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Distributed memory architectures & machines

Distributed memory

M M M o architecture model

Naive distributed memory parallel programming model:
independent, non-synchronized processors execute locally stored
program on local data, interaction with other processors
exclusively through (explicit) communication facilitated by
communication network
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Programming model:

*How is communication done, which communication operations?
Synchronization and coordination

*Local vs. non-local data?

*How is locality expressed ? Explicit/implicit/hierarchical?

Cost model:
«Communication, local vs. non-local memory access
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.Pure” distributed memory system architecture:

Single processors with local memory communicate through
communication network. Properties of network determines
performance.

Network properties:

Structure : topology

Capabilities: one or several operations per network component
‘Routing technique

*Switching strategy

This lecture: a little bit about topology
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Network fopology modeled as (un)directed graph G=(V,E)

Nodes V: processors and network switches - network elements
Edges E: links between network elements

(uv)inkE:
there is a direct link from element u to element v

w

Path from u to w:

length of shortest path
lower bounds communication
latency between u and w
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w

diameter(G): max(|shortest path(u,v)| over all u,v in V)

Lower bounds number of communication rounds
for collective communication operations

degree(G): max degree (edges of) a node in G

.cost factor". High-degree gives potential for
more simultaneous communication (multi-port)
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finding bisection

"0 width of arbitrary
topology is NP-

hard. Graph

Partitioning

bisection width(G): minimum number of edges to remove to
partition V into two equal-sized, disconnected parts

bisection width(G): min(|{(u,v) in E, uin V1, vin V2}|) over all
partitions V1, V2 of V with |V1|#|V2])

Lower bounds transpose operations: all
processors have to exchange information with all
other processors
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Broadcast in communication networks

Problem: one processor has data to be communicated to all
other processors. Processor with data initially called root

w

Assume data are indivisible
units (still no cost model)
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The ideal case: fully connected network

G =(V,E) is the complete graph, each processor is directly
connected to each other processor

diameter = 1
bisection width = (p/2)"2

Expensive: p”~2-p links (cables,
switch-ports, ...), degree = p-1
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Broadcast in fully connected network

Problem: one processor has data to be communicated to all
other processors. Processor with data initially called root

Algorithm:

1. If|V|=1done

2. Divide processors into two roughly
equal-sized sets V1 and V2

3. Assume root r in V1, choose local
root rr in V2

4. Send data from r to rr

5. Recursively broadcast in V1 and V2
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Algorithm:

1. If|V|=1done

2. Divide processors into two roughly equal-sized sets V1 and V2
3. Assume root r in V1, choose local root rr in V2

4. Send data fromr to rr

5. Recursively broadcast in V1 and V2

Analysis: assume communication takes place in synchronized
communication rounds. After step 4, two problems of half the
original size are solved independently. Algorithm takes ceil(log_2
p) rounds for all processors to have received data

Note: ceil(log_2 p)>diameter(G). Can we do better?

WSs11/12 ©Jesper Larsson Trdff m n




.

Computing

Algorithm:

1. If|V|=1done

2. Divide processors into two roughly equal-sized sets V1 and V2
3. Assume root r in V1, choose local root rr in V2

4. Send data fromr to rr

5. Recursively broadcast in V1 and V2

Fundamental lower bound:
At least ceil(log_2 p) communication rounds are needed for the
broadcast problem.

Proof: in each round the number of processors that have the
data can at most double (namely when each processor sends to
a processor that did not have data)
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Algorithm:

1. If|V|=1done

2. Divide processors into two roughly equal-sized sets V1 and V2
3. Assume root r in V1, choose local root rr in V2

4. Send data fromr to rr

5. Recursively broadcast in V1 and V2

Theorem:
recursive (binomial tree - why?) algorithm matches lower
bound on humber of communication rounds

Hidden assumption: only one communication operation per
processor in each round (1-ported communication)
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The worst case: linear array, ring, tree

Both: removing one (two for ring) link disconnects network.
Bisection width is therefore 1 (2 for ring)

diameter = p-1 (p/2 for ring)  diameter = 2 log_2 ((p+1)/2)

Both: diameter determines broadcast complexity
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The worst case: linear array, ring, tree

Both: removing one (two for ring) link disconnects network.
Bisection width is therefore 1 (2 for ring)

degree =2 degree = 3
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Mesh, torus

~wrap-around” for tori

diameter(mesh) = d (d/p-1)
diameter(torus) = d floor(d/p/2)
£\

d'th root

Both: diameter determines broadcast complexity
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~wrap-around” for tori

bisection width(mesh) = p”((d-1)/d)
bisection width(torus) = 2p”((d-1)/d)

Both: bisection bandwidth determines tranpose/alltoall
communication complexity
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Hypercube

k dimensional
hypercube
composed
from 2 (k-1)
dimensional
hypecubes

2”3

p=2"1 p=2"2 p

diameter = k (= log_2 p)
bisection width = p/2
degree = k (= log_2 p)

Diameter determines broadcast complexity
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Examples:

Fully connected:
rare, expensive; full crossbar between shared-memory nodes in
NEC Earth Simulator (2002-2004). In switches of multi-stage

networks

Ring: low-end, ethernet???
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Other topologies (perhaps later lecture)

Multi-stage networks:
*Clos

Butterfly

‘Fat tree

Routing terminology
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Transmission cost model

Simple, first assumption

Cost of transmitting (indivisible) data of size m along edge (u,v)
in communication network linear in m

T = a+pm

a: .start-up” latency
b : time per unit (Byte)

In this model:
Recursive/binomial tree broadcast: log_2 p(a+pm)
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Lower bound on broadcast in linear cost, fully connected network
model is

min(a log_2 p,a+pm)

a log_2 p: log_2 p communication rounds, each communication
incurring one ,start-up”
pm: the m data units have to leave the root

Why not log_2 p(a+ pm) ? Answer: m need not be sent as
one unit, ,pipelining"

Question: possible to achieve Answer: yes; perhaps other
both lower bounds? lecture
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Hybrid/hierarchical architectures:

Shared-memory ,.nodes" connected through communication
hetwork

006 © 000 © 606 © 606 ©

E.g. traditional SMP cluster
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Hybrid/hierarchical architectures:

Shared-memory ,.nodes" connected through communication
hetwork

¢ &

006 © 000 © 606 © 600 ©
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Shared vs. distributed: A matter of degree...

4P Socket G34 Server Platform
12/8 core Processor Support

Shared memory architecture,
because hardware transparently

g;;%"channel :_ [ .
u u - provides access to remote
% % memory

12 DIMMS pe

Programming-model wise: could
make sense to treat as
distributed memory system - to
emphasize locality
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TU Wien parallel computing hybrid distributed memory machine

36 shared-memory nodes

*InfiniBand QDR switch,

*Node with 2x8-core AMD .magny cours” processor, 2,36Hz
32 GByte shared-memory/node

1TB local disk/node

*Total 576 processor-cores
*Total 1052GByte (~1TB) system memory

Exercise: peak performance?
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Mellanox InfiniBand switch MT4036

36 40Gb/s ports
‘up to 2.88 Tb/s of available bandwidth
*latency of 100 nanoseconds

System configuration by [NJEEQC Empowered by innovation

Basic software:
*NEC MPT
*Mpich2 MPT
*OpenMPI
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MPI - the Message-Passing Interface

De facto standard for parallel programming in the message
passing paradigm; most well-known implementation of message
passing, shared nothing programming model:

Single applications on dedicated clusters and HPC systems
with non-trivial communication requirements

*HPC applications (almost) exclusively with MPT
*Many, many parallel application for clusters, medium sized systems
Paradigmatic realization of the message passing abstraction

*Well-engineered standard, lots to learn for other interfaces
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Message passing abstraction/programming model

O—0® ©®®

*Finite set of sequential processes communicate through a
communication medium; communication between all processes
possible

‘Processes communicate by (explicitly) sending and receiving
messages

*No implicit synchronization between processes, only communication
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‘Roots in e.g. CSP (Communicating Sequential Processes) [Hoare78]
«Semantic/logical abstraction

*No performance model

Inherent strengths of message passing model

No global data, no race conditions, no global clock, synchronization
implicit with communication
‘Enforces to think in ferms of locality; where are the data?
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realized by some physical

Message passing abstraction s
9ep 9 communication nhetwork

o Topology:
M *Fully connected
*Mesh/Torus
<> *Fat tree
P ....
Realization:
Processor *InfiniBand
*Myrinet
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MPT realizes the message passing abstraction

*MPTI processes bound to processors/cores
Private address spaces, ordinary C or Fortran programs
*Explicit communication: point-to-point, collective, one-sided

‘No performance model

.. with many extra features

*Parallel I/0O
*Dynamic process management
*Data descriptions

Process topologies
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MPT design principles/imperatives

*High-performance: communication functions close to typical
“hardware" functionality, low protocol stack overhead
Portabilityllll Scalabilitylll

Support library building, application specific libraries
‘Memory efficient: little dynamic memory (O(1)?) needed by
MPI functions, memory (communication buffers) in user-space
Coexist with other parallel interfaces (OpenMP, threads, ...)
Support (not hinder) construction of fools

Support heterogeneous systems (data representation)

*Support SPMD or MIMD paradigm
.. and has been (quite) successful towards these goals
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SPMD: Same Program, Multiple Data

Loosely synchronous, all processors run the same program,
processes distinguish themselves by their rank (proceess ID)

MIMD: Multiple Programs, Multiple Data

Loosely synchronous, processors may run different programs,
processes distinguish themselves by their rank (proceess ID)

MPTI supports MIMD, application can consist of (many) different
object files, most applications are SPMD, same object file
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MPT realization
‘Library, not a programming languagel!

*Pros: can be developed independently of compiler support,
bindings for C and Fortran (not really C++), maximum freedom
for library developer

*Cons: things that compiler knows cannot really be exploited,
user sometimes have to convey information from language

(data layouts) to library (tedious)
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MPT is large
306 C functions in current MPI 2.2

but centered around few basic concepts

*Natural functionalities, use standard for concrete details

Often criticized as too low-level ("assembly language”)

MPTI designed "not to make easy things easy, but
difficult things possible”

W. Gropp, EuroPVM/MPI 2004

Challenge: be better than MPI! PGAS?
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Role of MPT

. . r :

Efficiently utilize wha -Convenience
architecture can do -
compensate for what it

cannot; hide details

‘Efficient utilization
of hardware

ability

L)
~

meeE

JacuAR |

Coupled (multi-physics) applications are often MIMD/dynamic
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Code/application portability:

Application developed on system A will run unchanged on system
B; perhaps with recompilation/relinking. No code change/work-
around needed

Requires: well-defined language, parallel interface;
implementations that meet specifications

C/Fortran + MPI gives a high degree of application portability.

Shared-memory models (memory consistency, atomic operations,
.. architecture dependency), GPU models may not
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.Performance portability":
Could mean: no change in application needed to efficiently
exploit system B with code developed on system A

Distributed memory programming model could provide: all
communication explicit, delegated to library (MPTI)

Requires: efficient implementation of library for each new
system, certain consistency conditions to be fulfilled

Major (performance) portability HPC disruption: transition from
.vector® to ,scalar” systems late 90ties - consult Top500
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MPI communication models

MPT processes @ @ @

*Point-to-point:  MPI_Send | > MPI_Recv

*One-sided: MPI_Put ' >

*Collective: MPI_Bcast MPI_Bcast MPI_Bcast
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Extended "communication”

Parallel I/0:

spawn

=

Graph
create

-Process management:

-Virtual topologies:
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Library building

© @ O>

MPI_Comm_create

W @ (>

Attributes - additional information attached to MPI objects

Datatypes: i N N B

MPI_Type_vector

WSs11/12 ©Jesper Larsson Trdff m n
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Basic concepts

1. Communicators/process groups/windows - sets of processes
that can communicate

2. Data types - for description of data layouts in memory

3. Local and non-local (collective) completion semantics

4. Blocking and non-blocking communication
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MPI standard

Not a formal specification, trying to be precise, sometimes
(intentionally) vague... :

Progress rule (*)

*Modalities (when things will happen: immediately, eventually, ...)
‘No performance model (**)

(*) to avoid prescribing a specific kind of implementation
(communication thread, e.g.)

(**) specific requirements might not be feasible for all
communication systems; could limit portability of MPT
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Before MPI (early 90ties)

Distributed memory machines (Intel hypercube, IBM SP
systems, Meiko computing surface, ...) with own message-passing
intferfaces or language extensions

*Intel NX
‘Meiko
IBM CCL
Zipcode
‘PARMACS
*OCCAM

> Lots of commonalities, heed for a standard (ca. 1994)
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Evolution of the MPI Standard _

E -MPT 1.0, 1.1,1.2: 1994-1995

‘Point-to-point and collective
communication, datatypes, ...

== -MPI 2.0: 1997

ANL: mpich, 1996

*One-sided communication,
parallel /O, dynamic process

management
= UMPT 2.1: 2008
: -consolidation

-MPT 2.2:2009

-Scalable topologies, new
collectives

mpich2, 2004
OpenMPI, 2006
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Growing experience with MPI 2.0 extensions from 2000ff...

Some positive (RMA on Earth Simulator), some (very)
hegative...

Pressure from various sides, new MPT implementations
(OpenMPI), new players (Microsoft)

No replacement for MPI on the horizon (despite many
\/ interesting efforts, HPCS, PGAS, ..)

EuroPVM/MPI 2006 (Bonn), 2007 (Paris): "Open Forum"

Late 2007: MPI Forum starts convening regularly again
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MPI Forum (December 2007ff):

MPT 2.1: consolidation, minor error corrections (issues
accumulated over past 5 years)

MPT 2.2: mild extensions, not allowed to break existing code

MPI 3.0: genuine additions to standard, may break existing code
(recompilation necessary, possibly smaller rewrites)

Dublin, 4t
September 2008

June 2009
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MPI Forum - towards MPT 3.0

*Open body maintaining the MPI standard
‘Not a formal (IEEE, ANSI) standardizations body
Everybody can participate

*Discussions: wiki/ TRAC at www.mpi-forum.org + mailing lists
‘Regular meetings every 6-8 weeks, mostly US, Europe with
EuroMPI conference

‘Regular participation required to vote

«30-50 organizations involved, about 30 participants at meetings
*All major MPTI developers (mpich, openMPI, mvapich,...), all major
vendors, major labs with applications

*More application input, pleasel
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MPT programming model

1. Set of processes (in communication domain) that can

communicate

Processes identified by rank in communication domain

Ranks successive O, ..., p-1; p number of processes in domain

(size)

4. More than one communication domain possible; created
relative to default domain of all started processes

wn

5. Processes operate on local data, all communication explicit
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6. Three basic communication models:
6. Point-to-point communication - different modes, non-local
and local completion semantics
7. One-sided communication - different synchronization
mechanisms, local completion mechanisms
8. Collective operations, non-local completion semantics (*)
7. Structure of communicated data orthogonal to model/mode
8. Communication domains may reflect physical topology

9. No communication cost model

(*) MPT 3.0 will feature non-blocking collective operations
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Point-to-point communication @ ‘@

MPI Send (buffer, count,datatype, tag, rank, comm) ;

MPI Recv (buffer, count,datatype, tag, rank, comm, &status) ;

User-space buffers of any size, arbitrary structure can be
communicated, no limitations

Native (e.g. InfiniBand) communication system may have all
sorts of restrictions (e.g. consecutive data, max size)

Processes identified by a rank in a communication domain
(communicator)

Different communication modes and semantics
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One-sided communication G-

Only one process (conceptually) involved. Abstracts remote
memory access, supported natively by some networks, not all

MPI Put (origin buffer,origin count,origin type,
target,
target displacement, target count, target type,
win) ;

MPI Get (..);

Memory exposed as communication window. Origin specifies
communication with target. Any size and structure.
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Collective communication

MPI_Bcast - one root process has data, everybody else needs

H BN <o

Strive for best possible performance on given network/topology

@ Leave details to MPI implementer!

.Performance portability"

MPI Bcast (buffer, count, datatype, root, comm) ;

WSs11/12 ©Jesper Larsson Trdff
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MPI_Bcast - data from root to all

MPI_Scatter - individual (personalized) data from root to all
MPI_Gather - individual data from all to root

MPI_Alltoall - individual (personalized) data from all to
all, “transpose)

MPI_Allgather - data from all to all

MPTI_Reduce - apply associative function (e.g. "+") to
data from each process, result at root

MPI_Allreduce - result to all
MPI_Reduce_scatter - result scattered (parts) to all

MPTI_Barrier - (semantic) synchronization
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Safe parallel libraries

Communication inside library independent of communication
outside library, no interference

MPI Comm dup (comm, newcomm) ;

Attributes to record state, properties of library (communicators

and other objects)
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Additional literature:

*MPT standard, MPT 2.2 www.mpi-forum.org/docs/mpi-2.2/mpi22-
report.pdf

Gropp, Lusk, Skjellum: Using MPI. Portable Parallel Programming...
MIT Press 1995

Gropp, Lusk, Thakur: Using MPI-2: Advances features.. MIT
Press 1999

Karniadakis, Kirby: Parallel Scientific Computing in C++ and MPI,
Cambridge University Press, 2003

Peter S. Pacheco: Parallel Programming with MPI, Morgan-
Kaufmann, 1997

*Michael J. Quinn: Parallel Programming in C with MPT and
OpenMP, McGraw-Hill 2003



http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

.

Computing

First MPI program

#include <mpi.h>
int main(int argc, char *argvl[])
{

int rank, size;

MPI Init (&argc, &argv);

MPI Comm size (MPI COMM WORLD, &size) ;
MPI Comm rank (MPI COMM WORLD, &rank) ;

fprintf (stdout, "Here is %d out of %d\n”, rank,size);

MPI Finalize();
return 0;
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First MPI program
finclude <mpi.h> Standard MPI header
FORTRAN:
int main(int argc, char *argv([]) INCLUDE ”mpif.h“
{

int rank, size;
MPI Init (&argc, &argv);

MPI Comm size (MPI COMM WORLD, &size) ;
MPI Comm rank (MPI COMM WORLD, &rank) ;

fprintf (stdout, "Here is %d out of %d\n”, rank,size);

MPI Finalize();
return 0;
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First MPI program
#include <mpi.h>
int main(int argc, char *argv[]) First MPI call,
{ performed by all.
int rank, size; Exception
MPI_Initialized(flag)

MPI Init (&argc, &argv);

MPI Comm size (MPI COMM WORLD, &size) ;
MPI Comm rank (MPI COMM WORLD, &rank) ;

fprintf (stdout, "Here is %d out of %d\n”, rank,size);

Last MPT call, must be
performed by all.

Exception
) MPI_Finalized(flag)

WSs11/12 ©Jesper Larsson Trdff M n
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First MPT program
#include <mpi.h> —
Initial
int main (int argc, char *argv([]) communication
{ context, set of
int rank, size; processes

MPI Init (&argc, &argv);

MPI Comm size (MPI COMM WORLD, &size) ;
MPI Comm rank (MPI COMM WORLD, &rank) ;

MPI Finalize();
return 0;

Ne)®

fprintf (stdout, "Here is %d out of %d\n”, rank,size);
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Compiling and running MPI programs

‘mpicc, mpif77, mpif90 - like cc, f77, 90

*mpirun -np <procs> ...

*Batch system?

*See later
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MPI Conventions

“Namespace”, C

err = MPI <some MPI function>(..);

MPT function may return an error code (hormally MPI_SUCCESS),
but often just abort on error

"Namespace”, Fortran

CALL MPI <some MPI function> (.., IERROR)

MPT constants (MPI_SUCCESS, MPI_INT, ..) allCAPS

MPI_ - prefix reserved, don't use in own programs!!
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Good practice to always check error status - MPI programmers
often don't...

Error behavior can be controlled to some extent by error
handlers

MPI Comm set errhandler (comm,errhandle)

errhandle: handle to function that will be called on error...

BUT(I): ,text that states that errors wi//be handled, should be
read as may be handled”, MPT 2.2, p. 276 ﬁ

MPI Abort (comm,errorcode)

In practice, most often no
error handling in MPI. Abort
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MPT error codes New error codes/classes can be

MPL_SUCCESS defined (use: own, higher-level
MPI_ERR_BUFFER libraries)

MPI_ERR_COUNT

MPI_ERR_TYPE

MPI_ERR_TAG

MPI_ERR_COUNT
MPI_ERR_RANK

MPI_ERR_UNKNOWN

MPI_ERR_TRUNCATE ] fomejri;nes returned in point-
o-poin

MPI_ERR_WIN
MPI_ERR_LASTCODE
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MPT standard bindings

“language independent":

MPTI_Reduce(sendbuf recvbuf,count,datatype,op,root,comm)

IN sendbuf
OUT recvbuf
IN count

IN datatype (handle)
IN op (handle)

IN root

IN comm (handle)
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C prototype

int MPI Reduce (void *sendbuf,
vold *recvbuf, int count,
MPI Datatype datatype,
MPI Op op, int root, MPI Comm comm) ;

OUT arguments: pointers
IN arguments: pointers or value
Handles: special MPI typedef's

FORTRAN binding

MPI REDUCE (SENDBUF, RECVBUF, COUNT, DATATYPE, OP,
ROOT, COMM, IERROR)

<type> SENDBUF (*), RECVBUF (*)

INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

Handles are INTEGERs (problems with F90 typing)
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The 6 basic functions

MPI Init (sargc, &argv) ; First ar\d Iqs’r call in MPT part
MPI_Finalize(); of application; can only be
called once

.Who/where am I?" in communication context/set of processes.
numbered from O to size-1

MPI Comm rank (MPI COMM WORLD, &rank) ;
MPI Comm size (MPI COMM WORLD, &size) ;
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Process rank i:

int a[N];

float area;
MPI_Send(a,N,MPI_INT,j,TAGl,MPI_COMM_WORLD);

MPI Send(&area,l1l,MPI FLOAT,j,TAGZ,MPI COMM WORLD) ;

Data
transferred
from.i to i

Process rank j: NV

int b[N];

float area;
MPI Recv (b,N,MPI INT,i,TAGl,MPI COMM WORLD, &status) ;

MPI Recv (&area,l1,MPI FLOAT,i,TAG2,MPI COMM WORLD,
&status) ;

WSs11/12 ©Jesper Larsson Trdff m n
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Example: loop with some dependencies

Processor j, O<j<p

for (i=n[j]; i<n[j+1]; i++) {
b[i] = a[i-1]+a[i]+al[i+l];

} Arrays aand b

distributed in blocks

over processes

> <=
ari): [ [ [ ]
!

n/size

Processor j
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Parallelization of data parallel loop example

float *a = malloc((n/p+2)*sizeof (float));
a += 1; // offset, such that -1 and n/p can b addressed
if (rank>0) {

MPI Send(&al[0],1,MPI FLOAT, rank-1,999, comm);

MPI Recv(&al[-1],1,MPI FLOAT,rank-1,999, comm, &status) ;
}
if (rank<size-1) {

MPI Send(&a[n/p-1]1,1,MPI FLOAT,rank+1l,999, comm;

MPI Recv (&a[n/p],1,MPI FLOAT,rank+1l,999, comm, &status);
}
for (i=0; i<n/p; 1i++) {

b[i] = a[i-1]+a[i]+a[i+1];

Why is this wrong ?2??
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n/size

Process j

- MPI_Send(...rank-1, ..); = MPI_Send(...,rank-1,..);
MPI_Recv(...,rank-1,..); MPI_Recv(...,rank-1,..);

MPI_Send(...,rank+1,..);
MPI_Recv(...rank+1,..); :>

DEADLOCK! All processes waiting to send ?
In MPI: behavior depending on data size - unsafe
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DEADLOCK:
a. All processes waiting for event that does not/cannot happen
b. Process i waiting for action by process j, process j waiting

for action by process i

c. Process iO waiting for action by process il, process il waiting
for action by process i2, ... process i(p-1) waiting for action
by process i0

All forms are possible with MPI programs

Particularly problematic: some are context and MPI library
implementation dependent: unsafe programming (see later)
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Correct(er)
float *a = malloc((n/p+2)*sizeof (float));
a += 1;
if (rank>0) {

}
1f

for (1=0; i<n/p; i++) {

MPI Send(&al[0],1,MPI FLOAT, rank-1,999, comm);
MPI Recv(&al[-1],1,MPI FLOAT,rank-1,999, comm, &status) ;

(rank<size-1) {
MPI Recv (&a[n/p],1,MPI FLOAT,rank+1l,999, comm) ;
MPI Send(&a[n/p-1]1,1,MPI FLOAT,rank+1l,999, comm,
&status) ;

ali-1]+al[i]+al1+1];
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> <=
arir: [ N [ ]
!

n/size

Process |
- MPI_Send(...rank-1, ..); = MPI_Send(...,rank-1,..);
MPI_Recv(...,rank-1,..); MPI_Recv(...,rank-1,..);

MPI_Recv(...,rank+1,..); |:> MPI_Recv(...,rank+1,..);
MPI_Send(...,rank+1,..); MPI_Send(...,rank+1,..);

Serialization: Last process size-1 receives after 2p steps!
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The 6 basic functions (plus two)...

Get time (in micro-seconds with suitably high resolution) since
some time in the past:

float point in time = MPI Wtime () ;

Synchronize the processes (really: only semantically); often used
for benchmarking applications

MPI Barrier (MPI COMM WORLD) ;
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MPT: pt2pt and one-sided comm

Communicators
Point-to-point communication

*One-sided communication
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Communication , processes, communicators
mpirun -np <procs> <programs»

starts <procs> MPI processes executing <program> on available
resources (processors, cores, threads, ...)

Same <program> will run on all resources: SPMD

Other options to mpirun can influence where/which programs
are started, rank order of MPI processes, etc.

Note: not standardized, see local installation/manpages
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<program> executes

MPI Init(&argc, &argv);
// sets up internal data structures, incl:

MPI Comm size (MPI COMM WORLD, &size);

MPI_COMM_WORLD: initial communicator containing all
started processes; static - never changes!

Communicator:

@ distributed, global
object, communication
context, finite set of

@ @ @ @ processes that can

communicate
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Communicator:

distributed, global
@ @ object, communication

context, finite set of

processes that can
@ ° communicate

Binding of MPT
L v N processes
M M M (statically) to

—processors
@ @ @ outside of MPL,
nhot

standardized
Physical processor may run more than one MPI process
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Good SPMD practice:

Write programs to work correctly for any number of processes

MPI Comm rank (MPI COMM WORLD, &rank) ;
i1f (rank==0) {
// code for rank 0; may be special
} else 1if (rank%2==0) {
// remainder even ranks
} else 1if (rank==7) {
// another special one
} else {
// all other (odd) processes - perhaps do nothing?
}

Bad taste/dangerous practice:
don't rely on C conventions: if (rank) {...}
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Communicators, universal object, ALWAYS:

*All processes in a
communicator can
communicate

All models (point-to-point,
one-sided, collective; all
other functionality)

MPI Comm size (comm, &size); *Has a size: number of
MPI:Comm:rank (comm, &rank) ; processes

Each process has a rank
(O<rank<size)

*A process can belong to
several communicators (at
the same time)

MPT process: (normally) statically
bound to some processor
resource; can have different
ranks in dif ferent communicators;

canonically identified by rank in MPT_COMM_WORLD
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MPI| Comm dpp (commn

11, &comm?2) ;

ORCXol0

comm?2

WsS11/12
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Communicators, universal object, ALWAYS:

*All processes in a
communicator can
communicate

*All models (point-to-point,
one-sided, collective; all
other functionality)

*Has a size: number of
processes

Each process has a rank
(O<rank<size)

*A process can belong to
several communicators (at
the same time)
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Good practice, when building own libraries

int my special library init (comm, &libcomm)

{

MPI Comm dup (comm, &libcomm) ;

// library communication wrt. libcomm; store somewhere
// initialize other library data structures
// could be cached with libcomm (attributes)

MPTI_Comm_dup:
Collective function, MUST be called by all processes in comm
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WSs11/12 ©Jesper Larsson Trdff m n

MPT handles

MPI_COMM_WORLD, comml, commZ2:
An MPI (predefined) handle, a way to access MPI objects
(communicators, windows, datatypes, attributes)

‘Handles are (almost always) opaque, i.e. internal MPI data
structures cannot be accessed; but only manipulated through the
operations defined on them

*MPT does not define how handles are represented (index into
table, pointer, ..)

*Handles in € and Fortran may be different

MPI_Comm_f2c(comm) [for example]:
returns C handle of Fortran communicator (no error code here)
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Other MPI handles

*MPI_Comm: communicators
*MPI_Group: process groups
*MPI_Win: windows for one-sided communication

*MPI_Datatype: datatypes (basic/primitive - or user-
defined/derived)
*MPI_Op: binary operators (built-in or user defined)

*MPI_Request: request handle for point-to-point
*MPI_Status: communication status

*MPTI_Errhandler:
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comml

WsS11/12

Subcommunicators:

“even-odd" split

MPI Comm split (comml, rank%2,0, &comm2) ;
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comml Subcommunicators:

“even-odd" split

MPI Comm split|(cpmml, rank%2,0, &commZ2) ;
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Rank 1 (odd) in comm1 has rank O in comm?2

“even-odd" split

omml, rank%2, 0, &comm?2) ;
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MPT process
~_ Comm 1
Rank 1
Rank O /)mm 2.
processes with
od rank in
M comml
(e
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MPI Comm comml, comm?Z2;
MPI Comm rank (comml, &rank); // get rank in comml

MPI Comm split (comml, rank%2,0, &comm2) ;
// Collective operation: all processes in comml must call

/* comm?2 :

two different communication domains for even and odd
processes

*/

MPT_Comm_split (collective operation):
All processes with same color are grouped, order determined by key

Use:
parallel "divide-and-conquer” applications, computations in
subcommunicators fully independent (collectives, everything)
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Example: Master-worker (careful: centralized, non-scalablel)

(@) ™ comn

*Master distributes work to individual workers, workers send
results/new work to master
*Workers want to synchronize etc. independently of master

For workers NOT:
MPI_Barrier(comm), MPI_Allgather(comm), ...

- master might be away, doing something else: deadlock!
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comm
MPI Comm split (comm, (rank>0 7?2 1 : , 0, &workcomm)

// workcomm on workers (rank>0 in comm): all workers
// workcomm on master (rank==0 in comm): only master

MPI_COMM_SELF:
communicator with only process
itself, size==1
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comm
MPI Comm group (comm, &group) // get processes in comm
rankllst[O] = 0; // rank O to be excluded

MPI Group excl (group,l,ranklist, &workgroup); // exclude 0
MPI Comm create (comm,workgroup, &workcomm) ;

// rank 0 (in comm) not in workgroup

// workcomm==MPI COMM NULL for rank 0 in comm

// rank!=0 in workcomm

Communicator object maintains (for each process) the list of
processes in the communicator in rank order: the group
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Communicator:
a distributed, global object, can be manipulated through
collective operations (MPI_Comm_split, MPI_Comm_dup, ...)

Process group (MPI_Group):
local object, ordered set of processes, can be manipulated
locally by a process

*MPI Group union, MPI Group intersection _

*MPI Group incl, MPI Group excl
*MPI Group Translate ranks
*MPI Group compare

Use:
Building special communicators, one-sided communication
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MPI_Comm_free(comm);

frees created communicator comm

Note: MPT_COMM_WORLD and MPI COMM __SELF cannot be
freed

Good MPT practice:
Free any allocated MPT object after use (communicator, window,
datatype, ...
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Communicators, summary

Predefined communicators:

*MPI_COMM_WORLD: all started processes
*MPI_COMM_SELF: singleton communicator for each process,
only this process

A communicator is a static object, cannot change (processes
coming and going); instead hew communicators can be created
from old:

*MPI_Comm_split

*MPI_Comm_create (+ MPI process groups)

Free after use:
*MPI_Comm_free
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Point-to-point communication

comm

@ @ “Process 2 heeds to

send 500 integers to

@ @ I process 4 (in comm)"”

}

int THISMSG=777; // the message TAG (integer type)

int count = 500;
if (rank==2) {
int sendbuf[500] = {<the data>};

MPI Send(sendbuf,count,MPI INT,4,THISMSG, comm);
else 1if (rank==4) {

int recvbuf[600]; // at least as large as message count
MPI Recv (recvbuf,count,MPI INT,2,THISMSG, comm, &status);
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MPI Send (sendbuf, count,datatype,dest, tag, comm) ;

int sendbuf[500] = {<the data>};
count = 500;

MPI Send(sendbuf, count,MPI INT,4,THISMSG,comm) ;

"Get message called THISMSG (int) stored in array sendbuf of
500 consecutive integers on the road to rank 4 in comm”

sénd?b (start address of) Cint

Described by

datatype
Only rank 4 in comm can ever receive this MPI_INT
message
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MPI Recv (recvbuf, count, datatype, source, tag,comm, status);

int recvbuf[600]; // large enough
count = 600; // equal or larger to what is being sent

ok =
MPI Recv (recvbuf, count,MPI INT,Z2,THISMSG,comm, &status);

"Start reception of message called THISMSG (int) from rank 2 in
comm, store result in recvbuf, at most 600 consecutive integers
(otherwise ok==MPI_ERR_TRUNCATE)

guf) (start address of) Cint

Described by
0 500 datatype
MPI_INT
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int sendbuf[500] = {<the data>};
count = 500;

MPI Send(sendbuf, count,MPI INT,4,THISMSG,comm) ;
sendbuf [27] = somenewdata; // setup for next operation

Call returns when it is safe to reuse sendbuf, all data have been
taken care of - nothing guaranteed about what has happened on

rank 4 (message received or not)

s%ndtjb (start address of)
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int recvbuf[600]; // large enough
count = 600; // equal or larger to what is being sent

MPI Recv (recvbuf, count,MPI INT,Z2,THISMSG,comm, &status);

Returns when a message from rank 2 has been received;
information about data in status object. Forever, if nothing is
sent from 2!|

guf) (start address of) Cint

Described by
0 500 datatype
MPI_INT
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Status object (half opaque): information on communication

MPI Status status; // status handle
MPI Recv (.., &status);

Status contains information on what was received:

Fixed fields in C:
status.MPI_SOURCE:
status. MPI_TAG

status.MPI_ERROR o O

hy?
Don't we
know this??

o

Fixed fields in FORTRAN:
Status(MPL_SOURCE)
Status(MPI_TAG)
Status(MPI_ERROR)
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Status object (half opaque): information on communication

MPI Status status; // status handle

MPI Recv (.., &status);

Status contains information on what was received:

Fixed fields in C:
status.MPI_SOURCE:
status. MPI_TAG
status.MPI_ERROR

Fixed fields in FORTRAN:
Status(MPI_SOURCE)
Status(MPI_TAG)
Status(MPI_ERROR)

WSs11/12 ©Jesper Larsson Trdff

hy?
Don't we
know this??

If so:

Consider
MPI_STATUS_IGNORE as
status argument in MPI_Recv
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Status object (half opaque): information on communication

MPI Get count (status,datatype,count);

Returns (in count argument) number of "“full datatypes”
received; datatype equivalent to type used in receive call

MPI Get elements(status,datatype,count);

Returns (in count argument) number of basic elements received;
datatype equivalent to type used in receive call

Note: with basic datatypes (MPI_INT etc.): same
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Point-to-point communication succeeds if

1.
2.

3.

Sender specifies a valid rank within communicator
(O<rank<size) - and a valid (allocated) send buffer!!

A receive with a matching source rank and tag is eventually
posted on the same communicator

The amount of data sent is smaller or equal to the amount
to be received (note: collectives have a different rule)

4. The type signature of the data sent match the type
signature of the data to be received
Comments:
1. Mistakes normally caught by MPI_Send - error (abort)l
2. If not, deadlock
3. Otherwise, MPI_ERR_TRUNCATE or memory corruption
(big trouble) at receiver!
4. MPI_INT matches MPI_INT, and so forth - see later -
but this is rarely checked/enforced, be careful
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Message in transit identified by “envelope™

«Communicator (represented by unique, internal, non-accessible
communication context identifier)

Source (implicit)

Destination

*Tag

*Other type information (header, part of message, error, ...)

Implementation details; ,envelope” not accessible to application
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MPI Send(..,rank,tag, comm)

is determinate, message is always send to a specific rank
(in comm) with a specific tag

MPI Recv (.., rank/ANY,tag/ANY,comm, status)

receives from specific rank or non-determined (ANY) rank, with
specific or non-dertermined (ANY) tag
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Rule:
All messages sent must be received (*)

MPI Finalize(); may not terminate (deadlock) if there are

pending communications (MPI_Send calls not matched by
MPI_Recv)

(* unless cancelled, but do not rely on this) _
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Reasoning about point-to-point communication

Deterministic - messages are non-overtaking (ALWAYS):

Messages sent with the same destination (rank) and the same tag
arrive in sent order at destination

MPI_Send

MPI_Send

WsS11/12

MPI_Recv
Msg 1 gets msg 1
Msg 2 MPI_Recv
gets msg 2

No races!

©Jesper Larsson Trdff
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time
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Message Passing Abstraction (reminder)

No global time, processes are not synchronized

MPI_Send

MPI_Send

WsS11/12

Msg 1

Msg 2

MPI_Recv

MPI_Recv

©Jesper Larsson Trdff
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Message Passing Abstraction (reminder)

In reality, processes not synchronized, may do different work

MPI_Send Msg 1 >

MPI_Recv

Local
time
MPI_Recv

\ 4
MPI_Send Msg 2 >
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Message Passing Abstraction (reminder)

Could in reality be

MPI_Send

Possible
idle time

MPTI_Send
Ws11/12

At receiver:
Msg 1 > <:: ~unexpected
message”
MPI_Recv Local
time
MPI_Recv

v
Msg 2 > M

©Jesper Larsson Trdff

Definite idle time
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Sources of non-determinism (1)

MPI Recv (recvbuf,..,MPI ANY SOURCE,MPI ANY TAG, comm,
&status) ;

Wildcards:

‘Receive some (ANY) message from somewhere (ANY, but within
comm)
‘Now, need to check status to find out source and tag!

Message ordering is still guaranteed (non-overtaking)
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Sources of non-determinism (1)

Process i Process k Process j
MPI_Send(tag) >
< MPI_Send(tag)

MPI_Recv(MPI_ANY_SOURCE, tag)
MPI_Recv(MPI_ANY_SOURCE, tag)

Local
time

\ 4

Either messages may be received first; can cause
problems if messages have different count/type
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MPI Probe (source, tag, comm, status);

Return when a message with given source (or MPT ANY SOURCE)
and tag (or MPI ANY TAG) in comm is ready for reception; count

for message in status

After probe: receive message with MPI_Recv(buffer, count,..)

Advanced note: this can cause problems in
multi-threaded MPT applications
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Send semantics

Example: solution of Poisson PED by Jacobin method

-

ufi-1,j]
ufi,j-11 u[i,j]

ufi+i,j]

|
ii - s
d Special conditions

u[m,n]

\

ufi,j+1]

on borders, i=0, ...

For all O<i<m, O¢j<n, update
ufi,j]<- #(uli,j-13+ui j+11+ufi-1,j1+uli+1,j1-h"2£(i.j))
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Send semantics

(o

@

©Jesper Larsson Trdff

WsS11/12

MPI Send
MPI Send
MPI Send
MPI Send

MPI Recv
MPI Recv
MPI Recv
MPI Recv

up) ;
down)
left)
right

14

~ A~ A~ ~

) ;

up) ;
down)
left)
right

14

~ A~ A~ ~

) ;

most likely deadlocks!
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MPI_Send(sendbuf,... rank,tag,comm);

starts sending a message - completion may depend on what
receiver does; buffering not enforced by MPT standard

>| non-local completion semantics

Blocking: returns when sendbuf can be reused

Freedom for MPI implementers:

Short messages: usually just sent to some fixed address at
receiver (to be processed later)

‘Medium sized messages: may be buffered locally, and sent
when receive has been posted (acknowledgement from
receiving process)

Long messages: participation of receiving process needed

Exact conditions of local-completion are MPI implementation
dependent!
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Template MPI_Send implementation, short messages
Process i Process |

0 0
0 o

MPI_Send(buffer, ...j, ..); MPI_Send(buffer, ...,i, ..);
MPI_Recv(buffer, ..., j, ..); MPI_Recv(buffer, ..., i, ..):

Succeeds if internal buffer is large enough. MPI does not require
internal buffering
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Template MPI_Send implementation, short messages
Process i Process |

0 0
0 o

MPI_Send(buffer, ...j, ..); MPI_Send(buffer, ...,i, ..);
MPI_Recv(buffer, ..., j, ..); MPI_Recv(buffer, ..., i, ..):

Drawback: Extra copy - costly for large buffers
MPT design principle:
library should not allocate unbounded buffers
Ws11/12 Y ©Jesper Larsson Trdaff m n
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Template MPI_Send implementation, long messages

Request+envelope

Request+
envelope
MPI_Send(buffer, ...j, ..); MPI_Recv(buffer, ..., i, ..);
< Ack+address

— Iterate/pipeline

S dawe

Send complete with last data

Ws11/12 ©Jesper Larsson Trdaff m n
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Send semantics (con't)

MPI Send

. MPI Send

MPI Send
MPI Send

up) ;
down)
left)
right

14

~ A~ A~ ~

) ;

MPI Recv
MPI Recv )
MPI Recv (left);
MPI Recv (right);

E < d ) : Program is unsafe:
termination depends on MPI

buffering and size of messages:;
implementation dependent!
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Safe(r) programming

Process O Process 1

MPI Send ” MPI Send

MPI Recv MPI Recv

Unsafe, saved by scheduling - sometimes difficult

Process O Process 1
MPI Send MPI Recv
MPI Recv MPI_Send

“even-odd" scheduling... (general: communication graph 1-factoring)
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Safe(r) programming

Process O Process 1
MPI Send MPI Send
MPI Recv MPI Recv

Unsafe, saved by combined send-receive

Process O Process 1

MPI Sendrecv ” MPI Sendrecv
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MPI Sendrecv (sendbuf, sendcount, sendtype, dest, sendtag,
recvbuf, recvcount, recvtype, source, recvtag,
comm, status) ;

Combined send-receive operation.

Note: sendbuf and recvbuf must be disjoint
Performance advantage:

can possibly better utilize bidirectional communication network
(system dependent)
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arir: [ N [ ]
!

n/size

MPI_Sendrecv(...rank-1,.. rank+1,..);
MPI_Sendrecv(...rank+1,.. rank-1,..);

Exercise:
Implement and compare to other solutions
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Safe programming - non-blocking communication

é____><:E:>é____> MPI Isend(up, &reql0]);
MPI Isend(down, &req[l]);

MPI Isend(left, &reqgl2]);

MPI Isend(right, &reql3]);

MPI_Irecv
MPI_Irer

up, reqld]);
down, &req[5]) ;

MPI Irecv(left, &reqgl6]);

MPI Irecv(right,&req(7]);

é__><:§:>é___> MPI Wailtall (8, req, stats);

Safe: I(mmediate) operations have local completion semantics
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MPI Request request;
MPI Isend(sendbuf,..,comm, request);

starts ("posts"”) send operation, returns immediately - local
completion semantics, independent of receiving side - sendbuf
should NOT be modified before operation is complete

“progress” information in request object:

MPI Test (request, flag, status);

If flag==1 operation has completed, status set

MPI Wait (request, status);

Wait; return when operation has completed, status set
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MPI Isend(sendbuf, .., comm, &request) ;
MPI Wailt (request, &status);

equivalen’r to MPI Send (sendbuf, .., comm) ;

Note:
Again, semantics is non-local; sendbuf can be reused, receiver
may or may not have started

Note:
for non-blocking send operations, status is undefined, except
for MPI_ERROR field
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Test and completion calls

MPI_Wait
*MPI_ Test

*MPI_Wdaitall(number,array_of_requests,array_of_statuses)
*MPI_Testall

*MPI_Waitany
*MPI_Testany

*MPI_Waitsome
*MPI_Testsome

For details, see MPI 2.2 Standard
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Other send modes - send semantics

MPI_Send Standard Non-local
Returns when (poten-
sendbuf can be tially)
reused

MPTI_Ssend Synchronous Strictly
Returns when non-local
sendbuf can be
reused AND
receiver has started
reception

MPI_Bsend Buffered, returns Intermediate buffer local
immediately, data from user space must
may be copied info  have been attached
intermediate buffer with
MPI_Buffer_attach

MPI_Rsend Ready, standard Precondition: matching Non-local
receive MUST have
been posted
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Only one receive mode (blocking and nonblocking)
MPI_Recv/MPI_TIrecv

Blocking/non-blocking and modes are orthogonal, and can be
arbitrarily combined
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Non-blocking operations

Semantic advantages - easier to prevent deadlocks

u

é___9<:::>%____9 MPI Isend (up, &reql[0]);
MPI Isend(down, &req[l]);
MPI Isend(left, &reqgl2]);
MPI Isend(right, &reqgl3]);

MPI Irecv(up,reql4]);

MPI Irecv (down, &reql[5]);

( ;
( 5]
MPI Irecv (left, &req([6]);
<————9<:;:>e————9 MPI Irecv (right, &reql7]);

MPI Wailtall (8, req, stats);

WIEN
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Non-blocking operations

Performance advantages - may be possible to overlap
communication with computation (eg. if other process is delayed)

MPI Isend MPI Isend

MPI Irecv MPI TIrecv
<Compute> <Compute>

MPT Wait MPI Wait

MPI Wailt MPI Wailt

Note: implementation AND system dependent

Performance note: waiting tfoo long with MPI_Wait call can
slow down application (progress)
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Sources of non-determinism (2)

MPTI_Send(tagl)

MPTI_Send(tag2)

Msg 1

Msg 2

MPI_Irecv(MPI_ANY_TAG)

MPI_Irecv(MPI_ANY_TAG)

MPI_Probe(source,
MPI_ANY_TAG)

Messages are received in sent-order (tagl, tag?)

Note: MPI_ANY_TAG alone is not a source of nhon-determinism

WsS11/12
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Sources of non-determinism (2)

MPTI_Send(tagl)

MPTI_Send(tag2)

WsS11/12

Msg 1 MPI_Irecv(tag2,éreq2)

Msg 2 MPI_Irecv(tagl,&reql)

MPI_Wait(req2)

Enforce specific order
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Sources of non-determinism (2)

MPI_Send(tagl) Msg 1 MPI_Trecv(MPI_ANY_TAG)

MPI_Send(tag2) Msg 2 MPI_Irecv(tagl,&reql)

MPI_Wait(req2)
DEADLOCK!

tagl has matched MPI_ ANY_TAG
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MPI Iprobe (source,tag,comm, flag,status);

Non-blocking probe, flag==1 means message with source and tag
ready for reception in comm
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Point-to-point communication performance rules

Send operations: creating envelope in local buffer, initiating
communication (e.g. a+pm transfer time)

> Latency!

Rule-of-thumb: avoid many small messages, group into fewer, larger

MPI_Send: may or may not have to wait for
acknowledgement; can sometimes be faster than other send
operations

MPI_Send may (for large messages) depend on activity of
receiving process

WSs11/12 ©Jesper Larsson Trdff m n




.|

Computing

Point-to-point communication performance rules

MPI_TIsend: can return immediately; progress and completion
depends on activity of receiver AND often on activity/MPI
calls by sender

MPI_(T)Send(buffer, ...j, ..); O MPI_(I)Recv(buffer, ..., i, ..);

< Ack+add‘ r'gss

— — Iterate/pipeline

—

Completion of MPI_Send and MPI_Isend does not imply
anything about receiving process
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A note on progress

MPI_TIsend Large msg >
MPI_recv

Local

Message Passing, conceptual time

MPI_Wait
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A note on progress

MPI_Tsend Header >

< Ackitasend MPT._recy
Part 1 >

Local
< Acktosend |

Message Passing, more realistic

Part n >
MPI_Wait
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A note on progress

MPI_Tsend Header

YV

MPI_ recv

Local
time

MPI_Wait
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A note on progress

MPI_Tsend Header

YV

MPI_ recv

Local
time

MPI_Wait
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A note on progress

MPI_Tsend Header

YV

MPI_ recv

Local
time

MPI_Wait
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A note on progress

MPT libraries often use mixed strategies:

1. Hardware, whenever possible (.,of fload to NIC")
2. MPT calls to make progress

3. Sometimes thread support

Thread support often considered too expensive for HPC,
sometimes not possible

Good practice: frequent MPT calls when using non-blocking
operations

Principle: MPI standard is intentionally loose on progress
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Point-to-point communication performance rules

MPTI_Ssend: synchronous operation, returns when receive call
has been posted (MPI_Recv, MPI_Irecv); always incur
acknowledgement

MPTI_Rsend: only legal when matching receive call has been
posted; can save some ack’s

MPI_Bsend: data always copied to intermediate buffer; buffer
supplied by user, in user space
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Datatypes, data layouts

MPI Send (sendbuf, count,datatype,dest, tag, comm) ;

int sendbuf[500] = {<the data>};
count = 500;

MPI Send(sendbuf, count,MPI INT, 4, tag,comm);

"Get message stored in array sendbuf of 500 consecutive
integers on the road to rank 4 in comm”

S(dbb C int

Described by
datatype MPI_INT
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MPI Send (sendbuf, count,datatype,dest, tag, comm) ;

sometype *sendbuf;
sendbuf = malloc (count*sizeof (sometype));

MPI Send (sendbuf, count, Sometype,dest, tag, comm) ;

"Get message stored in array sendbuf of count consecutive
sometype's on the road to dest in comm”

S%ndtjb C sometype

Described by
couldbe [ [J[] | [] non-consec. layout MPI Sometype
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WSs11/12 ©Jesper Larsson Trdff m n

MPT datatypes

Describes unit of communication. Basic MPT datatypes
correspond to basic datatypes of C and FORTRAN

New - user-defined or derived - datatypes can be constructed
from previously described types as

Contiguous : contigous blocks of element type

‘Vectors:  regularly strided blocks of element type

‘Indexed: irregularly strided blocks of same type

Structs:  irregularly strided blocks of possibly different types
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Basetype - basic or user-defined

contiguous

vector

indexed

struct - -
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Comping C integer datatypes
MPI_CHAR char
MPI_SHORT (signed) short (int)
MPI_INT int
MPI_LONG (signed) long (int)
MPI_LONG_LONG signed long long int
MPI_SIGNED_CHAR signed char
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_UNSIGNED_LONG_LONG unsigned long long int

(*){ MPI_C_BOOL _Bool

MPI_WCHAR wchar t
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C integer datatypes(*)

MPI_INT8_T int8__t
MPI_INT16_T intl6_t
MPI_INT32_T int32_t
MPI_INT64_T int64_t
MPI_INT8_T uint8_ t
MPI_INTI16_T uintl16_t
MPI_INT32_T uint32_t
MPI_INT64_T uint64_t

(*)New with MPT 2.2, may not be implemented in your MPI
version
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C floating point datatypes

MPI_FLOAT float

MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_C_COMPLEX float _Complex

MPI_C DOUBLE_COMPLEX double _Complex
MPI_LONG_DOUBLE_COMPLEX long double _Complex
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FORTRAN datatypes

Basic MPI_Datatype FORTRAN type

MPI_INTEGER INTEGER

MPI_REAL REAL
MPI_DOUBLE_PRECISION  DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER(1)
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Special datatypes

Ws11/12

MPI_BYTE Uninterpreted bytes
MPI_PACKED Special, packed data (*)

(*) generated by MPTI_Pack/MPI_Unpack only

MPI_AINT MPI_Aint INTEGER
(KIND=MPI_ADDRESS_KIND)
MPI_OFFSET MPI_Offset INTEGER

(KIND=MPI_OFFSET_KIND)

MPI_Aint: address sized int

©Jesper Larsson Trdaff m n
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Other point-to-point communication features

*MPI_PROC_NULL - ..empty" process to send to and receive from
*(MPI_Ssend, MPI_Bsend)

Persistent requests

*MPI_Cancel - dangerousl!

*MPI_Sendrecv_replace
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Non-communication feature

double time = MPI Wtime () ;

Get local time in number of seconds since some time in the past

stime = MPI Wtime () ;
MPI Send();

etime = MPI Wtime();
// etime-stime is elapsed local time

MPI_WTIME_IS GLOBAL: boolean attribute to
MPI_COMM_WORLD, time is global (rare)
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double time = MPI_Wtime();

Get local time in number of seconds since some time in the past

MPI Barrier (comm); // approx. Temporal synchronization
stime = MPI Wtime ()
MPI Send();

etime = MPI Wtime ()
// etime-stime is elapsed local time

MPI_WTIME_IS GLOBAL: boolean attribute to
MPI_COMM_WORLD, time is global (rare)
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Safe neighbor exchange with one-
sided (put) communication

One-sided communication - by example
MPI Put
MPI Put

MPI Put

i MPI Put

up) ;

down) ;
left);
right);

~ A~ A~ ~

*Where is the memory put to (and

from)?
% ‘When are data ready/operations
complete?

One-sided communication decouples communication and
synchronization
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Q==

Origin process alone
responsible for initiating
communication, provides

Target process (semanticall
all arguments ger P ( )

not involved in communication

*MPI Put (obuf, ocount, otype, .., win)
*MPI Get (obuf, ocount, otype, .., win)
*MPI Accumulate (obuf,ocount, otype,..,op,win);

Communication calls are non-blocking, local completion semantics

Origin puts/get data from standard MPI buffer (buf,count,type)
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m.,,g Exposed Window
target

mem

Origin process alone

responsible for initiating

Cﬁmmunlca’r;on, provides Target process (semantically)
all arguments not involved in communication

*MPI Put (.., target, tdisp, tcount, ttype,win)
*MPI Get (.., target, tdisp, tcount, ttype,..,win)
*MPI Accumulate (.., target, tdisp, tcount, ttype, op,win) ;

Data on target exposed in window structure, addressed with
relative displacement
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Communication window:
Distributed, global object containing memory for each process
that can be accessed in one-sided communication operations

MPI Win create(base,size,dispunit, , comm, win) ;

Collective operation, all processes in comm provide a base
address (size may be 0), displacement unit

(special MPT (key value) object) can influence window
properties (use )

MPTI_Alloc_mem: special MPIT memory allocator, sometimes
beneficial (performance) for windows
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MPI Put (obuf,.., target, targetdisp,..,win);
Data from obuf into target base+targetdispunit*targetdisp

i)

NB: dispunit at target

Origin data must fit into target buffer, type signatures match,
i.e. length of origin data at most length of target data

As for point-to-point communication
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Window
Exposed
pm——————— target | |
i_ _______ | mem bommmm ’
MPI_Put MPI_Get

Concurrent gets/puts must access disjoint target addresses. Very
strict rules, violation is erroneous (BUT usually not checked)

MPTI_Accumulate: atomic (at level of basic datatype) update at
target, concurrent accumulates allowed
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Communication epoch model

Exposed Window
target
mem

O

Origin must have access @
to target: access epoch
Target exposes memory:

exposure epoch

End of epoch: access/exposure completed - data on origin
processed (put or gotten), data on target arrived/accumulates
complete
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Synchronization, epochs

Active synchronization, both origin and target processes involved

MPI Win fence (assert,win)

Collective operation, all processes in comm of win must call.
Closes previous epoch, opens access epoch to all processes, opens
exposure epoch for all processes

Assertion can control opening/closure behavior
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Synchronization, epochs

Active synchronization, both origin and target processes involved

MPI Win start (..,group) MPI Win post (..,group)
MPI Win complete () MPI Win wait ()

Opens/closes access Opens/closes exposure
epoch, fargets as process epoch, origins as process

group (MPI_Group) group (MPI_Group)

.generalized" pairwise synchronization...
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Synchronization, epochs

Passive synchronization, only origin process involved

MPI Win lock(locktype, target,assertion,win);
MPI Win unlock(target,win);

Opens/closes exposure epoch at origin, access epoch at target

Note 1.
Not at all(!l) a lock - no test-and-set like operations, difficult
to use for mutual exclusion. Very weak mechanism

Note 2:
Data at target may not be visible before target performs
MPI_lock on itself (and other weirdness)
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One-sided communication - by example

Safe neighbor exchange with one-

( . ) sided (put) communication

// prepare neighbor data
MPI Win fence(win);

MPI Put (up);

MPI Put (down) ;

MPI Put (left);

MPI Put (right);

MPI Win fence(win) ;

// data from neighbors ready
«— d k——
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Safe neighbor exchange with
one-sided (put) communication

( . ) // prepare neighhbor data

MPI Win start ([l,u,r,d],win);
MPI Win post([l,u,r,d],win);
MPI Put (up);

) MPI Put (down) ;

! MPI Put (left);

MPI Put (right);

MPI Win wait (win);

MPI Win complete (win);
- ;{ d >< N // data from neighbors ready
NB:

[l,u,r,d]is provided as process group (MPI_Group)
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MPI Win free (win)

free after use... (like other MPI objects)
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A note on progress

werput  [LERGERE )

Local
time

MPI_Win_fence
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Example: datatypes for neighbor exchange

*Each MPT process has
% local dxd matrix

int matrix[d][d]; :gisp

‘Exchange upper row
with lower row of upper
process

‘Exchange left column

{.}
with right column of left
d process

For all O<i<m, O¢j<n, update
uli,j]<- #(uli,j-11+ui j*11+ui-1,jJrufi+1,j1-h"2f(i j))
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T int matrix[d][d];

Rows:
MPI Isend(m[O],d,MPI INT,up,..);
<:::> MPI Isend(m[d-1],d,MPI INT,
down, ...) ;
l Or

MPI Put(m[0],d,MPI INT,up,..);
MPI Put (m[d-1],d,MPI INT,
down, ..);

In C, matrix is stored in row-major order. Rows can be
sent/received as consecutive buffer
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Columns:

int matrix[d][d];

H@H
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Columns:

int maTrix[d][d]‘ MPI Datatype col;
‘ MPI Type vector(d,1l,d,MPI INT,col);

MPI Type commit (&col);
< <:::> > MPI Isend(&m[O0][0],1,col,left,..);
MPI Isend(&m[O0] [d-1],1,col,
down, ...) ;
\ A |
| |

row O, d columns row 1, d columns

MPI Type free(&col); // when done
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int matrix[d][d];

F@H

Columns:

MPI Datatype col;
MPI Type vector(d,1l,d,MPI INT,col);
MPI Type commit (&col);

MPI Isend(&m[O0][0],1,col,left,..);
MPI Isend(&m[O0] [d-1],1,col,
down, ...) ;

MPI Type free(&col); // when done

Advice: use itl Should be at least as good as
a) Copying the row elements into infermediate, consecutive int

buffer

b) Sending intermediate buffer

WsS11/12
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*Collective communication

WIEN
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Collective operations - motivation

Task:

each process has a vector of elements, needs to compute the
elementwise sum of all vectors, and store result vector at some
root/all processes

XO0+x1+x1+ .+ x(p-1) =y

.Root":
designated MPI process that receives/computes final result
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Method 1: root receives and computes

MPI Send(x,n,MPI <type>,root, SUMTAG,comm) ;

if (rank==root) {
void *z; // intermediate n element buffer
Zz = malloc(n*sizeof (<type>);
for (1=0; i<p; 1i++) {
MPI Recv(z,n,MPI <type>,1i,SUMTAG,comm, &status) ;
for (3=0; j<n; Jj++) {
y[jl += z[j]; // type cast required

The program is unsafe. Tedious, if required to work for all
possible C types.
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Method 1: root receives and computes

MPI Send(x,n,MPI <type>,root, SUMTAG,comm) ;

if (rank==root) {
void *z; // intermediate n element buffer
Zz = malloc(n*sizeof (<type>);
for (1=0; i<p; 1i++) {
MPI Recv(z,n,MPI <type>,1i,SUMTAG,comm, &status) ;
for (3=0; j<n; Jj++) {
y[jl += z[j]; // type cast required

Performance: O(p), p(a+pn)+pyn, v time of .+" per element

No speedup possible - sequential summing of p vectors: pyn
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Method 2: ring, all compute

prev = (rank-l+size)$size; next = (rank+l) %size;
if (rank==root) {
void *z; // intermediate n element buffer

MPI Recv(z,n,MPI <type>,prev, SUMTAG, comm, &status) ;
for (3=0; j<n; J++) {
v[j]l = x[jl+z[3]; // type cast required
}
} else {
1f (prev!=root) {

MPI Recv(z,n,MPI <type>,prev, SUMTAG, comm, &status) ;

for (3=0; Jj<n; J++) vI[3] = x[31+z[3j]1; // cast
} else {
for (3J=0; j<n; Jj++) yl[J] = xI[Jj]; // cast

}

MPI Send(y,n,MPI <type>,next, SUMTAG,comm)
b
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Method 2: ring, all computes

Ring: result y is computed in the order

X(root+1)+x(root+2)+..+x(size-1)+x0+.. .+x(root)

What if rootzsize-1, and the operation .+" is not commutative?

Performance: still no speedup
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Method 2: ring, all computes

int RingReduce (void *sendbuf,
vold *recvbuf, int count,
MPI Datatype type,
MPI Op op, 1int root, MPI Comm comm)

<insert method 2 or 1 here>
return MPI SUCCESS; // everything went fine..

MPI_Op: MPT type handle for binary .operators"”
MPI_Datatype: handle for datatypes
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Method 2: ring, all computes

int RingReduce (void *sendbuf,
vold *recvbuf, int count,
MPI Datatype type,
MPI Op op, 1int root, MPI Comm comm)

<insert method 2 or 1 here>
return MPI SUCCESS; // everything went fine..

}

What happens here: (if i==j+1)

Process i Process j:

RingReduce(x1y1,... root,..., MPI_Send(a,..,i,SUMTAG,comm);
comm); RingReduce(x1y1,... root,...,

MPI_Recv(a,..,j,.SUMTAG,..); comm);

Unsafe parallel library functionl
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Method 2: ring, all computes

MPI Op op,

return MPI SUCCESS;

int RingReduce (void *sendbuf,
vold *recvbuf,
MPI Datatype type,

<insert method 2 or 1 here>
// everything went fine..

int count,

int root, MPI Comm comm)

And here:

Process i
RingReduce(x1,y1,...,root0,..);
RingeReduce(x2y2,...,root37,..);

Process j:
RingReduce(x2y2,...root37,..);
RingReduce(x1y1,...,root0,...);

Unintended use; unsafe

WsS11/12
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Method 3: using properties of .+" to improve performance

Since .+" is associative
X0+x1+x2+ .. + x(p-1) = y

can be computed as
(XO+x1)+(x2+x3) + ... + x(p-1) = y
and

((XO+X1)+(X2+X3)) + ((X(p-Z) + X(p—]_)) zy
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Step 1. inparallel

x0+x1 X2+x3 xX4+x5 xX6+x7

00000000

Step 2: in parallel
((xO+x1)+(x2+x3)) ((x4+xb5)+(x6+x7))

Step 3: in parallel
((xO+x1)+(x2+x3))+((x4+x5)+(x6+x7))
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.Theorem":
Sum can be computed log_2 p communication rounds with p
processes by binomial tree algorithm

Time log_2(a+pn+yn)

Assumption:
Tree-like communication is efficiently supported by underlying
communication network

Meets lower bound (as for broadcast), not possible to reduce in
less than log_2 p rounds, even on fully connected network
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Reduction on mesh/torus networks

Phase 1:

reduce vertic ally
Phase 2:

Reduce horizontally

root e
Time: /p(a+pn)
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Collective operations - motivation

‘Implementation of summation tedious: must to work for all
combinations of datatypes, binary operators, ...

Performance dependent on communication network properties
Different algorithms for different networks

Different algorithms for different vector sizes, datatypes, ...

=

MPI Reduce (sendbuf, recvbuf, count,datatype, op, root, comm) ;

as a ,.collective operation™ in MPI
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Collective operations - motivation

MPI Reduce (sendbuf, recvbuf, count, datatype, op, root, comm) ;

Saves work for application programmer: no need to implement
complicated, own library functions

‘Improves portability: part of MPI standard, available everywhere
Improves performance portability: good MPI implementation will
provide ,best possible” performance for given system
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Collective communication (and reduction) operations
MPI_Bcast - data from root to all

MPI_Scatter - individual (personalized) data from root to all
MPI_Gather - individual data from all to root

MPT_Alltoall - individual (personalized) data from all to all,
“franspose”

MPI_Allgather - data from all to all

MPI_Reduce - apply associative function (e.g. "+") to data from
each process, result at root

MPI_Allreduce - result to all
MPI_Reduce_scatter - result scattered (parts) to all

MPTI_Barrier - (semantic) synchronization
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Collective MPTI operations

All functions of MPTI requiring participation of all processes in
communicator

*Many bookkeeping functions (MPI_Comm_split, ...)
-Dynamic process spawning

*MPI-IO (collective and individual functionalities)
*Virtual topologies (MPI_Graph_create, ...)

17 (16 in MPI 1) collective communication (and reduction)
operations are called the ..collectives" of MPT

WSs11/12 ©Jesper Larsson Trdff m n




.

Computing

Collective MPT operations are called the same way by the
participating processes, same arguments for all processes, but
some arguments may be significant only at some processes (root)

Process i (non-root): Process | (root):

MPI Reduce (sbuf, rbuf, .., root, comm) ;

MPI Reduce (sbuf, rbuf, .., root, comm) ;

Again: all processes in comm must participate
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Example: reduction of single "scalar” (C int, MPI_INT)

if (rank==root) {
x = rank;
MPI Reduce (&x,&y,1,MPI INT,MPI SUM, root, comm) ;
if (y!=(size*(size-1))/2) printf (,Error!\n"“);
// v significant at root only

} else {

x = rank;
MPI Reduce (&x, &y, 1,MPI INT,MPI SUM, root, comm);
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Collective operation semantics

Requirement:

If a process calls collective MPI_<A> on communicator C, then
eventually all other processes in C must call MPT_<A> and ho
other collective inbetween (on that communicator)

Collective operations are safe: collective communication on
communicator C will not interfere with other communication on C
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Collective operation semantics
Requirement:

If a process calls collective MPI_<A> on communicator C, then
eventually all other processes in C must call MPT_<A> and ho
other collective inbetween (on that communicator)

Collective functions are blocking. A process returns when locally
complete, buffers etc. can be reused. Completion semantics are
non-local (most likely dependent on what other processes do) (*)

Collective functions are not synchronizing. A process may leave
MPTI_<A> as soon as it is locally complete (required local data

sent and received) )
ike

PT Send

Excep’rion: MPI Barrier (comm) ;

(*) nonblocking collectives will
be part of MPT 3.0
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Correct:

Process i:

MPI Bcast (buffer,..,root,comm) ;

Process j:

MPI Bcast (buffer,.., root, comm) ;

. MPI_Bcast is blocking:
Process local time root: does not return before
data have left buffer
v Non-root: does not return
before data from root have been
received in buffer
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Correct:

Process i:

MPI Bcast (buffer,..,root,comm) ;

Process local time

WsS11/12

Process j:

MPI Bcast (buffer,.., root, comm) ;

MPT_Bcast is not synchronizing:

root: may return as soon as data have left
buffer (independent of non-roots)
Non-root: may return as soon as data from
root have been received in buffer
(independent of other non-roots)
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Process i:

MPI Bcast (buffer,..,root,comm) ;
MPI Reduce (sbuf, rbuf, .., root, comm) ;

Process j:

MPI Reduce (sbuf, rbuf, .., root, comm) ;
MPI Bcast (buffer,.., root, comm) ;

Process local time

v Note:
“incorrect” means that MPI may crash, deadlock, give wrong
results! Or even work (for small counts: unsafe)
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Correct: comml: {i,j}
comm?2: {i k}

Process i:

MPI Bcast (buffer,..,root, comm2) ;
MPI Gather (sendbuf, .., comml) ;

MPI Bcast (buffer,..,root, comm2) ;

Process local time Process j:

\ 4
MPI Gather (sendbuf, .., comml) ;
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Unsafe: conm: (.

comm?2: {i,j,k}

Process i:

MPI Bcast (buffer,..,root, comm2) ;
MPI Gather (sbuf, .., root, comml) ;

MPI Bcast (buffer,..,root, comm2) ;

Process local time Process j:

v
Unsafe: MPI Gather (sbuf, .., root, comml) ;
May work for small MPI Bcast (buffer, .., root, comm2) ;

counts, hang for large
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Safe:

Process i:

MPI Bcast (buffer,..,root,comm) ;
MP Recv (recvbuf, .., j, SOMETAG, comm, &status) ;

Process j:

MPI Isend (sendbuf,.., 1, SOMETAG,
comm) ;
MPI Bcast (buffer,.., root,comm) ;

Process local time

v
Point-to-point and one-sided and

collective communication does not
interfere
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Process involvement in/blocking behavior of collective call
MPI_<A> is implementation dependent

Unsafe collective programming: relying on synchronization
properties

Observation:
Explicit MPI_Barrier calls are never (should never be) needed
for correctness of MPI programs

If it seems so, there's probably something
wrong
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MPI_Barrier(comm);

Calling process waits for all other processes in comm to enter
barrier, can leave when all others have performed call

Purely semantic definition; no requirement that barrier can be
used to synchronize time (e.g. for benchmark purposes)

MPT libraries attempt to have a fast, accurate barrier, so that
all processes leave barrier ,more or less at the same time"

Sometimes HW support helps (atomic
counters, collective network)
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Example: timing a function

MPI Barrier (comm) ;
// processes may be synchronized here
double start = MPI Wtime () ;

<something to be timed>

double stop = MPI Wtime ()

double local time = stop-start;
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Example: benchmarking

Repeat measurement until stable,
reproducible result has been achieved

for (r=0; r<REPETIT
MPI Barriler (comm)
// processes may

double local time
// compute local

double start = MPI Wtime () ;
<something to be timed>
double stop = MPI Wtime ()

IONS; r++)

{

be synchronized here

stop-start;
average time, max time, min time

WsS11/12
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A (legal) barrier implementation: not suitable for timing
MPT libraries do something
Phase 1: .gather” better...

for (i=1; i<p; i++)
MPI_Recv(NULL,0,MPI_BYTE,..,comm);

@ e e ° MPI_Send(NULL,Q,..,comm);

Phase 2: ..scatter"

0

for (i=1; i<p; i++)
MPI_Send (NULL,Q,....comm);

ODGE) @) wrrenunso. comm
WS11/12 ©Jesper Larsson Trdff m n
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Class regular Irregular, vector

Symmetric, no data MPI_Barrier

Rooted MPI_Bcast

Rooted MPI_Scatter MPI_Scatterv

Rooted MPI_Gather MPI_Gatherv

Symmetric, non-rooted MPI_Allgather MPI_Allgatherv

Symmetric, non-rooted MPI_Alltoall MPI_Alltoallv,
MPI_Alltoallw

Rooted MPI_Reduce

(*) Non-rooted MPI_Reduce scatter_block MPI_Reduce_scatter

Symmetric, hon-rooted MPI_Allreduce

Non-rooted MPI_Scan

Non-rooted MPI_Exscan

(*) MPI_Reduce_scatter_block: MPI 2.2 extension

wsl11/12 ©Jesper Larsson Traff TU n
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Symmetric vs. non-symmeftric: all processes lay the same role
in collective vs. one/some process (root) is special

Regular vs. irreqular: each process contributes or receives the
same amount of data from/to each other process

Note:
As for all other types of MPI communication, data in collective
operations can be structured, described by derived datatype
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Regular collectives

buffer, sendbuf, recvbuf argument:
start address of buffer for all data to be transferred (sent
or received)

Segments to/from other processes all have the same size
(count) and datatype
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MPI Bcast (buffer, count, datatype, root, comm) ;

- - Example: root==0
2. j‘>

Semantics: data from root buffer is transferred to buffer of all
non-root processes

Use: All processes Bcast with same root, buffer with same type
signature (e.g. same count for basic datatypes like MPI_FLOAT)
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MPI Bcast (buffer, count, datatype, root, comm) ;

0:

Example: root==2

1

I )

Semantics: data from root buffer is transferred to buffer of all
non-root processes

Use: All processes Bcast with same root, buffer with same type
signature (e.g. same count for basic datatypes like MPI_FLOAT)
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MPI requirement

Collective functions MUST be called with consistent arguments

same root

‘matching type signatures (in particular: pairwise same size)
‘Note: humber of elements sent and received must match
exactly (unlike Send-Recv: sent<recv and Get/Put)

«Same op (MPI_Reduce etc.)

int matrixdims[3]; // 3 dimensional matrix
if (rank==0) {

MPI Bcast (matrixdims, 3,MPI INT, 0, comm) ;
} else {

// do something on non-root first

MPI Bcast (matrixdims,2,MPI INT, 0, comm) ;

// uhuh, Bcast probably works, but later..
}
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MPI requirement

Collective functions MUST be called with consistent arguments

*same root

‘matching type signatures (in particular: pairwise same size)
‘Note: humber of elements sent and received must match
exactly (unlike Send-Recv: sent<recv and Get/Put)

«Same op (MPI_Reduce etc.)

Calling with different roots probably just deadlocks

For efficiency reasons, MPI libraries do not check such things.
User on his own when making mistakes. Consistency tools can help!
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MPI Gather (sbuf, scount, stype, rbuf, rcount, rtype, root, comm) ;

1 Al

2. A2 j‘>
3:

4.

Semantics: each process contributes a block of data to rbuf at
root, blocks end up stored consecutively in rank order at root

Block from process i is stored at rbuf+i*rcount*extent(rtype)

Note: rcount is count of one block, not of whole rbuf
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MPI Gather (sbuf, scount, stype, rbuf, rcount, rtype, root, comm) ;

0:
1:

2.

WSs11/12 ©Jesper Larsson Trdff m n
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Al .
rcount*extent(type)

A2 >
extent(type): size in bytes
“spanned” by MPT type

Example:
extent(MPI_INT) == sizeof(int)

Semantics: each process contributes a block of data to rbuf at
root, blocks end up stored consecutively in rank order at root

Block from process i is stored at rbuf+i*rcount*extent(rtype)

Note: rcount is count of one block, not of whole rbuf
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MPI Gather (sbuf, scount, stype, rbuf, rcount, rtype, root, comm) ;

1: Al

2. A2 >

Result buffer (rbuf,rcount,rtype) significant only on root

Note: root also gathers from itself

Special MPI buffer argument MPI_IN_INPLACE can be used on
root for sbuf to indicate that result from root is already ..in
place”
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MPI Gather (sbuf, scount, stype, rbuf, rcount, rtype, root, comm) ;

1. Al g
rcount*extent(rtype)

2. A2 >

3:

4.

it (rank==root) | Semantics (only!), NOT implemented this way:
for (..i!=root..) {

MPI Recv (rbuf+i*rcount*extent (rtype), rcount, rtype,
1,GATTAG, comm,MPI STATUS IGNORE) ;
}
MPI Sendrecv (sbuf,.., root, ..,
rbuf+root*rcount*extent (rtype),.., root,..);
} else MPI Send(sbuf, scount, stype, root, GATTAG, comm) ;
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MPI Scatter (sbuf, scount, stype, rbuf, rcount, rtype, root, comm) ;

1

=)

Semantics: root contributes a different block of data to each
process, blocks stored consecutively in rank order at root

Block from process root is stored at sbuf+i*scount*extent(stype)
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MPI Scatter (sbuf, scount, stype, rbuf, rcount, rtype, root, comm) ;

1

=)

Send buffer (sbuf,scount stype) significant only on root

MPI _IN INPLACE can be used on root for rbuf to indicate that
result from root is already ..in place"
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Further differences to point-to-point communication:

*Collective communication functions do not have a tag argument
*Amount of data from process i to process j must equal amount
of data expected by process j from process i

‘Buffers of size O do not have to be sent

Process i:
MPI Bcast (buffer,0,MPI CHAR,..,root, comm) ;

Process j:
MPI Bcast (buffer,0,MPI CHAR,..,root, comm) ;

Correct! May be implemented as no-op
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Further differences to point-to-point communication:

*Collective communication functions do not have a tag argument
*Amount of data from process i to process j must equal amount
of data expected by process j from process i

‘Buffers of size O do not have to be sent

Process i:
MPI Send (buffer,0,MPI CHAR, 7, TAG, comm) ;

Process j:
MPI Recv (buffer,0,MPI CHAR, j, TAG,
comm, &status) ;

Correct! BUT an empty message MUST be sent
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Further differences to point-to-point communication:

*Collective communication functions do not have a tag argument
*Amount of data from process i to process j must equal amount
of data expected by process j from process i

‘Buffers of size O do not have to be sent

Process i:
MPI Send (buffer,0,MPI CHAR, 7, TAG, comm) ;

Process j:
MPI_ReCV (buffer, 10 ,MPI_CHAR, 7, TAG,
comm, &status) ;

Correctl BUT an empty message MUST be sent, since
receive count could be greater O
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Does this barrier work?

MPI Gather (NULL,0,MPI BYTE,NULL,O0,MPI BYTE,O,comm);
MPI Scatter (NULL,0,MPI BYTE,NULL,O0,MPI BYTE,O,comm);

Well, depends, it may (performance wise better than send-recv
implementation, but still bad) - but depends whether O-buffers
are gathered/scattered

Unsafe collective programming: relying on synchronization
properties
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MPI Allgather (sbuf, scount, stype, rbuf, rcount, rtype, comm) ;

o: [NACH Al A2
1: Al Al A2
2: | A2 jl> Al A2
3: Al A2
4. Al A2

Semantics: each process contributes a block of data to rbuf at
all processes, blocks end up stored consecutively in rank order

Block from process i is stored at rbuf+i*rcount*extent(rtype)
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MPI Allgather (sbuf, scount, stype, rbuf, rcount, rtype, comm) ;

-

1: Al
2: A2
3:
4.

Al A2
Al A2
Al A2
Al A2
Al A2

aka all-to-all broadcast, all processes get result of gather

MPI _TIN INPLACE can be used for sbuf to indicate that local
part of result is already ..in place®

Ws11/12
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MPI Allgather (sbuf,..rbuf, rcount, rtype,..comm) ;

equivalent to

MPI Gather (sbuf,.., rbuf, .., 0, comm) ;
MPI Bcast (rbuf,size*rcount,rtype,.., 0, comm);

and

for (i) { // all-to-all broadcast
if (i==rank) MPI Bcast (sbuf,..,1,comm); else
MPI Bcast (rbuf+i*rcount*extent (rtype),.., 1, comm);

}

memcpy (rbuf+rank*rcount*extent (rtype), sbuf, ..);

Performance of library function should be better!!
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Fact:
Much better algorithms for MPI_Allgather than
MPI_Gather+MPI_Bcast exist

A good MPI implementation will ensure that "best possible”
algorithm is implemented, and that indeed MPI_Allgather always
(all other things being equal) performs better than
MPTI_Gather+MPI_Bcast

Golden rule:
Use collectives for conciseness and performance whereever
possible

Complain to MPI library implementer, if performance anomalies
are discovered
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Example: parallel matrix-vector multiplication

nxn matrix M, n vector V, compute product n vector
W = MxV
where W[j] = 2(0<j<n): M[jI[iT*VI[i]

Takes O(n"2) operations (sequential work)

Both M and V should be distributed evenly over the MPI
processes; result vector W should be distributed as V
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Solution 1: Matrix-vector multiplication

Assume p divides n, distribute M row-wise, each process has
n/p rows of M, n/p elements of V
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Distribution

local M\, V
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Step 1: gather V at all processes MPTI_Allgather
local M, V full V*

0:

1

2:

3.
4.
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Step 2: locally compute MxV’ in parallel
local M, V full V' local W
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O(n"2/p) work for local multiplication, assuming MPI_Allgather
can be done in O(n+log p) gives total parallel fime O(n"2/p+n)

Linear speedup for p<n
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MPI Alltoall (sbuf, scount,stype, rbuf, rcount, rtype,comm) ;

0:
*Transpose

1 1 2

BO B B B3 B4 All-tooall

2: | €O c1 c2 c3 c4 personalized
communication

$ O DI D2 D3 D4

4 E B E2 B E4

BO o

B1 c1

j‘> B2 c2
B3 3

B4 c4

Ws11/12 ©Jesper Larsson Trdaff m n




.

Computing

MPI Alltoall (sbuf, scount,stype, rbuf, rcount, rtype,comm) ;

Semantics: each process contributes an individual (personalized)
block of data to each other process

Block to process i is stored at sbuf+i*scount*extent(stype)

Block from process i is stored at rbuf+i*rcount*extent(rtype)
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Irregular (vector, v-) collectives:
Possibly different amounts of data destined to different

processes

*MPI_Gatherv, MPI_Scatterv
*MPI_Allgatherv
*MPI_Alltoallv, MPI_Alltoallw

Data sizes and sighatures must match pairwise, amount destined
to a process must match what is required by that process

Processes can use different datatypes (data need not have the
same structure, but signature must match)
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Irreqular collectives

buffer, sendbuf, recvbuf argument:
start address of buffer for all data to be transferred (sent
or received)

Segments to be transferred to/from different ranks may
have different size (count[i]), and different displacement
(displ[i]) relative to start address. Displacement is in
datatype units
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MPI Gatherv (sbuf, scount, stype, rbuf, rcount, rdisp, rtype,

1: Al rbuf: address
rcount: count vector

2: | A2 > rdisp: displacement vector

' rtype: same receive type
3 _ for all processes

l rdisp[0] rcount[4]
\
[ \

Received data must not overlap. Displacement significant only at
root. Size/signature match pairwise
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Example: root gathers unknown amount of data from all processes

if (rank==root) {

MPI Gatherv (sbuf, scount,..

} A\

MPI Gatherv (sbuf,..rbuf, rcounts, rdisp, .., comm) ;

} else { /\

mm) ;

Send count for process i, must match rcounts[i] at root

Will not work if root does not know scount of other processes.

MPTI_Gatherv requires that rcount[i] equals scount of process i

(if stype and rtype are same)

Array of receive counts for all
processes
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Example: root gathers unknown amount of data from all processes

if (rank==root) {
MPI Gather (scount,1l,MPI INT,rcounts,1,MPI INT, comm);

// compute displacements
MPI Gatherv (sbuf,..rbuf, rcounts;rdisp, .., comm) ;

} else {
MPI Gather (scount,1,MPI INT,rcounts,1l,MPI INT,comm);

MPI Gatherv (sbuf, scount, .., comm) ;

Use regular MPI_Gather to gather rcount vector: each process
Tfransmits its scount to root

Then correct MPI_Gatherv call can be set up
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Reduction collectives

0: 1: 2: 3: 4. (Reduce-scatter)
YO
Y1
X + X + X + X + X = Y2
0 1 2 3 4 v3
Y4

Each process has vector of data X (same size, same signature)
Associative operation + (MPTI builtin, MPI_SUM,..., or user def)
‘Reduction result Y=X0+X1+X2+ .. + X(p-1) is stored at

*Root - MPI_Reduce

*All processes - MPI_Allreduce

*Scattered in blocks (YO t0 O, Y1 to 1, ...) - MPI_Reduce_Scatter
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WIEN




.|

Computing

Reductions are performed elementwise on the input vectors

0: 1. 2. 3: 4.

X+ X+ X+ X+ X =Y
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Binary operation ,+" is required (and assumed by MPI
implementation) to be associative:

X1+ (X2 + (X3 + (X4 + X5))) = (X1+X2)+(X2+(X3+X4)) =
X1+X2+X3+X4+Xb

By associativity: Result independent of .bracketing”, partial
results Xi+..Xj can be computed in parallel

If operation is commutative, this can also be exploited

Note: MPI functions are not mathematical functions, i.e. not
really commutative (MPI_FLOAT) - good MPI implementations
are careful with exploiting commutativity
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Scan collectives

0: 1: 2: 3: 4.

X X
o) 1

N X
w X
& X

Each process has vector of data X (same size, same signature)
*Associative operation + (MPI builtin, MPI_SUM,..., or user def)
*All prefix sums Yi=X0+...+Xi are computed and stored

*Yi at rank i - MPI__Scan

*Yi at rank i+1 - MPI_Exscan (rank O undefined)
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MPI Reduce (sendbuf, recvbuf, count, type, op, root, comm) ;

MPI Allreduce (sendbuf, recvbuf, count, type, op, comm) ;

MPI Reduce scatter (sendbuf, recvbuf, counts, type, op, comm) ;

Here: counts is a vector

MPI IN PLACE canh be used for sendbuf (on root), operand taken
from recvbuf

MPI Exscan (sendbuf, recvbuf, count, type, op, root, comm) ;

MPI Scan (sendbuf, recvbuf, count, type, op, root,comm) ;
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MPI_MAX max Integer, Floating
MPI_MIN min Integer, Floating
MPI_SUM sum Integer, Floating
MPI_PROD product Integer, Floating
MPI_LAND logical and Integer, Logical
MPI_BAND bitwise and Integer, Byte
MPI_LOR logical or Integer, Logical
MPI_BOR bitwise or Integer, Byte

MPI_LXOR logical exclusive or  Integer, Logical
MPI_BXOR bitwise exclusive or Integer, Byte

MPI_MAXLOC max value and Special pair type
location of max
MPI_MINLOC min value and Special pair type

location of min
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Computing

MPI Op create (MPI User function *function,
int commutative, MPI Op *op);

makes it possible to define/register own, "user-defined”, binary,
associative operators that can even work on derived datatypes

MPI Op free (MPI Op *op);

And free it again after use...
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Computing

Solution 2: Matrix-vector multiplication

0: 1: 2: 3: 4.

Each rank has n/p columns of (nxn) matrix, n/p rows of vector
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Computing

1. Locally compute (nxn/p) matrix n/p vector product

I partial result n vector
X
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1. Locally compute (nxn/p) matrix n/p vector product

I partial result n vector
X
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Computing

2. Sum partial result n vectors and scatter n/p blocks
partial result buffer

0: 1 2. 3: 4.
/ l/ (local) result buffer

Each rank stores n/p
rows of result vector

for (i=0; i<p; i++) counts[i]l/p;

MPI Reduce scatter (partial,result, counts,MPI FLOAT,

MPI SUM, comm) ;
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Computing

O(n”2/p) work for local multiplication, assuming
MPTI_Reduce_scatter can be done in O(n+log p) gives total
parallel time O(n"2/p+n)

Linear speedup for p<n

Exercise:
Which method is better?
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