
©Jesper Larsson Träff WS11/12

Introduction to Parallel Computing
Projects/exercises

Jesper Larsson Träff

Technical University of Vienna

Parallel Computing

©Jesper Larsson Träff WS11/12

Shared-memory programming, OpenMP and/or pthreads

Three „project“ exercises

Implementat test, benchmark

Hand-in: brief explanation, including correctness argument
(informal), testing summary, benchmark

Presentation: ½ hour per group

Due date: hand-in mid-January, presentations end-of-January,
exact dates TBD

©Jesper Larsson Träff WS11/12

Exercise 1: pthreads or OpenMP

Implement the 3 parallel prefix sums algorithms from the lecture:
•Recursive parallel prefix with auxiliary array y
•In-place iterative algorithm
•O(nlog n) work algorithm (Hillis-Steele)

All algorithms shall work on arrays of some basetype given at
compile time (int, double, …) with the „+“ operator

Implement non-intrusive „performance counters“ for documenting
that the work is indeed O(n) and O(n log n)

The implementations shall be correct for all array sizes n

Test and benchmark the implementations, for OpenMP compare to
„reduction“ clause

©Jesper Larsson Träff WS11/12

Hints:

•#define ATYPE int

•Performance counters shall count the number of + operations
and the number of array accesses (if there are more than +
operations), but shall affect execution time as little as possible.
No global variables! No critical sections/locks! Idea: use
additional array, perform summation after prefix sums
computation

•For OpenMP summation can be implemented with a summation
variable and a reduction-clause; benchmark this, and compare to
the full prefix-sums implementations. Bonus: can the prefix-sums
algorithms be simplified (less operations) to compute only the
total sum?

©Jesper Larsson Träff WS11/12

Exercise 2: pthreads or OpenMP

Estimate the effects of false sharing by implementing the
simple matrix-vector computation from the lecture. The
implementation shall work for an nxm matrix A and m-vector x,
and compute y = A*x

The implementation consists of two nested loops. Experiment
with different loop tilings/blockings, either explicity or by
OpenMP schedule clauses, to achieve various cache sharing
behaviors. Try to establish best and worst case. Show results as
functions of n and m. Experiment with placement of threads in
the 48-core system for the best and worst-case loops, and
document effects of placement.

Bonus: discuss algorithms/implementations that would be
immune to false sharing

©Jesper Larsson Träff WS11/12

Exercise 3: OpenMP

Implement the work-optimal merge algorithm for merging two
sorted arrays of size n and m in O((m+n)/p+log n +log m) steps.
The implementation shall work for all n and m, but may assume
that elements in the two array are all different

Describe briefly the special cases for the binary search for
locating subarrays, and how this leads to all sub-merge problems
having size O(n/p+m/p).

Argue for correctness by testing

Benchmark and compare to standard merge implementation from
lecture (or better one, if known)

©Jesper Larsson Träff WS11/12

Hints:

Test cases could be as follows. All elements in first array
smaller than elements of second array; perfect interleaving,
random-block interleaving; all elements of second array smaller
than first array

Easy correctness test: first array has even elements, second
array odd elements, verify (in parallel) that resulting array has
elements 0,1,2,… (mutatis mutandis when n≠m), don‘t forget to
clear result array

Bonus: how can the algorithm be extended to allow element
repetitions? Which properties can be guaranteed?

Bonus: can the algorithm be used for implementing a parallel
mergesort? What is missing?

©Jesper Larsson Träff WS11/12

Measuring time, benchmarking

Parallel performance/time varies… (system availability, „noise“)!!!

Aim: accurate, robust, reproducible measurements (and fast)

•Benchmark on many input instances and sizes – not only powers
of two or other special values
•Repeat
•Report average (eliminate outliers), or better: best seen,
minimum time

Recall: Tpar is time for last thread/core to finish!! For OpenMP,
time in master thread, more care required for pthreads

©Jesper Larsson Träff WS11/12

Use wall-clock time, not CPU time

OpenMP: omp_get_wtime()
pthreads: on your own, clock_gettime()or gettimeofday()

•Plot time as function of problem size, fixed number of threads
•Plot time or speedup as function of number of threads/cores,
fixed problem size (but for different sizes)

Use gnuplot (or something more modern)

Pthread implementations: try not to measure pthread_create
time. Bonus: what is the cost of thread creation?

©Jesper Larsson Träff WS11/12

Distributed memory programming: MPI

Four(!) „project“ exercises

Implementat, test, benchmark

BUT: (1 or 2) and (3 or 4)

Hand-in: brief explanation, testing summary, benchmark

Presentation: ½ hour per group

Due date: hand-in mid-January, presentations end-of-January,
exact dates TBD

©Jesper Larsson Träff WS11/12

Exercise 1: Safe programming with point-to-point operations

Given an array A of n floats, iterate the following computation
(as in lecture)

A[i] <- 1/3(A[i-1]+A[i]+A[i+1])

where the rhs denotes the values in the array of the previous
iteration. Let the number of iterations be fixed (say 1000).
Distribute A evenly across the MPI processes such that each
process has a block of approx. n/p consecutive entries.

Implement and compare 3 different versions with different
methods for exhanging values at block boundaries, and compute
speed-up relative to a sequential iteration:

©Jesper Larsson Träff WS11/12

Version 1: Unsafe - does it deadlock?

Process i: // with modifications for first and last process
MPI_Send to rank i-1
MPI_Recv from rank i+1
MPI_Send to rank i+1
MPI_Recv from rank-1

(even worse:)

Process i: // with modifications for first and last process
MPI_Send to rank i-1
MPI_Send to rank i+1
MPI_Recv from rank i+1
MPI_Recv from rank-1

©Jesper Larsson Träff WS11/12

Version 2: Even-odd scheduling

Even ranked processes does MPI_Send followed by MPI_Recv,
odd ranked processes does MPI_Recv followed by MPI_Send. Is
it possible to achieve better speed-up this way?

Version 3: MPI_Sendrecv or non-blocking operations

Implement using either the combined MPI_Sendrecv, or
explicitly MPI_Isend and MPI_Irecv

For all three versions: ensure correctness (by checking against
sequentially computed result); compute and discuss speed-up
relative to sequential solution

©Jesper Larsson Träff WS11/12

Bonus 1: implement the computation with one-sided
communication

Bonus 2: Use a similar scheme to determine the point where the
unsafe version 1 deadlocks; e.g. let A be an array of vectors (aka
2-dimensional matrix), and gradually increase the number of
vector elements

Bonus 3: give a hybrid implementation: use OpenMP inside the
shared-memory nodes, and communicate between nodes with
MPI. Check the MPI standard for how to initialize MPI for
threads!

©Jesper Larsson Träff WS11/12

Exercise 2: Inclusive scan

Given an array A distributed blockwise over the p MPI
processes. Implement an algorithm (see 2nd lecture!) for
computing all inclusive prefix sums of A: The function

myMPIscan(int A[], int n, MPI_Comm comm);

shall compute for MPI rank i in A[j] the sum (∑(k=0; k<ni‘): A[k]
for each rank i‘<i)+A[0]+…+A[k]

A A A A

Rank 0 Rank 1 Rank k-1 Rank k

A[j] ∑

©Jesper Larsson Träff WS11/12

Operation is integer sum, „+“; but only associativity should be
exploited for the parallelization. Note that the processes may
contribute blocks of A of different sizes.

Implementation hint: compute prefix sums of blocks locally, use a
scan algorithm (as in lecture; e.g. 3rd algorithm) to compute all
prefix sums of local sums, add prefix locally:
1. Locally compute Scan(A,n), let B=a[n-1] for each process
2. Do distributed ExScan‘(B) to compute for rank i the sum

B0+B1+…+B(i-1)
3. Locally compute for rank i: A[j] = A[j]+B(i-1) for 0≤j<n

Step 2 is the crucial step and requires MPI communication.

©Jesper Larsson Träff WS11/12

Tasks:

•Establish correctness by comparing to sequential scan

•What is the asymptotic running time of your algorithm as a
function of n and p? Which assumptions do you need for the
estimate?

•Compute speed-up relative to sequential Scan for different
(large) n (=100,000, =1000,000, =10,000,000, …)
•How is this function different from MPI‘s scan?

©Jesper Larsson Träff WS11/12

Exercise 3: Matrix-vector multiplication

Implement the two different matrix-vector multiplication
algorithms from lecture (MPI_Allgather and
MPI_Reduce_scatter). Benchmark (sound principles: repetitions,
minimum of last process to finish) for a few select matrix orders
(n=100, n=1000, …) and different number of processes

•Verify result (how? 1. make it possible to precompute, or 2.
compare to sequential solution)
•Speed-up relative to single processor solution?
•Compare and discuss performance differences of the two
algorithms (if any)

Assumptions: you may assume that p divides n. Bonus: what if not?

©Jesper Larsson Träff WS11/12

Theory bonus:
both algorithms run in O(n^2/p+n) operations, and are scalable
for up to p processes. Is it possible to combine the two
algorithms to achieve scalability to larger numbers of
processes?

Hint: rxc blockwise matrix distribution; consult the book by
Grama, Gupta, Karypis, Kumar

©Jesper Larsson Träff WS11/12

Exercise 4: A high-quality benchmark

Implement benchmark for MPI collective operations as
described in lecture: a number of repetitions over precomputed
counts (not only powers-of-2!), record minimum of last process
to finish; variants for from-cache and from-memory
communication

Requirements:
•Range from 0 to x Mbytes (x predefined constant, x≥1)
•Basic datatype only, MPI_INT or MPI_DOUBLE; should be
compile-time customizable (e.g. #define BASETYPE MPI_INT)
•Implement data-from cache and data-from memory (think!);
customizable at compile-time, or run-time parameter
•MPI_COMM_WORLD and random communicator (customizable?)

©Jesper Larsson Träff WS11/12

Measure/report:
•MPI_Bcast (fixed root suffices)
•MPI_Reduce (fixed root suffices)
•MPI_Allreduce
•MPI_Alltoall
Plot for different number of MPI processes (all nodes, half the
nodes, 1 process/node)

Check/discuss:
•MPI_Allreduce faster than/at least as fast as
MPI_Reduce+MPI_Bcast
•How many repetitions seems to be needed to achieve a stable,
reproducible result?

If possible: execute with different MPI libraries (NECMPI,
mpich, OpenMPI)

©Jesper Larsson Träff WS11/12

Programs shall do something sensible for all inputs, never crash.
If there are conditions on input, terminate (e.g. „n has to be
power of 2“, …) gracefully when not fulfilled

Construct small set of test cases, including the extreme cases,
argue that this covers the program execution, construct such
that verification is easy (and can be implemented in parallel)

Testing, correctness

©Jesper Larsson Träff WS11/12

Hand-in

Short report, 1-3 pages (depending) per exercise plus
performance plots (1-5 pages). Be ready to discuss this at
presentation, also program code

Be concise, clear, brief:
•What you have done
•What you have not done („the program assumes p is even“…)
•Be honest – things that don‘t work
•What you intend to show with the experiments

©Jesper Larsson Träff WS11/12

Grading

Note will be based on presentation/discussion, and hand-in.

Criteria:
•Correctness, by argument (e.g. merging, prefix-sums), and test
•Well chosen test cases, in principle exhaustive, show that you
have thought about what needs to be tested
•Program actually working, given stated restrictions
•Good plots/tables showing the properties (speed-up, work) of
the implementations
•Achieved performance improvement – don‘t be too depressed if
speed-up is modest and less than p

