
Exercise 1 (Summer 2019)
6.0 VU Advanced Database Systems

Information

General

Work through the exercises below and write a report on your answers. Submit the report as
a single pdf �le (max. 20MB) in TUWEL and register for an exercise interview. You can
only receive points for this exercise if you attend the interview. We expect you to
explain your work in your report, i.e., it is not enough to only write the �nal answers. Show
how you arrived at your answers and, where applicable, discuss your results. We will not
accept any handwritten reports!
Some parts of this exercise involve working on a PostgreSQL DBMS. For these exercises we

will provide you with access to a PostgreSQL server (version 9.6). You can connect via SSH
at bordo.dbai.tuwien.ac.at and access the server via psql. You will receive your account
information via email.

Deadlines

at latest April 8th 12:00 Upload your submission on TUWEL
at latest April 9th 23:55 Register for an exercise interview in TUWEL

Exercise Interviews

In the solution discussion, the correctness of your solution as well as your understanding of the
underlying concepts will be assessed. Every group member has to be able to explain
all parts of your submission.
The scoring of your submission is primarily based on your performance at the solution dis-

cussion. Therefore it is possible (in extreme cases) to get 0 points even though the submitted
solution was technically correct.
Please be punctual for your solution discussion. Otherwise we cannot guarantee that your

full solution can be graded in your assigned time slot. Remember to bring your student id to
the solution discussion. It is not possible to score your solution without an id.

Question Sessions

About a week before the submission deadline, we o�er question sessions to help you with any
problems you have with the exercises. The goal of these sessions is to help you understand
the material, not to check your solutions or solve the exercises for you. In this spirit we also
ask that you engage with the exercise sheet before coming to the session. Participation is
completely optional.
Exact times and locations will be announced on TUWEL.

TUWEL Forum

You can use the course forum on TUWEL for clarifying questions regarding the exercise sheets. Please
do not post your solutions (even partial) on the forum.

Attribution

The dataset used in the �nal exercise is based on the stackexchange data dump available here https:

//archive.org/details/stackexchange.

1

https://archive.org/details/stackexchange
https://archive.org/details/stackexchange

Exercise 1 ADBS 2019 2

Exercises

Exercise 1 (Disk Access) [1 points]
Consider a magnetic disk with the following characteristics:
� Block size: 8 kB
� Rotational speed: 10000 rpm
� Average seek time: 4ms
� Transfer rate: 130 MB/s
� Track-to-track seek time: 0.2ms
� Average track size 512kB

(a) Calculate the average rotational delay and the transfer time for a single block. What is
the average time to locate and transfer a block?

(b) What is the average time it would take to transfer 20 random blocks. Compare it with
the time it would take to transfer 20 consecutive blocks.

Now consider a �le students with 40000 �xed-length records. Each record has the following
�elds name (120 bytes), birthdate (8 bytes), mnr (12 bytes), program (4 bytes). An additional
byte is used as a deletion marker. The �le is stored on the disk described above.

(c) Calculate the record size in bytes.

(d) Calculate the blocking factor and the number of blocks used by the �le, assuming an
unspanned organization. Furthermore, calculate the wasted space in each disk block
because of the unspanned organization.

(e) Calculate the average time needed to search for an arbitrary record, using linear search,
if the �le blocks are stored on consecutive disk blocks. Compare it with the case where
the �le blocks are not stored contiguously.

(f) Assume that the records are ordered via some key �eld. Calculate the average number
of block access and the average time needed to search for an arbitrary unique record in
the �le using binary search. (It does not matter if the blocks are stored contiguously or
not)

Exercise 2 (I/O in Query Plans) [2 points]
Consider the �les works_on, project and employee, referred to as w, p, e respectively. The

number of records n and record size R (in bytes) for each �le is given as follows: nw =
55000, np = 2000, ne = 125000, Rw = 14, Rp = 120, Re = 65.

(a) Assume your DBMS is backed by a SSD with 340 MB/s transfer rate that writes/reads
in blocks of 64kB. Your DBMS organizes its data in blocks of 16kB with unspanned
organization. For each �le, its blocks are contiguous. The DBMS has created the query
plan shown in Figure 1 which relies on sequential scans (Called Seq Scan in Postgres
query plans).

A sequential scan simply iterates over the whole relation in a sequential manner, possibly
applying �lters, and collecting the information required by the next step.

How much time is spent on disk I/O in the execution of this query in the worst case?
(You can assume that the intermediate results and hashes are stored in main memory
and don't require any additional I/O.)

Exercise 1 ADBS 2019 3

Hash Join

Hash Cond: (w.ssn = e.essn)

-> Hash Join

Hash Cond: (w.pno = p.pnumber)

-> Seq Scan on works_on w

-> Hash

-> Seq Scan on project p

Filter: ((pname)::text = 'Aquarius'::text)

-> Hash

-> Seq Scan on employee e

Filter: ((bdate)::text > '1957-12-31'::text)

Figure 1: Query plan A

(b) A hash index for project is introduced. The query planner has now decided on a bitmap
index scan instead of a sequential scan to read project (see Figure 2).

A Bitmap Index Scan returns a bitmap of potential tuple locations by scanning the
index; it does not access the table itself. The bitmap is used by an ancestor Bitmap

Heap Scan node that reads and checks the returned potential locations.

Hash Join

Hash Cond: (w.ssn = e.essn)

-> Hash Join

Hash Cond: (w.pno = p.pnumber)

-> Seq Scan on works_on w

-> Hash

-> Bitmap Heap Scan on project p

Recheck Cond: ((pname)::text = 'Aquarius'::text)

-> Bitmap Index Scan on project_pname_idx

Index Cond: ((pname)::text = 'Aquarius'::text)

-> Hash

-> Seq Scan on employee e

Filter: ((bdate)::text > '1957-12-31'::text)

Figure 2: Query plan B

Assume that there are 3 projects with name Aquarius and that the bitmap index returns
exactly the locations of those 3 tuples. Assume that the index has to be read from disk
where it uses 18kB of contiguous space. (You can again assume that the intermediate
results and hashes are stored in main memory and don't require any additional I/O.)

How much time is now spent on disk access in this new query? Discuss your results and
how they compare to part (a) of this exercise. Can you think of cases where bitmap
scans are more bene�cial?

Exercise 3 (Selectivity) [3 points]

(a) Your DBMS saves equi-depth histograms to support selectivity calculation for query
planning. In particular, for the column votes of a table movie_reviews with 4000

Exercise 1 ADBS 2019 4

rows, the following 7 values divide the column values into 8 groups of equal size:
4, 12, 16, 23, 36, 62, 133. Furthermore, the DBMS has stored the maximum value in the
column: 175.

Estimate the selectivity for the following two predicates as accurately as possible. As-
sume that values are evenly distributed inside the buckets.

i) votes < 20

ii) votes > 140

(b) Histograms provide little useful information for estimating the selectivity of equalities.
Saving the number of di�erent values of an attribute allows for reasonable approximation
in those cases. For the column votes you know that there are 180 di�erent values;
estimate the selectivity of the following two constraints.

i) votes = 5

ii) votes != 9

Consider how a DBMS can keep track of this number. What trade-o�s are introduced?

(c) To approximate the selectivity of equality constraints even better, your DBMS addition-
ally saves some further information on the most common values and their frequency.
The list of values with frequencies for votes: (5; 11%), (9; 8%), (15; 8%), (26; 3%). Fur-
thermore, the histogram of task (a) is available for selectivity estimations. For this task,
assume that the most frequent values listed above (5, 9, 15, 26) were excluded for the
calculation of the histogram.

Propose a reasonable selectivity of the following combined predicates. Argue your pro-
posed methods for combining the selectivity over AND/OR.

i) votes != 9 AND votes < 30

ii) votes = 15 OR votes > 50

(d) Given the following query and statistics information (as speci�ed in the previous tasks)
for the rows and their attributes. Choose a good ordering of joins and selection opera-
tions based on the available information. Don't forget to give reasons for your solution
in your report.

SELECT * FROM room ro

JOIN reservation re ON re.room = ro.name

JOIN course c ON c.courseid = re.course

WHERE (c.coursename = 'ADBS' OR c.ects > 6)

AND ro.capacity < 300

AND ro.building != 'Freihaus';

Attribute Histogram Maximum Distinct Values

course.coursename � � 490
course.ects {2, 3, 5, 8} 162 16

course.courseid � � 540
room.capacity {18, 64, 95, 120} 480 120
room.building � � 11
room.name � � 1700

Table Rows

course 540
room 1700

reservation 12800

Exercise 1 ADBS 2019 5

(e) Which join strategies would you choose in task (d)? What further information could
help to inform the choice of join strategies or improve your selectivity estimations?

Note: This is very similar to how Postgres manages its statistics. Check out the n_distinct,
histogram_bounds, and most_common_values values in the pg_stats table; see https: //

www. postgresql. org/ docs/ 9. 6/ view-pg-stats. html .

Note for Exercises 4 and 5: For more consistent results make sure to manually
trigger statistics collection in Postgres by using ANALYZE1 after your created your
tables.

Exercise 4 (The Query Planner and You) [4 points] In this exercise we will investigate
the behavior of the PostgreSQL query planner using a so-called triangle join as our guiding
example. We have three binary relations R,S, T that each share one attribute name with one
another and want to compute R on S on T . First, create the relations with random test data:

create table r as select (random()*100)::int as a, (random()*20)::int as b

from generate_series(1, 10000);

create table s as select (random()*100)::int as b, (random()*20)::int as c

from generate_series(1, 10000);

create table t as select (random()*10)::int as a, (random()*20)::int as c

from generate_series(1, 10000);

We will �rst consider the direct translation of our query to SQL:

SELECT a,b,c FROM r NATURAL JOIN s NATURAL JOIN t;

(a) Which join strategy is chosen by default?

(b) There are three major types of join strategies that PostgreSQL chooses from. Nested
loop joins, sort-merge joins and hash joins. For each of these strategies, con�g-
ure the query planner in such a way that you get a plan using only one join
implementation. Compare the performance of these plans among each other and
to the plan of task (a). You can disable join strategies using the commands
set enable_{hashjoin|mergejoin|nestloop}=0;.

Try to explain the di�erences in performance. Can you change the creation process (the
numbers in the CREATE statements) in such a way that the relative performance changes
signi�cantly? Argue why.

(c) What e�ect do indices have on the query plan and the performance for this query?

Theory tells us that a good (albeit not optimal) way to compute a triangle join is to compute
it as (R on T)n S. This statement is equivalent to our original query2.

(d) Reformulate the query in a way that more directly expresses the computation as (R on
T)n S. The formulation used in tasks (a) and (b) returns some duplicate answers. For
your new query it su�ces to return the same set of answers, i.e., how often a answer is
repeated does not matter. (Remember to reenable all features of the planner, e.g., using

1https://www.postgresql.org/docs/9.6/sql-analyze.html
2This is only the case because of the concrete structure of the query, i.e., the way in which R,S and T are

connected via their attribute names. This is not true in general

https://www.postgresql.org/docs/9.6/view-pg-stats.html
https://www.postgresql.org/docs/9.6/view-pg-stats.html
https://www.postgresql.org/docs/9.6/sql-analyze.html

Exercise 1 ADBS 2019 6

the statement RESET ALL;) Does the query plan match your expectations? Discuss the
performance compared to task (a).

Hint: Semi joins commonly correspond to the IN or EXISTS keywords.

(e) Can you �nd a way to make the query planner decide on a plan that consists of a hash
join followed by a hash semi join for (d)? Explain how and discuss the performance of
this version of the query.

(f) Continuing your results from task (e), try changing the relation order, i.e., try (R on
S)n T and (S on T)nR. Are there any di�erences?

Exercise 5 (Optimizing Queries) [5 points] You have started a new job. Your team has
heard of your experience in advanced database systems and has asked you if you could look
over some of their old SQL queries. They suspect that changes over time have resulted in
some legacy queries with suboptimal performance.
Investigate the following queries on the database provided to you as optdb.sql3 at the path
/home/student/optdb.sql on the bordo server. Use what you have learned in the course
to improve the performance of the following queries. Take care not to change the results
of the query and make sure your optimized query is as general as the original one. (E.g.,
don't hardcode values from the database, you never know when they might change.) Be
sure to include a discussion of your thought process, approaches you tried that didn't work
well and relevant query plans in your report. Explain why you believe that no further
reasonable optimzations exist!
Hint: It is often hard to see when the query planner makes bad estimations in the default

output format. You can use the Postgres EXPLAIN Visualizer4 to get a better overview of
what steps are slow, costly or badly estimated. You are welcome to use screenshots of the
visualized query plans in your report where apt.
For the sake of comparability please work on bordo.dbai.tuwien.ca.at and optimize

for performance there.

(a) SELECT distinct(displayname) FROM users u

WHERE id IN (SELECT owneruserid FROM posts p WHERE p.viewcount > u.views);

(b) SELECT score FROM comments WHERE lower(substring(text for 3)) = 'yes';

(c) The following statement queries the ids of all those posts where all its votes have
votetypeid = 2. It is a rather common bad practice to solve such problems via count-
ing as in the query below. This is a very ine�ective way of expressing this type of query.
Find a di�erent way to achieve the same result (and, if possible, also �nd further ways
to improve performance).

SELECT DISTINCT postid FROM votes v

WHERE (SELECT COUNT(*) FROM votes v2

WHERE v2.postid = v.postid AND v2.votetypeid = 2)

= (SELECT COUNT(*) FROM votes v2 WHERE v2.postid = v.postid);

(d) Even though nobody understands what it does, the following query is crucial for the
software your team is working on. For complex queries it is often best to approach the

3You can import it by executing it in psql: psql -a -f path_to_optdb.sql. If you import from psql with

the \i command you will have to exit and restart psql before you see the tables properly.
4http://tatiyants.com/pev/#/plans/new

http://tatiyants.com/pev/#/plans/new

Exercise 1 ADBS 2019 7

optimization process step by step. Use EXPLAIN ANALYZE to identify slow nodes in the
query plan and �nd ways to speed up execution of the query. Make sure to document
how your decisions were motivated in your report.

SELECT p.*, c.*, u.* FROM posts p, comments c, users u, badges b

WHERE c.postid=p.id

AND u.id=p.owneruserid

AND u.upvotes+3 >= (SELECT AVG(upvotes)

FROM users

WHERE u.creationdate > c.creationdate)

AND EXISTS (SELECT 1 FROM postlinks l WHERE l.relatedpostid > p.id)

AND u.id = b.userid

AND (b.name SIMILAR TO 'Autobiographer' OR

b.name SIMILAR TO 'Supporter');

