
Exercise 3 (Summer 2019)
6.0 VU Advanced Database Systems

Information

General

Work through the exercises below and write a report on your answers. Submit the report as

a single zip �le containing your report as pdf and the JSON �les for Exercise 2 in TUWEL

and register for an exercise interview. You can only receive points for this exercise if

you attend the interview. We expect you to explain your work in your report, i.e., it is

not enough to only write the �nal answers. Show how you arrived at your answers and, where

applicable, discuss your results. We will not accept any handwritten reports!

Deadlines

at latest June 17th 12:00 Upload your submission on TUWEL

at latest June 17th 23:55 Register for an exercise interview in TUWEL

Exercise Interviews

In the solution discussion, the correctness of your solution as well as your understanding of the

underlying concepts will be assessed. Every group member has to be able to explain

all parts of your submission.

The scoring of your submission is primarily based on your performance at the solution dis-

cussion. Therefore it is possible (in extreme cases) to get 0 points even though the submitted

solution was technically correct.

Please be punctual for your solution discussion. Otherwise we cannot guarantee that your

full solution can be graded in your assigned time slot. Remember to bring your student id to

the solution discussion. It is not possible to score your solution without an id.

Question Sessions

About a week before the submission deadline, we o�er question sessions to help you with any

problems you have with the exercises. The goal of these sessions is to help you understand

the material, not to check your solutions or solve the exercises for you. In this spirit we also

ask that you engage with the exercise sheet before coming to the session. Participation is

completely optional.

Exact times and locations will be announced on TUWEL.

TUWEL Forum

You can use the course forum on TUWEL for clarifying questions regarding the exercise sheets. Please
do not post your solutions (even partial) on the forum.

1

Exercise 3 ADBS 2019 2

Exercises

Exercise 1 (Distributed Joins) [2 points] Find the distributed execution strategy for the

joins that minimizes communication cost (number of bytes transferred in this case). To do

this, compute the communication costs for the strategies presented in the lecture (slide 46

onward of the DDBMS slides) and compare the results.

For the whole exercise assume a distributed database with 4 sites and three relations Users,

Orders, Products. The details of the scenario are described in Figure 1. You can assume

that all relations are non-fragmented and all records (and attributes) are �xed-size.

Relation Site # Records Record Size (byte)

Users 1 40 000 800

Orders 2 900 000 30

Products 3 1500 2 000

Relation Attribute Size

Orders price 4

Orders prod 8

Orders user 8

Users uid 8

Users name 100

Products pid 8

Figure 1: Scenario for Exercise 1

(a) Compute the communication cost of all strategies from the slides (and listed below) and

�nd the strategy that minimizes communication cost for the Query 1 if we want the

result at site 4. Assume a selectivity of 1
360 000 for the join.

Strategies:

• Send both tables to site 4 and join there.

• Send Users to site 2, join there and send the result to site 4.

• Symmetrically: Send Orders to site 1, join there and send the result to site 4.

• Send only the join attributes of Users to site 2, semi join with Orders, send the

result back to site 1 to compute the full join. Finally transfer the full join to site

4.

• The semi-join strategy in the opposite direction.

πname,price(Users onuid=user Orders) (1)

Hint: For the result size of a semi-join A n B, you can use min{|A on B|, |A|} as a
worst-case estimate

(a*) Vary the strategies above in such a way, that you always project to only the necessary

columns as early as possible. How does the amount of data that needs to be transferred

change?

Exercise 3 ADBS 2019 3

(b) Now consider how to generalize the strategies of task (a*) above to situations with more

than 2 relations and �nd the strategy with optimal communication cost for Query 2

given below. Again we want the result at site 4. Again, assume a selectivity of 1
360 000

for the join between Users and Orders. For the outside join assume a selectivity of
1

5000 .

For this task you can skip calculating the communication costs for all those strategies

that cannot result in minimal communication costs. If you do so, explain why you can
skip the respective calculations.

Products onpid=prod πname,price,prod(Users onuid=user Orders) (2)

Exercise 3 ADBS 2019 4

Exercise 2 (Denormalization) [3 points]
Consider a library lending system implemented in a traditional RDBMS and assume that

you want to migrate this system to use a document store using JSON representation instead.

The relational model has 4 tables book, edition, person, borrowed; an example instance

(the key is underlined in each relation) is given below. Conceive a data model for your

document store system and translate the example instance to JSON �les �tting your data

model. You are allowed to add new attributes, denormalize relations, and make other similar

changes for your new data model.

As discussed in the lecture, data models are designed with speci�c workloads in mind.

Tradeo�s may be necessary, if so, describe them in your report. For this exercise consider the

following parameters:

• Two queries should be fast:

� Listing all people who have borrowed a book for more than two weeks and not

returned it yet (not returned means no to value in the borrowed relation).

� Asking if any edition of a book is currently available to be borrowed.

(i.e., owned - borrowed but not yet returned books > 0)

• The borrowed relation is updated frequently (and needs to be e�cient). For all other

relations, updates are rare and can be more expensive.

Your submission for this exercise should have two parts. A description of your

data model in your report and the resulting JSON �les.

Book
id name authors

1 Computational Complexity Papadimitrou

2 Parameterized Complexity Theory Flum, Grohe

3 Fundamentals of Database Systems Elmasri, Navathe

Borrowed
who book edition from to

Charles 2 1 01-03-2009 05-12-2010

Rachel 3 2 22-09-1994 17-01-1997

Rachel 3 7 05-11-2010 01-12-2010

Tom 3 7 01-05-2019

Charles 1 1 21-03-1995 29-04-1995
An empty to value signi�es that the book was not yet returned.

Edition

book edition year isbn owned

1 1 1993 0201530821 3

3 7 2017 1292097612 1

3 6 2010 0136086209 2

3 2 1994 0805317481 6

2 1 2006 3642067573 3
The owned column stores how many books the library
owns in total, not how many are currently available.
I.e., the number is not updated when somebody borrows
a book.

Person

name address

Charles 420 Paper St

Rachel 90 Bedford St

Tom 41-505 Kalanianaole Highway

Exercise 3 ADBS 2019 5

Exercise 3 (Graph Databases) [5 points]
For this exercise you are supposed to familiarize yourself with Neo4j and the Cypher query

language to experience the basic usage of graph databases. The lecture on graph databases

contained an introduction to Cypher. Beyond that, we recommend the o�cial tutorial1 as a

supplement, should you need one.

The exercise is based on the graph database representation of a large collection of leaked

documents regarding o�shore shell corporations and similar constructs created by the Interna-

tional Consortium of Investigative Journalists. The dataset is conveniently provided bundled

in a special distribution of Neo4j that automates all the necessary setup. You can �nd the

respective executables for Linux, Windows and OSX here: https://offshoreleaks.icij.

org/pages/database.2

Intro to the Dataset

Figure 2: Main data model.

The best introduction to the dataset is through the o�cial tutorial. It should open automat-

ically after opening the Neo4j browser. If it doesn't, you can open it manually by executing

the following command in the Neo4j browser.

:play https://offshoreleaks-data.icij.org/offshoreleaks/neo4j/guide/index.html

Following the few slides there should give you a basic overview of the dataset. In the o�cial

documentation the data model is described with the image in Figure 2, this is outdated.

There are no more edges of types DIRECTOR_OF and SHAREHOLDER_OF, they have been all been

combined together in the OFFICER_OF type. You can always see the full meta graph with CALL

db.schema().

1https://neo4j.com/developer/cypher-query-language/
2You will likely be prompted with the option to update the client and/or dataset. You can complete the
exercise with or without the updates.

https://offshoreleaks.icij.org/pages/database
https://offshoreleaks.icij.org/pages/database
https://neo4j.com/developer/cypher-query-language/

Exercise 3 ADBS 2019 6

Figure 3: Export as Image From Neo4j Browser

Your Tasks

Provide the requested queries in your solution and where sensible also provide pictures of the

output graph. The neo4j browser has in-built support for exporting the graph as an image

(cf. Figure 3).

(a) Two basic queries to start with:

• List all the distinct countries for which addresses are registered in the database.

Hint: Output some nodes with the output format set to table to see what attributes
are usually present in the nodes.

• Choose one of these countries and list 5 entities which are based in that country.

Note: Neo4j (and most other) graph databases are schemaless by default. This means

that the database does not verify that every Address or Entity does in fact have spe-

ci�c attributes. In all tasks of exercise 3 you can ignore nodes where necessary prop-

erties are missing. In the Neo4j Enterprise Edition it is in fact possible to add as-

pects of having a schema via constraints, for more information you can check out the

Neo4j constraints guide (not necessary for the exercise): https://neo4j.com/docs/

cypher-manual/current/schema/constraints/.

(b) i First, �nd the 10 top intermediaries, i.e. those 10 intermediaries that have the

most outgoing INTERMEDIARY_OF edges. Output the name of the intermediary as

well as the number of relevant edges.

ii Extend the query of i to also count outgoing OFFICER_OF edges to determine the

top intermediaries. Output the name of the intermediary as well as the number of

relevant edges.

iii For the top intermediary from query ii, output all the outgoing edges, except for

those that have type either OFFICER_OF or INTERMEDIARY_OF. Also output the

respective nodes at the other side of the edges. Hint: You can access the type of
an edge e in Cypher using type(e).

(c) Find a shortest undirected path between an Address in Luxembourg and an Address in

Cyprus where the path has a length of at least 16 and at most 30. (Hint: such a path
exiss, i.e., the result should not empty.) Neo4j provides the shortestPath function for

these type of problems. Be aware that this will not return the singular shortest path

between any nodes. Rather, shortestPath returns a shortest path for each match. For

an example look at the output of:

MATCH p=shortestPath((e:Entity)-[*]-(i:Intermediary))

WHERE e.name=i.name AND i.name='A+ Fund'

RETURN e.node_id,i.node_id,length(p)

https://neo4j.com/docs/cypher-manual/current/schema/constraints/
https://neo4j.com/docs/cypher-manual/current/schema/constraints/

Exercise 3 ADBS 2019 7

You will see that because there are three Entities that �t the criteria, we get the shortest

path to each of them returned. (If you want to see the full relevant subgraph visually,

change return statement to read just RETURN p)

(d) Find one (use LIMIT 1) subgraph of the form speci�ed in Figure 4 in the database.

Furthermore, the two entities should be in di�erent countries and at least one of the

entities should have di�erent values in its jurisdiction and country_codes attributes.

Figure 4: Subgraph for Query

(e) For the �nal task we want to make the countries attribute a real part of the graph.

The best way to do this is in Neo4j is using the MERGE keyword inside of a MATCH. The

task is restricted to the nodes with label Other to avoid processing an unnecessarily

large amount of data.

• First, recall what you learned about the MERGE keyword in the lecture. As a sup-

plementary source of information about MERGE, we recommend the documentation:

https://neo4j.com/docs/cypher-manual/current/clauses/merge/.

• Write a query that for each node o with label Other performs the following actions:

� Add an edge with type IN_COUNTRY going to a node with label COUNTRY that

has a name attribute that matches the contents of o.countries.

� Make sure that you don't create duplicate countries or duplicate edges.

� If the node o has no countries attribute, do nothing for this node.

• When done, write a query to show all the nodes connected to your favorite country

in the database. The output should look like the example in Figure 5.

Figure 5: Example of Final Query Output

https://neo4j.com/docs/cypher-manual/current/clauses/merge/

Exercise 3 ADBS 2019 8

Hint 1: In some cases, the �eld countries contains multiple countries, separated by

semicolons. You are allowed to simply exclude those cases (e.g., NOT o.countries

contains ';'). If you want to challenge yourself, try �nding a way to add the relation-

ship for all the countries in the attribute. (This is completely optional, you can get full

credits without doing this.)

Hint 2: If you've created wrong entries while experimenting, you can delete them using

MATCH (c:Country)-[r]-() DELETE r DELETE c;

