to processor, 
accessed main memory locations are stored 
temporarily in cache, reused when possible 

•Main memory: Gbytes, access times > 100 cycles 
•Cache: Kbytes->Mbytes, access times,1-20 cycles 

Typically 2-3 levels of caches in modern processors, and several 
special caches, TLB, victim cache, instruction cache, … 

Caches may help to alleviate/hide memory („von 
Neumann“) bottlenect 
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Caches, recap. 

Cache consists of a number of lines that stores blocks of 
memory. A cache line holds a block and additional status 
information (dirty/valid bit, tag)  

Typical block size: 64Bytes 

Caches exploit and makes sense because of: 
•Temporal locality: locations are typically used several times 
in close succession, several operations on same operand  
•Spatial locality: when a location is addressed, typically 
locations close to it (a+1, a+2, …) will be also be used 

Properties of algorithms/programs, and not always so 



©Jesper Larsson Träff WS11/12 

Memory read a: 
if address a already in cache, reuse from there, if not read 
from memory through cache, evict previous line 

a B-> cache line 

Access to main memory in block size units B, aligned to block 
boundary 

Block boundary 
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Memory write a: 
different possibilities. If a is already in cache, write overwrites; 
if a is not in cache 

•Write allocate: if a is not in cache, read a 
•Write non-allocate: write directly to memory 

•Write-through cache: each write is immediately passed on to 
memory (typically non-allocate) 
•Write back: cache line block is written back when line is 
evicted (typically write allocate) 
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Replacement policies for associative caches 
•LRU: least recently used 
•LFU : least frequently used 

Address a: 
•If a can go into only one specific line of the cache: directly 
mapped  
•If a can go into any line of the cache: fully associative 
 

•If a can go into any of a small set of lines: set-associative 
(typically 2-way, 4-way) 

Typically, all maintained in hardware 
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M 

P P P P 

Shared-memory 
model, cc-NUMA 

M M M … 

cache cache cache cache 

Cache-coherent 
non.uniform 
memory access 

Multiprocessor/multi-core caches  

Typically, several cores shares caches at some levels 
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Cache coherence 

a == 1 a == 1 

Processor/core 0 and 1 with private caches, both have read 
location a into cache. Processor 0 writes to a? 

M 

a =7; 
b = a; // ??  

Read by 1 occurs „after“ 
write by 0. If b is still 1, 
cache system is not 
coherent 
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Cache is coherent if 
1. If processor P writes to a at time t1 and reads a at t2>t1, 

and there are no other writes (by P or other) to a between 
t1 and t2, then P reads the value written at t1 

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and 
no other P writes to a between t1 and t2, then P2 reads the 
value written by P1 at t1 

3. If P1 and P2 writes to a at the same time, then either the 
value of P1 or the value of P2 is stored at a 

Let the order of memory accesses to a specific location a be 
given by the program order 

Ad 1. Program order is preserved for each processor for 
locations that are not written by other processors 
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Cache is coherent if 
1. If processor P writes to a at time t1 and reads a at t2>t1, 

and there are no other writes (by P or other) to a between 
t1 and t2, then P reads the value written at t1 

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and 
no other P writes to a between t1 and t2, then P2 reads the 
value written by P1 at t1 

3. If P1 and P2 writes to a at the same time, then either the 
value of P1 or the value of P2 is stored at a 

Let the order of memory accesses to a specific location a be 
given by the program order 

Ad 2. Here, t1 and t2 have to be „sufficiently“ separated in 
time. Updates by P1 must eventually become visible to the other 
processors 
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Cache is coherent if 
1. If processor P writes to a at time t1 and reads a at t2>t1, 

and there are no other writes (by P or other) to a between 
t1 and t2, then P reads the value written at t1 

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and 
no other P writes to a between t1 and t2, then P2 reads the 
value written by P1 at t1 

3. If P1 and P2 writes to a at the same time, then either the 
value of P1 or the value of P2 is stored at a 

Let the order of memory accesses to a specific location a be 
given by the program order 

Ad 3. Writes are required to „serialize“. Either of the values 
simultaneously written will be stored. „Same time“ means 
„sufficiently close“ in time. 
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cc-NUMA systems (most multi-core and SMP nodes): cache 
coherent, non-uniform memory access 

Cache coherence maintained by hardware at the cache line level. 
Standard approaches and protocols: 
 
•Update based 
•Invalidation based 
 
•Snooping/bus based 
•Directory based 
 
All: expensive in hardware („transistors“, „power“); can affect 
performance negatively 
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Sharing/false sharing 

Cache coherence is maintained at the cache line level. Processor 
0 updates y, processor 1 updates x (with e.g. &x == &z[1], &y = 
&z[2]) 

y x 

for (i=0; i<n; i++) y += i-1; 

for (i=0; i<n; i++) x += 2*i; 

Although x and y are different memory locations, each update 
will cause cache coherency traffic!! Because cache coherency is 
at the cache line level, x and y are falsely shared 



©Jesper Larsson Träff WS11/12 

Memory consistency 

In what order do writes to different locations not necessarily 
in cache become visible in memory and to other processors? 

x = 0; 
// … some code 
x = 1; 
if (y==0) { 
  // body  
} 

y = 0; 
// … some code 
y = 1; 
if (x==0) { 
  // body  
} 

Core 0: Core 1: 

Can core 0 and core 1 both execute body of if-statement? 

x not in cache 
of core 1, y not 
in cache of 
core 0 
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x = 0; 
// … some code 
x = 1; 
if (y==0) { 
  // body  
} 

y = 0; 
// … some code 
y = 1; 
if (x==0) { 
  // body  
} 

Core 0: Core 1: 

If x=1; y=1; appears at the same time, no cores execute body 

If core 0 in body, then core 1 has executed y=0; but not y=1; 
thus core 1 cannot enter body 

Correct? 
Only under sequential 
consistency (or similar) 
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Sequential consistency: memory accesses of each processor 
are performed in program order; program result is as for some 
interleaving of the memory accesses of all processors 

Sequential consistency is typically not guaranteed by modern 
multiprocessors: 

•Caches, may delay writes 
•Write buffers, may delay and/or reorder writes 
•Memory network: may reorder writes 
•Compiler: may reorder updates 

Relaxed consistency models (see other lecture…) pose weaker 
constraints on hardware, may still allow correctness reasoning  
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In short: 
To guarantee intended effect/correctness of a shared-memory 
multiprocessor program, special instructions that enforce 
memory updates to take effect may have to be used 

Example:  
 
memory fence(f) : completes all writes before the instruction 
and sets flag f 
 
Another processor waiting for f will „know“ that all writes of 
the other processor before f was set will have been completed 
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Other approaches to alleviating memory bottleneck 

•Prefetching: start loading operands well before use 
 

•Multi-threading: when a thread („virtual processor“) issues a 
load, switch to another thread 

Note: multi-threading requires explicitly parallel programs 

Note: both prefetching and multi-threading are latency 
hiding techniques. Memory bandwidth is still required for 
the number of outstanding memory requests 
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TU Wien parallel computing shared-memory node 

4xAMD „magny cours“ 12-core Opteron 6168 processors 
128GByte main memory, 1.9GHz 

•Per core L1 cache: 128KB 
•Per core L2 cache 512KB 
•Shared L3 cache 12288KB 
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12 core = 2x6 cores, 2 
dies on chip? 

HT: HyperTransport – standardized processor-processor 
interconnect 
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48-core shared-memory 
system from4x12-core 
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From University of Utrecht, EuroBen homepage: www.phys.uu.nl/eurben  

Check-exercise: try to find the (superscalar) issue width? Peak 
performance? of the Opteron/Magny Cours processor 

http://www.phys.uu.nl/eurben
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L1 cache: 64KB data, 64KB instruction 

Vector extensions 
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Thread model 

Thread: independent stream of instructions that can be 
scheduled by the OS. Typically, threads live inside an OS 
„process“, and shares all global information of the process 
(Thread: „smallest unit that can be independently scheduled“) 

Process: program in 
execution.  

UNIX process global information: 
•File pointers 
•Global variables 
•Static variables 
•Heap storage 

Per thread: local variables (stack), registers, „thread 
local storage“ 
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POSIX threads, pthreads 

Standard thread library API for UNIX (Linux etc.) since 1995: 
IEEE/ANSI 1003.1c-1995 
 
Official standard documents cost money; standard available as 
man pages, internet, several tutorials and books 

POSIX: Portable Operating Systems Interface for uniX 

Low-level interface for C/UNIX thread programming 

More modern thread model, including memory model: Java threads 
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(p)threads „Programming model“ 

1. Fork-join type parallelism: a thread can „spawn“ (start) any 
number of new threads (up to system limitations), wait for 
threads to terminate 
 

2. Initially one main („master“) thread is active. Code for 
thread is a procedure/function 
 

3. Spawned threads are peers, any thread can wait for 
termination of any other thread 
 

4. Threads are scheduled by the underlying system, may or 
may not run simultaneously, may or may not be scheduled to 
available processors/cores 
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5. No implicit synchronization between threads, threads 
progress independently, and asynchronously 
 

6. Threads share process global data 
 

7. Coordination mechanisms for protecting access to shared 
variables (locks, condition variables). All concurrent updates 
must be protected, otherwise program illegal, outcome 
undefined 
 

8. … 

Pthreads: no cost model, no memory model, … 
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Pragmatics (for parallel computing): runable threads are 
expected to be scheduled to free cores. Scheduling and binding 
(mapping to specific core) can be influenced 

Process: program in 
execution.  

M 

C0 C1 C2 C47 



©Jesper Larsson Träff WS11/12 

pthreads for C: 

Main program is main thread, spawns off and waits for 
termination of additional threads. Thread code: C function 

•Include header <pthread.h> 
 

•All pthread types and functions prefixed by pthread_ 
 

•pthread functions return error code, or status information, 
good practice to check!! (not done here…) 

Compile with 
 
gcc -Wall -o pthreadshello pthreadshello.c -pthread 
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Starting/spawning a thread 

#include <pthread.h> 

 

int pthread_create(pthread_t *thread,  

        const pthread_attr_t *attr, 

        void *(*start_routine)(void *), 

        void *arg); 

pthread_t: type of thread object (opaque), thread id returned 
here (pointer), must be allocated globally by spawning thread 

static pthread_t newthread 
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Starting/spawning a thread 

#include <pthread.h> 

 

int pthread_create(pthread_t *thread,  

        const pthread_attr_t *attr, 

        void *(*start_routine)(void *), 

        void *arg); 

void *(start_routine)(void *): type template for the 
function to run as thread. Takes arguments via generic pointer, 
returns generic pointer, standard C convention 

void *newcode(void *genericargs) { 

  myarg_t realargs = (myarg_t*)genericargs; 

  // work to be done by this thread 

} 
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Starting/spawning a thread 

#include <pthread.h> 

 

int pthread_create(pthread_t *thread,  

        const pthread_attr_t *attr, 

        void *(*start_routine)(void *), 

        void *arg); 

void *: pointer to arguments, must have beeen allocated by 
spawning thread in static memory (heap) 

struct { 

  // args 

} * 
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Starting/spawning a thread 

#include <pthread.h> 

 

int pthread_create(pthread_t *thread,  

        const pthread_attr_t *attr, 

        void *(*start_routine)(void *), 

        void *arg); 

Execution of thread can be influenced by attributes: 
stacksize, scheduling properties, … NULL, or 

Not this lecture 

#include <pthread.h> 

 

int pthread_attr_init(pthread_attr_t *attr); 

int pthread_attr_destroy(pthread_attr_t *attr);  
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Finalizing/terminating thread 

#include <pthread.h> 

 

void pthread_exit(void *status); 

Terminates thread, pointer to return status can be supplied; 
return status can be caught by joining thread 

Joining threads 

#include <pthread.h> 

 

int pthread_join(pthread_t thread, void **status); 
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int main () { 
  pthread _t t; 
    pthread_create(&t,…); 
  … // main continues 
 
 
} 

threadcode() { 
   // … 
  pthread_exit(NULL); 
} 

pthread_join(t,NULL); 

Main thread New thread Some other thread 
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#include <stdio.h> 

#include <stdlib.h> 

 

// pthreads header 

#include <pthread.h> 

 

// global state; here read-only – don‘t do this… 

int threads_glob; 

 

void *something(void *argument){ 

  int rank = (int)argument;   

 

  printf("Thread rank %d of %d responding\n", 

         rank,threads_glob); 

  pthread_exit(NULL); 

} 

A small example 

C style: cast void * 
argument back to 
intended type 



©Jesper Larsson Träff WS11/12 

#include <stdio.h> 

#include <stdlib.h> 

 

// pthreads header 

#include <pthread.h> 

 

// global state; here read-only – don‘t do this… 

int threads_glob; 

 

void *something(void *argument){ 

  int rank = (int)argument;   

 

  printf("Thread rank %d of %d responding\n", 

         rank,threads_glob); 

  pthread_exit(NULL); 

} 

A small example 

Here misuse of 
pointer to store rank 
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int main(int argc, char *argv[]){ 

  int threads, rank; 

  int i;  pthread_t *handle; 

 

  threads = 1; 

  for (i=1; i<argc&&argv[i][0]=='-'; i++) { 

    if (argv[i][1]=='t') 

      i++,sscanf(argv[i],"%d",&threads); 

  } 

  threads_glob = threads; 

  // number of threads read and stored globally 

 

  handle = 

    (pthread_t*)malloc(threads*sizeof(pthread_t)); 

  // fork the threads 

  for (i=0; i<threads; i++) { 

    pthread_create(&handle[i],NULL, 

        something,(void*)i); 

  } 

Getting 
command line 
arguments 

Local scalar variable cast into generic void 
pointer, correct, but dangerous misuse 
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#include <stdio.h> 

#include <stdlib.h> 

 

// pthreads header 

#include <pthread.h> 

 

// global state; here read-only – don‘t do this… 

int threads_glob; 

 

void *something(void *argument){ 

  int rank = *(int*)argument;   

 

  printf("Thread rank %d of %d responding\n", 

         rank,threads_glob); 

  pthread_exit(NULL); 

} 

Better: cast and 
deref 
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int main(int argc, char *argv[]){ 

  int threads, rank; 

  int i;  pthread_t *handle; 

 

  threads = 1; 

  for (i=1; i<argc&&argv[i][0]=='-'; i++) { 

    if (argv[i][1]=='t') 

      i++,sscanf(argv[i],"%d",&threads); 

  } 

  threads_glob = threads; 

  // number of threads read and stored globally 

 

  handle = 

    (pthread_t*)malloc(threads*sizeof(pthread_t)); 

  // fork the threads 

  for (i=0; i<threads; i++) { 

    pthread_create(&handle[i],NULL, 

        something,&i); 

  } 

Problem? 

Only one (local) variable, may be overwritten 
before thread has copied into local 
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Race condition:  
Outcome of parallel progam execution is dependent on the 
relative timing of the updates by processors/threads 

Example: 
a value (storage of i) is overwritten by one thread, may (or may 
not) happen before the other threads have read intended 
value. Program outcome dependent on relative timing of 
threads. Bad, unintended non-determinism… 
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int main(int argc, char *argv[]){ 

  int threads, *rank; 

  int i;  pthread_t *handle; 

 

  // … get the number of threads  

  handle = 

    (pthread_t*)malloc(threads*sizeof(pthread_t)); 

  rank = (int*)malloc(threads*sizeof(int)); 

  // fork the threads 

  for (i=0; i<threads; i++) { 

    rank[i] = i; 

    pthread_create(&handle[i],NULL, 

        something,&rank[i]); 

  } 

  // join the threads again 

  for (i=0; i<threads; i++) pthread_join(handle[i],NULL); 

  free(rank); free(handle); 

  return 0; 

} 

Own location for each 
thread, no overwrite 

Wait for threads to 
terminate Free storage nicely 
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#include <assert.h> 

 

int main(int argc, char *argv[]){ 

  int threads, *rank; 

  int i;  pthread_t *handle; 

 

  // … get the number of threads, allocate  

 

  // fork the threads 

  for (i=0; i<threads; i++) { 

    rank[i] = i; 

    errcode = pthread_create(&handle[i],NULL, 

            something,&rank[i]); 

    assert(errcode==0); 

  } 

  // … 

} 

Checking return codes with assertions 
Enables assertion 
checking, macro 
assert(expr); 

Assertion errcode==0 
expected to evaluate to 
true (≠0), otherwise abort 

#define NDEBUG 
// assertion checking disabled 
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for (i=0; i<threads; i++) { 

    rank[i] = i; 

    pthread_create(&handle[i],NULL, 

        something,&rank[i]); 

  } 

  // join the threads again 

  for (i=0; i<threads; i++) pthread_join(handle[i],NULL); 

Potential problem: sequential spawning of treads can limit 
scalability (Amdahl). 
 
In general: thread creation can be expensive 

Fix: spawn recursively 
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#include <pthread.h> 

 

pthread_t pthread_self(void); 

#include <pthread.h> 

 

int pthread_equal(pthread_t thread_1,  

       pthread_t thread_2); 

pthread_t thread identifiers are opaque; normally user gives 
thread „identity“ (as in example), a thread can inquire ist own 
pthread_t id; pthread_t id‘s can be compared 
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Explicit parallelization of data parallel loop 

for (i=0; i<n; i++) { 

   a[i] = f(i); 

} 

Thread i (on core i) performs 

for (i=start; i<end; i++) { 

   a[i] = f(i); 

} 

start = i*n/threads 
end = (i+1)*n/threads 
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Explicit parallelization of data parallel loop 

for (i=0; i<n; i++) { 

   a[i] = f(i); 

} 

loopblock(void *what)   

{ 

  rankindex_t *ix = (rankindex_t*)what; 

  int *a = ix->array; 

  int i, start=ix->start, end=ix->end ; 

 

  for (i=start; i<end; i++) a[i] = f(i); 

} 

typedef struct { 

  int *array;  

  // pointer shared, global data 

  int start, end; 

  int rank; // threads rank 

} rankindex_t; 

Function for 
loop block 

Arguments struct 
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Example: matrix-vector product 

for (i=0; i<n; i++) { 

  y[i] = 0; 

  for (j=0;j<m; j++) { 

    y[i] += x[i][j]*A[j]; 

  } 

} 

y= x*A, nxm matrix x, n vector A 

Nested loop 

Parallelized by tiling outer loop 

for (i=rank; i<n; i+=threads) { 

  y[i] = 0; 

  … 

Each thread rank 
handles every 
threads‘th index 
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for (i=rank; i<n; i+=threads) { 

  y[i] = 0; 

  for (j=0;j<m; j++) { 

    y[i] += x[i][j]*A[j]; 

  } 

} 

Thread rank: 

Problem? 

y[0] = 0; 

y[1] = 0; 

y[2] = 0; 

y[3] = 0; 

y values go into (local) caches 
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for (i=rank; i<n; i+=threads) { 

  y[i] = 0; 

  for (j=0;j<m; j++) { 

    y[i] += x[i][j]*A[j]; 

  } 

} 

Thread rank: 

y[0] +=  x[i][j]…; 

y[1] 

y[2] 

y[3] 

False sharing: updates on y causes 
either cache update traffic or 
invalidates/memory reads 

+=  x[i][j]…; 

+=  x[i][j]…; 

+=  x[i][j]…; 
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for (i=rank*n/p; i<(rank+1)*n/p; i++) { 

  y[i] = 0; 

  for (j=0;j<m; j++) { 

    y[i] += x[i][j]*a[j]; 

  } 

} 

Thread rank: 

Solution? 

Exercise: test effects of false sharing (best and worst cases) 
on TU Wien parallel computing shared-memory node, with 
explicit thread affinity 
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Binding threads to cores 

#define _GNU_SOURCE 

#include <pthread.h> 

 

int pthread_setaffinity_np(pthread_t thread,  

    size_t cpusetsize, 

    const cpu_set_t *cpuset); 

Int pthread_getaffinity_np(pthread_t thread, 

    size_t cpusetsize, 

    cpu_set_t *cpuset); 

_np: non-portable, non-standard extension to pthreads (but 
commonly supported in some form) 

Thread will be migrated to one of the cores in cpuset 
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Coordination constructs for avoiding race conditions 

•Locks/mutex‘es – for ensuring mutual exclusion 
 

•Condition variables 
 
 

•Advanced, non-standard features: semaphores, barriers, spin 
locks 

Note: these are all classical concurrent computing constructs. 
Some classical algorithms to solve the problems under weak 
architecture assumptions: Dekker‘s algorithm, Lamport‘s bakery, … 

Caution: the constructs were developed for few resources, not 
necessarily sufficient for highly parallel, scalable programming 
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Critical section: 
Code manipulating shared resources, that must not be 
concurrently manipulated by other active entities (threads, 
processes, …) 

Shared resources: simple variables, data structures, devices 

Pthread „model“: it is not allowed to update shared variables 
outside of critical sections. The lock constructs shall ensure a 
consistent view of memory. 

Mutual exclusion property/algorithm: at most one thread in 
given critical section 
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Lock: shared object between any number of threads.  
 
Lock state: locked (acquired), or unlocked (released) 
 
At most one thread can acquire the lock, must release after use. 
When a thread attempts to acquire a lock that is already 
acquired by another thread it is blocked, and waits until the lock 
is released 
 
If any thread that is waiting to acquire a lock is eventually 
granted the lock, the lock is called fair!! 

Locks 
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#include <pthread.h> 

 

Int pthread_mutex_init(pthread_mutex_t *mutex, 

      const pthread_mutex_attr *attr); 

#include <pthread.h> 

 

int pthread_mutex_destroy(pthread_mutex_t *mutex); 

Pthread lock is called mutex, type pthread_mutex_t 

Static allocation and initialization with 

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 

Dynamically allocated mutexes 
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#include <pthread.h> 

 

int pthread_mutex_lock(pthread_mutex_t *mutex); 

int pthread_mutex_unlock(pthread_mutex_t *mutex); 

Locking and unlocking 
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a = x; 

Thread 0: 

b = x; 

Thread 1: 

x = c; 

Thread 2: 

Race condition 

Unsafe program, what is the intended value of x for thread 0 
and 1? 

x = 0; 
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lock(&lock); 

a = x; 

unlock(&lock); 

Thread 0: 

lock(&lock); 

b = x; 

unlock(&lock); 

Thread 1: 

lock(&lock); 

x = c; 

unlock(&lock); 

Thread 2: 

Mutual exclusion enforced 

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 

Both read and write accesses to x need to be protected by the 
lock mutex 
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lock(&lock); 

a = x; 

unlock(&lock); 

Thread 0: 

lock(&lock); 

b = x; 

unlock(&lock); 

Thread 1: 

lock(&lock); 

x = c; 

unlock(&lock); 

Thread 2: 

Mutual exclusion enforced 

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 

Note: pthread locks are not fair, no guarantee that a thread 
trying to acquire a lock will eventually acquire it 
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lock(&lock); 

lock(&lock); 

a = x; 

unlock(&lock); 

Thread 0: 

lock(&lock); 

b = x; 

unlock(&lock); 

Thread 1: 

lock(&lock); 

x = c; 

unlock(&lock); 

Thread 2: 

Deadlock! 

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 

Deadlock: two or more threads are in a situation where they 
dependently on each other cannot progress. Deadlock will 
eventually proliferate to all threads 
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a = f(x); 

Thread 0: 

b = f(x); 

Thread 1: 

c = f(y); 

Thread 2: 

What about this? 

No apparent races, independent evaluation of some function f 

OK? Depends on f, must be such that it can indeed be 
executed concurrently: „tread safe“ 
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Thread safety 

1. Functions that do not protect (write access) to shared 
variables 

2. Functions that keep state over successive invocations 
(static variables).  

3. Functions that return pointers to static variables 
4. Functions that call thread-unsafe functions  

Tautological definition: a function is thread-safe if it can be 
executed concurrently by any number of threads and will always 
produce correct results 

Non-thread safe functions are 
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Careful with functions supplied by other party, e.g. system 
functions 
 
Example: rand() keeps state internally in static variables, 
notoriously not thread safe 

Some system functions are made thread safe by locking. Can 
have undesirable effects – serialization slowdown, deadlock 


