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Parallel computing:  
„how to accomplish something as a coordinated team (CS: of 
computers carrying out an algorithm)“ 

•It‘s interesting, highly non-trivial 
•Key discipline of computer science (von Neumann, golden  theory 
decade: 1980-90) 
•It‘s ubiquituous (gates, architecture: pipelines, ILP, TLP, 
systems: operating systems, software), not always opaque 
•It‘s useful: large, extremely computationally intensive problems, 
Scientific Computing, HPC 
•It‘s inevitable: multi-core revolution, GPGPU paradigm, … 
•… 

Why study parallel computing? 
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Parallel computing: 
The discipline of efficiently utilizing dedicated parallel 
resources (processors, memories, …) to solve a single, given 
computation problem. 

Specifically: 
Parallel resources with significant inter-communication 
capabilities, for problems with non-trivial communication and 
computational demands 

Buzz words: tightly coupled, dedicated parallel system; multi-core 
processor, GPGPU, High-Performance Computing (HPC), … 
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Distributed computing: 
The discipline of making independent, non-dedicated resources 
coorperate toward solving a specified problem complex. 

Buzz words: internet, grid, cloud, agents, autonomous computing, 
… 

Typical concerns: correctness, availability, progress, security, 
integrity, privacy, robustness, fault tolerance, … 
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Concurrent computing: 
The discipline of managing and reasoning about interacting 
processes that may (or may) not take place simultaneously 

Buzz words: operating systems concepts, autonomous computing, 
process calculi, CSP, CCS 

Typical concerns: correctness (often formal), e.g. deadlock-
freedom, starvation-freedom, mutual exclusion, fairness 
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Parallel computing as a theoretical  CS discipline 

•How fast can a given problem be solved? How many resources 
can be productively exploited? 
•What is a reasonable conception („model“) for parallel 
computing? 
•Are there problems that cannot be solved in parallel? Fast? At 
all? 
•… 

(Traditional) concern/objective: how to solve a given 
computational problem faster 
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Architecture model: 
Abstraction of the important modules of a computational system 
(processor) , their interconnection and interaction. 
 
 Used as basis for the specification of a computational model: 
(formal) framework for the specification of algorithms for the 
computational system, including cost model. 

M 

P 

Example: RAM (Random-Access Machine) 

Processor (ALU,  PC, registers) capable of 
executing instructions stored in memory on  
data in memory 
 
Execution of instruction, access to memory: 
unit cost 
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Architecture model: 
Abstraction of the important modules of a computational system 
(processor) , their interconnection and interaction. 
 
 Used as basis for the specification of a computational model: 
(formal) framework for the specification of algorithms for the 
computational system, including cost model. 

M 

P 

Example: RAM (Random-Access Machine) 

Aka von Neumann architecture, 
stored program computer (contrast: 
finite state automaton) 

[John von Neumann (1903-57), Report on 
EDVAC, 1945], also Eckert&Mauchly, ENIAC 
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Architecture model: 
Abstraction of the important modules of a computational system 
(processor) , their interconnection and interaction. 
 
 Used as basis for the specification of a computational model: 
(formal) framework for the specification of algorithms for the 
computational system, including cost model. 

M 

P 

Example: RAM (Random-Access Machine) 

„von Neumann bottleneck“: program 
and data separate from CPU, 
processing rate limited by memory 
rate. 

[John Backus, Turing Award Lecture, 1977] 



©Jesper Larsson Träff WS11/12 

Architecture model: 
Abstraction of the important modules of a computational system 
(processor) , their interconnection and interaction. 
 
 Used as basis for the specification of a computational model: 
(formal) framework for the specification of algorithms for the 
computational system, including cost model. 

M 

P 

M M M 

Increased memory rate, 
vector computer, ALU 
operates on vectors 
instead of scalars 
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Architecture model: 
Abstraction of the important modules of a computational system 
(processor) , their interconnection and interaction. 
 
 Used as basis for the specification of a computational model: 
(formal) framework for the specification of algorithms for the 
computational system, including cost model. 

M 

P P P P 

Shared-memory model 
(bus based?) 
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Architecture model: 
Abstraction of the important modules of a computational system 
(processor) , their interconnection and interaction. 
 
 Used as basis for the specification of a computational model: 
(formal) framework for the specification of algorithms for the 
computational system, including cost model. 

M 

P P P P 

Shared-memory 
model 
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Architecture model: 
Abstraction of the important modules of a computational system 
(processor) , their interconnection and interaction. 
 
 Used as basis for the specification of a computational model: 
(formal) framework for the specification of algorithms for the 
computational system, including cost model. 

M 

P P P P 

Shared-memory 
model 

Processors operate in lock-step, uniform memory access time = 
instruction time: Parallel RAM (PRAM) 
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Architecture model: 
Abstraction of the important modules of a computational system 
(processor) , their interconnection and interaction. 
 
 Used as basis for the specification of a computational model: 
(formal) framework for the specification of algorithms for the 
computational system, including cost model. 

M 

P P P P 

Shared-memory 
model 

PRAM main theoretical model, introduced mid-70ties, throughout 
80ties, lost interest ca. 1993 
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Architecture model: 
Abstraction of the important modules of a computational system 
(processor) , their interconnection and interaction. 
 
 Used as basis for the specification of a computational model: 
(formal) framework for the specification of algorithms for the 
computational system, including cost model. 

M 

P P P P 

Shared-memory 
model 

M M M … 
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UMA (Uniform Memory Access): access time to memory 
location is independent of location and accessing processor, 
e.g. O(1), O(log M), … 

NUMA (Non-Uniform Memory Access): access time dependent 
on processor and location. Locality: some locations can be 
accessed faster by a processor than others („are closer“) 

M 

P P P P 

M 

P P P P 

M M M 
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Architectural model  defines „parallel resources“, specifies 
•Power/composition of processor (ALU, FPU, registers, w-bit 
words vs. unlimited, Vector Unit (MMX, SSE)) 
•Types of instructions 
•Memory system, caches 
•… 

Execution model/cost model specifies 
•How instructions are executed 
•(relative) Cost of instructions, memory accesses 
•… 

Level of detail/formality dependent on purpose: what is to be 
studied (complexity theory, algorithms design, …) 
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Architecture model: 
Abstraction of the important modules of a computational system 
(processor) , their interconnection and interaction. 
 
 Used as basis for the specification of a computational model: 
(formal) framework for the specification of algorithms for the 
computational system, including cost model. 

M 

P P P P 

Distributed 
memory model 

M M M 

Communication network 
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Parallel architectural model specifies 
•Synchronization between processors 
•Synchronization operations 
•Atomic operations, shared resources (memory, registers) 
•Communication mechanisms: network topology, properties 
•… 

Cost model specifies 
•Cost of synchronination, atomic operations 
•Cost of communication (latency, bandwidth, …) 
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Architectural model: cellular automaton, systolic array, … - simple 
processors without memory (finite state automata, FSA), operate 
in lock step on (potentially infinite) grid, local communication only 

[John on Neumann, Arthur W. Burks: Theory of self-reproducing 
automata, 1966] 
[H. T. Kung: Why systolic architectures? IEEE Computer 15(1): 37-46, 
1982]. Goes back to early 70ties 
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Flynn‘s taxonomy: orthognal classification of (parallel) 
architectures. 

SISD 
Single Instruction Single Data 

MISD 
Multiple Instruction Single 
Data 

SIMD 
Single Instruction Multiple Data 

MIMD 
Multiple Instruction Multiple 
Data 

[M. J. Flynn: Some computer organizations and their effectiveness. 
IEEE Trans. Comp. C-21(9):948-960, 1972] 

Intruction stream 

D
at

a 
st

re
am
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SISD: single processor, single stream of instructions, 
operates on single stream of data. Sequential architecture 
(e.g. RAM) 
 
SIMD: Single processor, single stream of operations, operates 
on multiple data per instruction. Example: traditional vector 
computer 
 
MISD: Multiple instructions operate on single data stream. 
Example: pipelined architectures, streaming architectures(?), 
systolic arrays (70ties architetural idea).  
 
MIMD: multiple instruction streams, multiple data streams 

Some say:MISD class 
empty 
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Programming model: 
Abstraction close to programming language level defining parallel 
resources, management of parallel resources, parallelization 
paradigms, memory structure, memory model, synchronization and 
communication features, and their semantics 

Parallel programming language, or library („interface“) is the 
concrete implementation of one (or more: multi-modal, hybrid) 
parallel programming models 

Cost of operations: rather at level of architecture/computational  
model 

Execution model: when and how parallelism in programming 
model is effected 
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•Parallel resources, entities, units: processes, threads, tasks, … 
•Expression of parallelism: explicit or implicit 
•Level and granularity of parallelism 
 
•Memory model: shared, distributed, hybrid 
•Memory semantics 
•Data structures, data distribution 
 
•Methods of synchronization (implicit/explicit) 
•Methods and modes of communication  
 

Parallel programming model specifies, e.g. 
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[F.Darema  at al.: A single-program-multiple-data computational 
model for EPEX/FORTRAN, 1988] 

SPMD: Single Program, Multiple Data 

Examples: 

•Threads, shared memory, block distributed arrays, fork-join 
parallelism 
•Distributed memory, explicit message passing, collective 
communication, one-sided communication („RDMA“) 
•Data parallel SIMD, SPMD 
•… 

Concrete libraries/languages: pthreads, OpenMP, MPI, UPC, TBB, 
…  
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Programming language/library/interface/paradigm 

Programming model 

Architecture model 

„Real“ Hardware 

Different architectures models can 
realize given programming model 

Closer fit: more efficient use of 
architecture 

Challenge: programming model that is 
useful and close to „realistic“ architecture 
models 

OpenMP MPI 

Challenge: language that conveniently 
realizes programming model 

Algorithms 
support 
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Examples: 

OpenMP programming interface/language for shared-memory 
model, intended for shared memory systems. 
 
Can be implemented with DSM (Distributed Shared Memory) on 
distributed memory architectures – but performance has usually 
not been good. Requires DSM implementation/algorithms 

MPI interface/library for distributed memory model, can be 
used on shared-memory architectures, too. Often done, and 
makes sense… 
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p dedicated, tightly coupled processors collaborate to solve 
given problem of input size n: 

Tseq(n): time for 1 processor to solve problem of size n 

Tpar(p,n): time for p processors to solve problem of size n 

Speedup(p,n) = Tseq(n)/Tpar(p,n)  

Speedup measures the gain in moving from sequential to parallel 
computation 

Speeding up computations by parallel processing 
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p dedicated, tightly coupled processors collaborate to solve 
given problem of input size n: 

Tseq(n): time for 1 processor to solve problem of size n 

Tpar(p,n): time for p processors to solve problem of size n 

Speedup(p) = Tseq(n)/Tpar(p,n)  

Speedup measures the gain in moving from sequential to parallel 
computation 

Speeding up computations by parallel processing 

If n is fixed , or 
„disappears“ 

Sometimes 
S, SU, … 
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Tseq(n), Tpar(p,n) ambiguous 

-Time for some algorithm for solving problem? 
-Time for best known algorithm for problem? 
-Time for best possible algorithm for problem? 
-Time for specific input of size n, average case, …? 
-Ignoring constants, e.g. O(f(p,n)) or 25n/p+3ln (4 (p/n))… ? 

Typically: fix some (good) some algorithm, assume constants in 
Tseq(n) and Tpar(p,n) comparable, emphasis on orders of 
magnitude 

Ideally: Tseq(n) time for best possible algorithm 
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As always in computer science, distinguish 
 
•Problem G to be solved (mathematically specified) 
•Algorithm A to solve G 
•Best possible (lower bound) algorithm  A* for G, best known 
algorithm A+ for G 
 
•Implementation of A on some architecture M 
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time 
Tseq 

Sequential time is (sequential) work 

Parallelize: divide work into p independent 
pieces, assign to p processors… 

General: work is total number of instructions executed  
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time 

Tpar 

P0 P1 Pi P(p-1) 

p processors 

Tpar(p,n) = Tseq(n)/p 

Speedup(p,n) = Tseq(n)/Tpar(p,n) = p 

Idealized, best case 

“embarrassingly parallel” 
“pleasingly parallel” 
“perfect speedup” 

Here:  
parallel work same as 
sequential work 
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time 

Tpar 

P0 P1 Pi P(p-1) 

p processors 

p processors assumed to start at the same time, Tpar is the 
time for the slowest/last processor to finish 
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“Theorem:” 
Perfect Speedup(p,n) = p is best possible and cannot be 
exceeded 

“Proof”: 
Tseq(n)/Tpar(p,n) > p implies Tseq(n) > p*Tpar(p,n), so a better 
sequential algorithm could be constructed by simulating the 
parallel algorithm on a single processor. The instructions of the 
p processors are carried out in some, correct order, one after 
another on the sequential processor. 

Reminder: 
Speedup is calculated (measured) relative to “best” sequential 
implementation/algorithm 
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P0 P1 Pi P(p-1) 

Tseq 

0 

1 

i 

p-1 

time 

 Simulation, 

Tpar 

Tseq(n)/Tpar(p,n)>p 

Simulated Tseq*(n) = ∑ < Tseq(n) 

Contradicts that Tseq(n) was best possible 

Tseq* 
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Lesson: Parallelism offers only „modest potential“, speed-up 
cannot be more than p on p processors 

[Lawrence Snyder: Type architecture, shared memory and the corollary 
of modest potential. Annual Review of Computer Science, 1986] 

Construction shows that the total parallel work must be at 
least as large as sequential work Tseq, otherwise, better 
sequential algorithm can be constructed. 

Crucial assumptions: sequential simulation possible (enough 
memory to hold problem and state of parallel processors), 
sequential memory behaves as parallel memory, … NOT TRUE for 
real systems 
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Example, Dumb sort, Tseq(n) = O(n^2) 

that can be perfectly parallelized, Tpar(p,n) = O(n^2/p) 

Well-known  Tseq*(n) = O(n log n) 

Speedup(p,n) = n log n/n^2/p = (p/n) log n  

Tpar(p,n) < Tseq(n)  n^2/p < n log n  n/p < log n  p > n/log n 

Linear (but low) speedup for fixed n 

Break-even, when is parallel algorithm faster than sequential? 
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Best known/best possible parallel algorithm often difficult to 
parallelize 
- no redundant work (that could have been done in parallel) 
- tight dependencies (that forces things to be done one after 
another) 

Lesson: Usually does not make sense to parallelize an inferior 
algorithm – although sometimes (much) easier 

Lesson from PRAM theory: parallel solution of a given problem 
often requires a new algorithmic idea!! 

But: given algorithms often have a lot of potential for easy 
parallelization (loops, independent functions, …), so why not? 



©Jesper Larsson Träff WS11/12 

for (i=0; i<n; i++) { 
   a[i] = f(i); 
} 

Example: Data parallel loop of independent operations 

for (i=n[j]; i<n[j+1]; i++) { 
   a[i] = f(i); 
} 

n[j] = j*(n/p) 

assuming p divides n 

Data Parallelism (SIMD programming model): 
“p processors do same work on different data” 

Processor j, 0≤j<p 

Parallelize: break into p 
independent iteration blocks 

Parallelism 
explicit:  

f(i) depends only on i, no side effects, no 
global variables 
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for (i=0; i<n; i++) { 
   a[i] = f(i); 
} 

Example: Data parallel loop of independent operations 

parallel for (i=0; i<n; i++) { 
   a[i] = f(i); 
} 

Parallelize: break into p 
independent iteration blocks 

Parallelism 
implicit/less 
explicit:  

Found in many models/interfaces: compiler divides iteration space, 
run-time schedules blocks of iterations to processors, by language 
construct compiler can make necessary independence assumptions  
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for (i=0; i<n; i++) { 
   a[i] = f(i); 
} 

Example: Data parallel loop of independent operations 

for (i=0; i<n; i++) { 
   a[i] = f(i); 
} 

Parallelize: break into p 
independent iteration blocks 

Parallelism 
implicit/transparent 

Automatic parallelization: compiler detects that iterations are 
independent, automatically divides iteration space, interacts 
with run-time  
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for (i=0; i<n; i++) { 
   a[i] = f(i); 
} 

Example: Data parallel loop of independent operations 

for (i=0; i<n; i++) { 
   a[i] = f(i); 
} 

Parallelize: break into p 
independent iteration blocks 

Parallelism 
implicit/transparent 

Automatic parallelization: can work in cases where dependency 
analysis is sufficient/possible, fails generally  
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for (i=0; i<n; i++) { 
   b[i] = a[i-1]+a[i]+a[i+1]; 
} 
for (i=0, i<n; i++) { 
   a[i] = b[i]; 
} 

Example: loop of dependent operations: a[i] <- a[i-1]+a[i]+a[i+1]  

for (i=n[j]; i<n[j+1]; i++) { 
   b[i]  =a[i-1]+a[i]+a[i+1]; 
} 
for (i=0, i<n; i++) { 
   a[i] = b[i]; 
} 

Processor j, 0≤j<p 

What about a[n[j]-1]? 

Communication or 
synchronization needed 
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a: 

Array logically divided into p disjoint blocks 

Shared memory programming model: all data can be accessed by 
all processors 

•Memory model: when are data are data „visible“ 
•Memory cost model: same cost of access of all a[i]? NUMA, UMA?  

•Synchronization 

a[n[j]-1] 
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Array logically divided into p disjoint blocks 

•Communication 

Distibuted memory programming model: data are local to 
processors 

•Cost of communication 

a: 

a[n[j]-1] 
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for (i=0; i<n; i++) { 
   switch (i%D) { 
   case 0: task1(a[i]); break; 
   case 1: task2(a[i]); break; 
   … 
   case D-1: taskD(a[i]); break; 
   default: 
   } 
} 

Task/control parallelism:  
„D different operations (tasks) on different data“ 

for (i=0; i<n; i++) { 
   if (i%D==j) taskj(a[i]); 
} 

Processor j, 0≤j<p 

Example: 
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for (i=0;i<n;i++) { 
   stage1(a[i]); 
   stage2(a[i-1]); 
   stage3(a[i-2]); 
   … 
   stageS(a[i-S]); 
} 

Pipeline parallelism:  
„S different operations (stages) on same data“ 

for (i=0; i<n; i++) {  
   stagej(a[i]); 
} 

Processor j, 0≤j<p 

Example: 

Synchronization needed: stage 
j on a[i] cannot start before 
stage j-1 on a[i] has completed 
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time 

Tpar 

P0 P1 Pi P(p-1) 

p processors for (i=n[j]; i<n[j+1]; i++) { 
   b[i]  =a[i-1]+a[i]+a[i+1]; 
} sync; 
for (i=0, i<n; i++) { 
   a[i] = b[i]; 
} 

Processor j, 0≤j<p 

: communication or 
synchronization 
overhead 
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time 

Tpar 

P0 P1 Pi P(p-1) 

p processors : communication or 
synchronization 
overhead Speedup(p,n) ≤ p 

Linear speedup may still be possible, until overhead starts to 
dominate  
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time 

Tpar 

P0 P1 Pi P(p-1) 

p processors 

Tpar(p,n): 
useful computational work + parallelization overhead + idle time 

Tpar: time for last/all processors to finish 
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time 

Tpar 

P0 

P1 Pi P(p-1) 

p processors 

Algorithms/programs typically have a sequential part 
that cannot be parallelized: initialization of data 
structures, distribution of data, … 
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time 

Tpar 

P0 

P1 Pi P(p-1) 

p processors 
Tpar(p,n): 
sequential work + useful computational work + parallelization 
overhead + idle time 

Tpar: time for last/all processors to finish 
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Amdahls Law (parallel version): 
Let a program A contain a fraction r that can be “perfectly” 
parallelized, and a fraction s=(1-r) that is “purely sequential”, 
i.e. cannot be parallelized at all. For any fixed n, the maximum 
achievable speedup is 1/s 

Proof: 

Tseq(n) = (s+r)*Tseq(n) 

Tpar(p,n) = s*Tseq(n) + r*Tseq(n)/p 

Speedup(p,n) = Tseq(n)/(s*Tseq(n)+r*Tseq(n)/p) = 
 1/(s+r/p) -> 1/s for p -> ∞ 

[G. Amdahl: Validity of the single processor 
approach to achieving large scale computing 
capabilities. AFIPS 1967]  
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// Sequential initialization 
x = (int*)calloc(n*sizeof(int)); 
… 
// Parallelizable part 
do { 
   for (i=0; i<n; i++) { 
       x[i] = f(i); 
   } 
   // check for convergence 
   done = …; 
} while (!done) 

Example: K iterations before 
convergence, (parallel) 
convergence check cheap, 
f(i) fast… 

Speedup(p,n) -> 1+K 

Tseq(n) = n+K+Kn  
 
Tpar(p,n) = n+K+Kn/p 

Sequential fraction ≈ 1/(1+K) 
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// Sequential initialization 
x = (int*)malloc(n*sizeof(int)); 
… 
// Parallelizable part 
do { 
   for (i=0; i<n; i++) { 
       x[i] = f(i); 
   } 
   // check for convergence 
   done = …; 
} while (!done) 

Example: K iterations before 
convergence, (parallel) 
convergence check cheap, 
f(i) fast… 

Speedup(p,n) -> 1+n 

Tseq(n) = 1+K+Kn 
 
Tpar(p,n) = 1+K+Kn/p 

Sequential fraction ≈ 1/(1+n) 

Note: 

If sequential part is 
constant (not fraction), 
Amdahl‘s law does not 
limit SU 
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// Sequential initialization 
x = (int*)malloc(n*sizeof(int)); 
… 
// Parallelizable part 
do { 
   for (i=0; i<n; i++) { 
       x[i] = f(i); 
   } 
   // check for convergence 
   done = …; 
} while (!done) 

Example: K iterations before 
convergence, (parallel) 
convergence check cheap, 
f(i) fast… 

Tseq(n) = 1+K+Kn 
 
Tpar(p,n) = 1+K+Kn/p 

Lesson: be careful with 
system functions (calloc, 
malloc) Speedup(p,n) -> 1+n 

Sequential fraction ≈ 1/(1+n) 
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Definition: parallel efficiency 

E(p,n) = Speedup(p,n)/p = Tseq(n)/(p*Tpar(p,n)) 

•E(p,n) ≤ 1 
•E(p,n) = c: linear speedup 

Ratio of Speedup to best possible 
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Scalability definitions: 

A parallel algorithm/implementation is strongly scaling if 
Speedup(p,n) = Θ(p) (linear,independent of n) 

A parallel algorithm/implementation is weakly scaling if there 
is a slow-growing o(1) function f(p), such that for n = Ω(f(p)) 
E(p,n) is constant 

„Efficiency maintained by increasing problem size as 
f(p) or more“ 

[J. Gustafson: Reevaluating Amdahls Law. CACM 1988]  
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// Sequential initialization 
x = (int*)malloc(n*sizeof(int)); 
… 
// Parallelizable part 
do { 
   for (i=0; i<n; i++) { 
       x[i] = f(i); 
   } 
   // check for convergence 
   done = …; 
} while (!done) 

Assume convergence check 
takes O(log p) time 

Tpar(p,n) = Kn/p+K log p 

E(p,n) ≈ Kn/(Kn+pK log p) 

For n≥plog p, E(p,n) ≥ 1/2 

Example: 

Weakly scalable, n has to increase as O(p log p) to maintain 
constant efficiency – and as O(log p) per processor 
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time 

Tpar 

P0 

P1 Pi P(p-1) 

p processors 

Parallel work: sum of necessary, useful work of all processors 

Tpar: time for last/all processors to finish 

∑ + + Wpar(p,n) =  



©Jesper Larsson Träff WS11/12 

Tfast(n) = Tpar(∞,n) = min Tpar(p,n), p=1,2,… 

Define 

Fastest time that can be achieved assuming enough processors 

Definition: 
An algorithm/implementation is work-optimal if 

Wpar(p,n) = O(Tseq(n)) 

Total parallel work (number of instructions over all processors) 
comparable to number of instructions of best sequential algorithm 
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If Wpar(p,n) can be distributed evenly over the p processors, then  

Tpar(p,n) = max(Wpar(p,n)/p,Tfast(n)) 

and 

Speedup(p,n) = Tseq(n)/Wpar(p,n)/p = p/c 

as long as Wpar(p,n)/p ≥ Tfast(n), for some constant c  

Theorem: 
Work-optimal implementations/algorithms can have linear speedup 
for p ≤ Wpar(p,n)/Tfast(n) 

- provided the work can be distributed evenly 
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Dividing the work Wpar(p,n) into even sized chunks is called load 
balancing. Often not trivial. Can sometimes be done statically, 
sometimes dynamically, then often called scheduling. Assigning 
the work to processors is called mapping. Also not trivial. 

time 

Tpar 

P0 P1 Pi P(p-1) 
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WT presentation framework (Work-Time, Work-Depth): 

•Determine total work of parallel algorithm, W(n) 
•Determine fastest time possible = longest chain of 
dependent operations = Tfast(n) = „depth“ d of parallel 
algorithm 
 
•Assuming W(n) can be distributed over the p processors, 
parallel performance is O(W(n)/p+d) 

Introduced by Shiloach, Vishkin ca. 1982, often used, e.g. [JaJa: 
Introduction to Parallel Algorithms, 1992], [Cormen, Leiserson, Rivest, 
Stein: Introduction to Algorithms, 3rd ed, 2009] 
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time 

Tpar 

P0 

P1 Pi P(p-1) 

p processors 

Tpar: time for last/all processors to finish 

Cost: p*Tpar(p,n) 

Dedicated parallel resources: p processors reserved for Tpar(p,n) 
time 
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Definition: 
An algorithm/implementation is cost-optimal if 

p*Tpar(p,n) = O(Tseq(n)) 

No idle time, work can actually be distributed over the p 
processors, optimally load balanced 
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Overhead is cost minus sequential work 

Overhead = p*Tpar(p,n)-Tseq(n) 

Tpar 

P0 P1 Pi P(p-1) 

Overheads: extra work, synchronization, communication, idle 
time/load imbalance 
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Theorem: 
Cost-optimal algorithms have constant efficiency and overhead 
O(1)  

E(p,n) = Tseq(n)/p*Tpar(p,n) = Tseq(n)/c*Tseq(n) = 1/c 

for some constant c hidden in O(Tseq(n)) 
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Parallelization: a first example 

Problem: 
given two ordered sequences (xi), i=0,…,n-1, and (yi), i=0,…,m-1 
stored in arrays A and B, merge the two sequences into a 
single, ordered sequence (zi),i=0,…,m+n-1, stored in array C 
such that zi=xk or zi=yk for some k, and for each xi and yi 
there is a zk=xi  and zk=yk 

(Tedious formulation of) Well-known, and useful problem. 
For simplicity, assume that all xi and yi are distinct 
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i = 0; j = 0; k = 0; 

while (i<n&&j<m) { 

  c[k++] = (a[i]<b[j]) ? a[i++] : b[j++]; 

} 

while (i<n) c[k++] = a[i++]; 

while (j<m) c[k++] = b[j++]; 

Standard strictly sequential solution: 

< a: 

< b: 

n 

m 

< c: < < < < < < < < < 

n+m 

Tseq(n+m) = (n+m) 
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Parallel solution? 

Assumption 1: 
p independently working, „parallel“ processors. All processors 
have access to the full input and random access to the output 
array: explicit, shared-memory programming model 

Strategy: 
Find a way to divide the merging steps evenly and independently 
between the p processors. 
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Solution 1: 
Restricted to p=n+m processors (as many processors as 
elements in the input array) 

Definition: element x, set A not containing x, rank(x,A) is the 
number of elements in A smaller than x 



©Jesper Larsson Träff WS11/12 

< a: 

< b: 

n 

m 

< c: < < < < < < < < < 

n+m 

Processor i 

rank(a[i],B) 

i+rank(a[i],B) 

if (i<n) c[i+rank(a[i],B)] = a[i]; 

else if (i<n+m) { 

  j = i-n; 

  c[j+rank(b[j],A)] = b[j]; 

} 

for processor i, 
0≤i<n+m 
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Observation: for an ordered sequence stored in an array 
A, rank(x,A) can be computed by binary search! 

Number of operations is O(log n) for an n-element array A 

Tpar(n+m,n+m) = O(log (max(m,n)) 

Work = O((m+n)log(max(n,m)) ≤ O(2nlog n) = O(n logn)  

The algorithm is not work efficient, Speedup(p) = p/log p  

Exponential improvement 
in time, with linear 
number of processors!! 
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Problems: 
 
•Algorithm is not efficient 
•Normally, n>>p 
 
•When is the computation done (are processes synchronized?)? 

if (i<n) c[i+rank(a[i],B)] = a[i]; else if 

(i<n+m) { 

  j = i-n; 

  c[j+rank(b[j],A)] = b[j]; 

} 

barrier; // synchronization construct 

Done! 
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< a: 
n 

Solution 2: 
Divide a into p blocks of size approx. n/p, rank only first 
element of each block, in parallel merge blocks of a with blocks 
of b sequentially 

< < < 

< 

m 
b: 

i*n/p 

c: 
n+m 

i*n/p+rank(a[i*n/p],b) 
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merge(&a[i*(n/p)],n/p, 

      &b[rank(a[i*(n/p)],b)], 

      rank(a[(i+1)*(n/p)],b)]-rank(a[i*(n/p)],b), 

      &c[i*(n/p)+rank(a[i*(n/p)],b)]); 

barrier; 

Processor i, 0≤i<n 

Structure: 
•Parallel preprocessing – rank: binary search  - to divide problem 
into p independent pieces 
•Sequential algorithm to process subproblems in parallel 

Work optimal: Work = p log m + p*(n/p)+m = p log m + (n+m) = O(n+m) 

merge(a,n,b,m,c): merges a of size n and b of size m into c 
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Problems: 
 
•Assumed that p divides n 
•Severe load imbalance in worst case 

< a: 
n 

< < < 

< 

m 
b: 

One processor does almost all work O(n/p+m), time is 
O(n/p+m+log n) 
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Solution 3: 
Divide a into p blocks of size approx. n/p, rank only first 
element of each block, and divide b into p blocks of size approx. 
m/p; in parallel merge blocks of a with blocks of b sequentially 

< a: 
n 

< < < 

< 

m 
b: < < < 

2p smaller merge problems, but all O(n/p+m/p). Shown by 
case analysis 
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Theorem: 
On a shared-memory system, two ordered sequences of size n 
and m can be merged in time O((n+m)/p+log n) 

Exercise: 
Implement, test and benchmark the merge algorithm in 
pthreads or OpenMP 
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Parallelization (of merge problem): 
 
•Focus on the problem 
•Parallel work comparable to sequential work 
•Consider potential for parallelization of known sequential 
algorithm 
•Look for good load balance 
•Minimize synchronization points 
•(Communication: not yet seen) 
•Sequential algorithms as subalgorithms 
 
Automatic parallelization??? 
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Foster‘s methodology: 

[Ian Foster: Designing and building parallel programs. 1995] 

1. Partitioning: divide the computation into independent tasks 
2. Communication: determine communication needed between 

tasks 
3. Agglomeration/aggregation: combine tasks and 

communications together into larger (independent) chunks 
4. Mapping: assign tasks and communications to processes, 

threads, … 

Rule of thumb, not always applicable (architecture dependent: 
what is the best granularity of „tasks“)  

There is no recipe for parallelizing a problem or an algorithm! 
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Parallel computing as a practical discipline 

Concerns: 
•Solving problems faster 
•Solving larger problems 
•Solving problems cheaper, less energy 

Solving given, computational problems in parallel on real parallel 
machines! 

•How do „real parallel machines“ look? 
•Different parallel programing models/paradigms 
•Concrete programming languages/interfaces 

Free lunch is over: sequential processors hardly becoming faster 

[Herb Sutter: The Free Lunch Is Over: A Fundamental Turn Toward 
Concurrency in Software, Dr. Dobb's Journal, 30(3), 2005] 
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What happened (around 2003) 

Raw clock 
speed 
leveled 
out 

Perf/clock 
leveled out 

Limits to power 
consumption 

BUT: number of 
transistors can 
still grow 
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Moore‘s „Law“ (popular version): 
Sequential processor performance doubles every 18 months 

[Gordon Moore: Cramming more components onto integrated 
circuits. Electronics, 38(8), 114-117, 1965] 

Exponential grows in performance often referred to as 

which in the 90ties effectively killed parallel computing: to 
increase performance by an order of magnitude, wait 3 
processor generations 

The „free lunch“ 
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Moore‘s „Law“ (what Moore originally observed): 
Transistor counts double roughly every 12 months (1965 version); 
every 24 months (1974 version) 

What are all 
these transistors 
used for? 
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Performance increase due to 

1. Increased clock frequency (4MHz ca. 1975 to 4GHz ca. 
2005; factor 1000, 3 orders of magnitude 

2. Increased processor complexity: deep pipelining requiring 
branch prediction and speculative execution; processor ILP 
extraction (transistors!) 

3. Multi-level caches (transistors!) 

Buzz words: 
2. ILP wall: extracting Instruction Level Parallelism (ILP) grows 

quadratically or worse with lookahead 
3. Memory wall: large complex caches to hide memory latency 

Intel i7 
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Buzz word: 
3. Power wall: limits to how much heat can be cooled from a 

chip, heat related to power, power related to clock 
frequency approx. as P ≈ C*V*V*f, frequency related 
approx. linearly to voltage, so P ≈ f*f*f (perhaps only P ≈ 
f*f*√f); f: frequency, V: voltage 

Clock frequency increase stopped around 2003, forecasted 
processors in 10GHz range never materialized 

Free lunch is over: single processor cores will not become faster, 
may even become slower – but there will be more of them 

Need for efficient parallel processing everywhere! 
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Buzz word: 
Green computing: ½ f => 1/8 power, same performance by 
doubling number of cores (≤ 2 times number of transistors), 
and solving problem in parallel… at ¼ power 

Parallel processing can be more energy efficient; but so can 
better software… 
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Intel iPSC 

IBM SP 

INMOS 
Transputer 

MasPar 

Thinking 
Machines CM2 

Thinking 
Machines CM-5 

1985 1992 2006 1979 

PRAM: Parallel RAM 

SB-PRAM 

Big surge in general purpose 
parallel systems ca. 1987-1992 

Big surge in theory: 
parallel algorithmics 
ca. 1980-1993 

A final bit of history 
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•Politically motivated; answer to Japan’s 5th generation project 
(massively parallel computing based on logic programming) 
 
•“Grand challenge” problems (CFD, Quantum, Weather/climate,  
Symbolic computation) 
 
•Abundant (military) funding (Reagan, Star Wars, …) 
 
•Some belief that sequential computing was approaching its limits  
 
•A good model for theory: PRAM 
 
•… 

Surge in parallel computing late 80ties: 
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… but in the early 90ties it became clear that sequential 
(single-processor) computing was by no means near its limit 

Exponential growth 
(Moore’s law”) in 
 
•#transistors 
•Clock speed 
•ILP 

Physicists and computer 
architects (too) successful 
Tricks: shrinking, clock 
increase, ILP, caches 
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Intel iPSC 

IBM SP 

INMOS 
Transputer 

MasPar 

Thinking 
Machines CM2 

Thinking 
Machines CM-5 

1985 1992 2006 1979 

PRAM: Parallel RAM 

SB-PRAM 

Parallel computing/algorithmics 
disappearing from mainstream 
CS curricula Companies went out of 

business, systems disappeared 

No parallel algorithmics 
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Scientific, High Performance Computing (SC, HPC) 

Methods and systems for solution of extremely large, 
extremely computationally intensive problems 

•Grand challenge problems (still): climate, global warming 
•Engineering: CAD 
•Physics: cosmology, particle physics, string theory, … 
•Biology, chemistry: protein folding 
 
•Drug design, screening 
 
•Security, military??? Who knows? 
 
•… 

Since early 90ties a niche for parallel computing. 
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HPC System performance recorded in Top500 list 

•500 most „powerful“ 
systems in the world 
 
•Measured based on 
performance (FLOPS) 
rate of single 
benchmark: Linpack 

Reasonable? Does HPL 
performance translate 
into application 
performance? 
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# Organization System Manufac Country Cores Max Peak 

1 

RIKEN Advanced 

Institute for 

Computational Science 

K computer, 

SPARC64 VIIIfx 

Tofu interconnect Fujitsu Japan 548352 8162000 8773630 

2 

National 

Supercomputing Center 

Tianjin 

Intel X5670, 

NVIDIA GPU,  NUDT China 186368 2566000 4701000 

3 

DOE/SC/Oak Ridge 

National Laboratory 

Cray XT5-HE 

Opteron 6-core Cray Inc. USA 224162 1759000 2331000 

4 

National 

Supercomputing Centre 

Shenzhen 

Intel X5650, 

NVidia Tesla GPU Dawning China 120640 1271000 2984300 

5 

GSIC Center, Tokyo 

Institute of Technology 

Xeon X5670, 

Nvidia GPU NEC/HP Japan 73278 1192000 2287630 

6 DOE/NNSA/LANL/SNL Cray XE6 Cray Inc. USA 142272 1110000 1365810 

7 

NASA/Ames Research 

Center/NAS 

SGI Altix Xeon 

Infiniband SGI USA 111104 1088000 1315330 

8 DOE/SC/LBNL/NERSC Cray XE6 Cray Inc. USA 153408 1054000 1288630 

9 

Commissariat a l'Energie 

Atomique Bull Bull SA France 138368 1050000 1254550 

10 DOE/NNSA/LANL 

PowerX Cell 8i 

Opteron 

Infiniband IBM USA 122400 1042000 1375780 



©Jesper Larsson Träff WS11/12 

# Organization System Manufac Country Cores Max Peak 

… 

56 

TU Wien, Uni Wien, 

BOKU 

Opteron, 

Infiniband Megware Austria 20700 

         

135600 

          

185010 

… 

Max, Peak: GFLOPS 



©Jesper Larsson Träff WS11/12 

June 2011 

NEC Earth 
Simulator: 
2002-2004 
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•Since ca. 1995 no single-processor system on list(!) 
 
•HPL (High Performance Linpack) performance over 8 PFLOPS 
•Using well over 100.000 processor cores 
•Many systems are hybrid/heterogeneous: accelerators (Nvidia 
GPU, Rateon GPU, Cell, …) 

Top500 (source: www.top500.org – also www.green500.org) 
gives valuable information on current trends, developments, 
and the history of supercomputing systems: 

NOT necessarily on „most powerful system“: can it be 
programmed? Good for other, real applications? Quality of 
software? MTF? … 

http://www.top500.org/
http://www.green500.org/
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Supercomputer „performance“ evidence for Moore‘s law!? 

Moore‘s law: 
•Not a law of 
nature 
•Empirical 
observation 
•Prediction 
•Self-fullfilling 
prophecy/dictate 

Exascale 
(10^18 FLOPS) 
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Supercomputer „performance“ evidence for Moore‘s law!? 

Peter Hofstee, 
IBM Cell co-
designer 

„…a self-fulfilling 
prophecy…  nobody 
can afford to put a 
processor or machine 
on the market that 
does not follow it“, 
HPPC 2009 
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Supercomputer „performance“ evidence for Moore‘s law!? 

Peter Hofstee, 
IBM Cell co-
designer 

„…a self-fulfilling 
prophecy…  nobody 
can afford to put a 
processor or machine 
on the market that 
does not follow it“, 
HPPC 2009 

…which may explain 
some of the very 
difficult to program 
Top500 systems 
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Note: in HPC sometimes alternative, hardware-oriented 
definition of efficiency is used 

System/HPC Efficiency: 
Ratio of „theoretical peak-rate“ to FLOPS (FLOating Point 
operations per Second) achieved by application 

Caution: 
•Used in Top500 and elsewhere in HPC 
•Undefined what „theoretical peak-rate“ is 
•Just measuring FLOPS: Inferior algorithm may be more 
„efficient“ than otherwise preferable algorithm 

Measures: 
How well is hardware/architecture capabilities actually used? 
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1. Often: how can an already given algorithm (program) be 
parallelized? 
 

2. Only if not possible, or not effective: look at problem, 
develop parallel algorithm, implement 

Amdahl‘s law: the fraction that is not parallelized limits speedup 

Speedup(p,n) = Tseq(n)/Tpar(p,n) 

Empirical measure: Tseq, Tpar actual execution times of (best) 
sequential and parallel implementations on given, concrete 
machines. 

Parallel computing as a practical discipline 
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Caution: 
Speedup is not relative to parallel time with 1 processor – 
although often/sometimes reported 

Tpar(1,n)/Tpar(p,n) 

Dumb sort O(n^2/p) would mistakenly be judged an excellent 
parallel algorithm/implementation; might also have high 
hardware efficiency (FLOPS rate) 
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•Superlinear? 

procesors 

speedup 
perfect, p 

Linear, cp, c<1 

Amdahl, seq. 
fraction 

common… 

„superlinear“ 

•Typical speedup, fixed n 
•Empirical speedup declines after some p* corresponding to 
Tfast(n) = Tpar(p*) – problem too small, overhead dominates 

Tfast(n) 
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Sources of superlinear speedup: 

Differences between sequential and parallel hardware:  
a) the memory hierarchy 
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Sources of superlinear speedup: 

Differences between sequential and parallel hardware:  
a) the memory hierarchy 

M 

P P P P 

Shared-memory 
model (naive) 

M M M … 
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Sources of superlinear speedup: 

Differences between sequential and parallel hardware:  
a) the memory hierarchy 

M 

P P P P 

Shared-memory 
model (modification 1) 

M M M … 

cache cache cache cache 
Caches alleviate 
memory bottleneck:  

Exploit temporal and spatial locality often present in programs 



©Jesper Larsson Träff WS11/12 

Processor 
Register 

bank 

L1 cache 

L2 cache 

L3 cache 

System DRAM 

Bus/memory network 

•Several levels of 
caches 
•Banked memories 
•Memory network for 
multiprocessors 
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L3 cache 

System DRAM 

Bus/memory network 

Processor 
Register 

bank 

L1 cache 

L2 cache 

Processor 
Register 

bank 

L1 cache 

L2 cache 

… 
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Processor 
Register 

bank 

L1 cache 

L2 cache 

L3 cache 

System DRAM Disk 

tape 

Bus/memory network 

Disk 

Disk 

Disk 

tape 
tape 

tape 

Typical HPC/data 
center server 
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[Bryant, O’Halloran: Computer Systems, Prentice-Hall, 2011] 

Typical values for memory hierarchy: 
 
Registers:  0 cycles 
L1 cache:  1 cycles 
L2 cache  10 cycles 
L3 cache  30 cycles 
Main memory:  100 cycles 
Disk:   100,000 cycles 
Tape:   10,000,000 cycles 
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Sequential algorithm on huge data size n, that needs to use 
full memory hierarchy 

vs. 

Parallel algorithm on distributed data n/p where each 
processor may work on data in main memory, or even cache 
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Processor 
Register 

bank 

L1 cache 

L2 cache 

L3 cache 

Interconnection network 

Procesor j, 0≤j<n 

Example: 

Speedup(p,n) = 
f(n)*Mseq/(f(n)/p*Mpar) = 
p*Mseq/Mpar 

E.g.  
Mseq = 1000, Mpar = 100   

f(n): number of mem refs 

Non-trivial parallel algorithm 
needs to communicate, trades 
memory ref.s for communication 
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Observation/lesson: 
In Scientific Computing/HPC Speedup often not relevant, 
problem too large to fit in memory of single processor 

Instead: 
scalability – can the algorithm scale (strongly or weakly) from 
100 to 10,000 processor cores? How much must the problem 
size increase 

Note: 
HPC systems may have constant or slowly declining 
memory/processor as p grows; not reasonable to expect that 
memory/processor grows with p, Ω(p) 
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Advanced note: 
A programming interface that requires each process to keep 
state information for all other processes will be in trouble as p 
grows 

[Balaji et al.: MPI on millions of cores. Parallel Proc. Letters, 21(1),45-
60,2011] 
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Sources of superlinear speedup: 

Differences between sequential and parallel hardware:  
a) the memory hierarchy 
b) Algorithmic reasons 



©Jesper Larsson Träff WS11/12 

T1 T2 

solution 

Tseq(n) = T1(n)+t2(n) = O(2^(n-1))+O(n-1) = c1*2^(n-1) + c2*(n-1) 

Sequential algorithm 
explores all of T1 and one 
path in T2 

Example: tree search 

Input size n, solution 
space/tree of size 2^n to be 
explored 
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T1 T2 

solution 

Tpar(2,n) = t’2(n) = O(n) = c3*n 

Parallel algorithm explores 
T1 and T2 in parallel, 
terminates as soon as 
solution is found 

Example: tree search 

Speedup(p,n) = (c1*2^(n-1)+c2*(n-1))/c3*n =  
c’*2^(n-1)/n+1 -> ∞ as n grows 
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General: p subtrees, explored in parallel, termination 
as soon as solution is found in one  

Superlinear speedup often found in 
parallel branch-and-bound search 
algorithms (solution of hard problems) 
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Sources of superlinear speedup: 

Differences between sequential and parallel hardware:  
a) The memory hierarchy 
b) Algorithmic reasons 
c) Non-determinism 
d) Randomization 

b)-d): sequential and parallel algorithms are not doing the same 
things 
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Reduction, prefix sums 

Reduction problem: given sequence x0, x1, x2, …, x(n-1), compute 

y = ∑xi = x0+x1+x2+…+x(n-1) 

•xi can be integers, real numbers, vectors, … 
•„+“ can be some applicable operator, sum, product, 
min, max, bitwise and, logical and, vector sum, … 

Algebraic properties of „+“: associative, commutative, … 
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Reduction operations in programming models/langauges 

Set of processes „collectively“ invoke „reduce“ operation, each 
contribute a subset of the n elements 

•Reduction to one: all processes participate in the operations, 
resulting „sum“ stored with one process 
•Reduction to all: all processes participate, results available to 
all processes 
•Reduction with scatter: reduction of vectors, result vector 
stored in blocks over the processes 



©Jesper Larsson Träff WS11/12 

yi = ∑0≤j<i:xj = x0+x1+x2+…+x(i-1) 

Prefix sum: sum of the first i elements of xi sequence 

Exclusive prefix (i>0): xi not included in sum 

yi = ∑0≤j ≤ i:xj = x0+x1+x2+…+x(i-1) 

Inclusive prefix: xi included in sum. 
Note: inclusive prefix trivially computed from exclusive prefix 
(add xi), not vice versa unless „+“ has inverse 

Parallel prefix sums problem: compute all prefix sums y0, y1, …, 
y(n-1) 
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Prefix/scan operations in programming models/langauges 

•Scan: all inclusive prefix sums for process‘s segment computed 
at process 
•Exscan: all exclusive prefix sums for process‘s segment 
computed at process 

Set of processes „collectively“ invoke „reduce“ operation, each 
contribute a subsequence/segment of the n elements 

Reductions and prefix-sums/scans typically found in parallel 
languages/interfaces. A parallel programming model can be 
defined around the concept of collective operations 
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Sequential, simple scan through array 

y[1] = x[0]; 

for (i=2; i<n; i++) { 

  y[i] = y[i-1]+x[i-1]; 

} 

sum = y[n-1]+x[n-1]; // reduction 

Parallel? 

Tseq(n) = n-1 summations 
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Application: cutoff computation 

// Parallelizable part 
do { 
   for (i=0; i<n; i++) { 
       x[i] = f(i); 
   } 
   // check for convergence 
   done = …; 
} while (!done) 

done: if x[i]<ε for all i 

Each process locally computes  
 
localdone = (x[i]<ε) for all local i 

done = allreduce(localdone,AND); 
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Application: array compaction, load balancing 

for (i=0; i<n; i++) { 

  if (active[i]) a[i] = f(b[i]+c[i]); 

} 

Given arrays a and active, execute data parallel loop efficiently 
in parallel: 

Work O(n), although number of active elements may be much 
smaller. Assume f an expensive operation 
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for (i=0; <n; i++) index[i] = active[i] ? 1 : 0; 

Exscan(index,n); // exclusive prefix computation 

m = index[n-1]+(active[n-1) ? 1 : 0); 

for (i=0; i<n; i++) { 

  if (active[i]) { 

    aa[index[i]] = a[i];  

    bb[index[i]] = b[i]; 

    cc[index[i]] = c[i]; 

  } 

} 

for (i=0; i<m; i++) { 

  aa[i] = f(bb[i]+cc[i]); 

} 

index: 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 Exscan 

0 0 1 1 1 1 2 3 3 3 4 4 5 6 6 6 
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Application: partitioning for Quicksort 

Quicksort(a,n): 
1. Select pivot a[k] 
2. Partition a into a[0,…,n1-1], a[n1,…,n2-1], a[n2,…,n-1] of 

elements smaller, equal, and larger than pivot 
3. In parallel: Quicksort(a,n1), Quicksort(a+n2,n-n2) 

Task parallel Quicksort algorithm 
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Partition: 
1. Mark elements smaller than a[k], compact into a[0,…,n1-1] 
2. Mark elements equal to a[k], compact into a[n1,…,n2-1] 
3. Mark elements greater than a[k], compact into a[n2,…,n-1] 

for (i=0; <n; i++) index[i] = (a[i]<a[k]) ? 1 : 0; 

Exscan(index,n); // exclusive prefix computation 

for (i=0; i<n; i++) { 

  if (a[i]<a[k]) aa[index[i]] = a[i];  

} 

… 

…and many other (less trivial) applications 



©Jesper Larsson Träff WS11/12 

Key: + is associative 

x0+x1+x2+…+x(n-2)+x(n-1) = ((x0+x1)+(x2+…))+…+(x(n-2)+(xn-1)) 

Parallel solution? 

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 

x: 

round 0 

round 3 
round 2 
round 1 

And almost done, x[2^k-1] = ∑0≤i<2^k: xi 
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Lemma: 
Reduction can be performed out in r = log_2 n synchronized 
rounds, for n a power of 2. Total number of + operations are 
n/2+n/4+n/8+…<n 

•Shared memory (programming) model: synchronization after 
each round 
 
•Distributed memory programming model:           represents 
communication 

Recall, geometric series: ∑(0≤k≤n):ar^k = a(1-r^(n+1))/1-r)  
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0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 

x: 

round 0 

round 3 
round 2 
round 1 

for (k=1; k<n; k=kk) { 

  kk = k<<1; // double 

  for (i=kk-1; i<n, i+=kk) { 

    x[i] = x[i-k]+x[i]; 

  } 

  barrier; 

} 

Data parallel loop, 
n/2^(k+1) operations for 
round r, r=0, 1, … 

But beware of 
dependencies 
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0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 

x: 

round 0 

round 3 
round 2 
round 1 

for (k=1; k<n; k=kk) { 

  kk = k<<1; // double 

  for (i=kk-1; i<n, i+=kk) { 

    x[i] = x[i-k]+x[i]; 

  } 

  barrier; 

} 

Data parallel loop, 
n/2^(k+1) operations for 
round r, r=0, 1, … 

Here 
unproblematic, why? 
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Distributed memory, message passing 
(programming) model: arrows are communication 

Communication pattern of the algorithms forms a binomial 
tree 

15 

0 
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Communication pattern of the algorithms forms a binomial 
tree 

15 

0 
round 0 

round 3 

round 2 

round 1 

Distributed memory, message passing 
(programming) model: arrows are communication 
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Communication pattern of the algorithms forms a binomial 
tree 

15 

0 
round 0 

round 3 

round 2 

round 1 

Property 1: 
Root active in 
all rounds 

Distributed memory, message passing 
(programming) model: arrows are communication 
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Communication pattern of the algorithms forms a binomial 
tree 

15 

0 

Property 2: 
For n-level tree, 
number of nodes at 
level k is 
choose(n,k), 
binomial coefficient 

Distributed memory, message passing 
(programming) model: arrows are communication 
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Problems: 
 
•n not a power of 2? 
•parallel prefix sums? 

Observation/invariant: X original content of array x 
After round k, k=0,…,log n 
 
x[i*2^(k+1)-1] = X[i*2^(k+1)-1-2^k]+…+X[i*2^(k+1)-1] 
 
Last update on x[i] in round k where i ≠ j*2^(k+1)-1 

Prefix sums for certain segments computed, use log p rounds 
to hand on 
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Scan(x,n)  

{ 

  if (n==1) return; 

 

  for (i=0; i<n/2; i++) y[i] = x[2*i]+x[2*i+1]; 

 

  Scan(y,n/2); 

 

  x[1] = y[0]; 

  for (i=1; i<n/2; i++) { 

    x[2*i] = y[i-1]+x[2*i]; 

    x[2*i+1] = y[i]; 

  } 

  if (odd(n)) x[n-1] = y[n/2-1]+x[n-1]; 

} 

Recursive formulation 

Reduce problem 

Solve recursively 

Take back 
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0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 

x: 

round 0 

round 3 
round 2 
round 1 

round 0 

round 2 
round 1 

phase 0 

phase 1 

What the recursive algorithm does: 
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for (k=1; k<n; k=kk) { 

  kk = k<<1; // double 

  for (i=kk-1; i<n, i+=kk) { 

    x[i] = x[i-k]+x[i]; 

  } 

  barrier; 

} 

for (k=k>>1; k>1; k=kk) { 

  kk = k>>1; // halve 

  for (i=k-1; i<n-kk; i+=k) { 

    x[i+kk] = x[i]+x[i+kk]; 

  } 

  barrier; 

} 

„up-phase“:  
log_2 n rounds, 
n/2+n/4+n/8+… < n 
summations 

„down phase“: 
log_2 n rounds, 
n^/2+n/4+n/8+… < n 
summations 

Total work ≈ 2n = O(Tseq(n)) 

But: factor 2 off!! 

Non-recursive, data parallel implementation 

This could be data dependencies, but 
are not 
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0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 

x: 

round 0 

round 3 
round 2 
round 1 

round 0 

round 2 
round 1 

phase 0 

phase 1 

Speedup(p) at most p/2 – half the processors are lost 
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0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 

x: 

round 0 

round 3 
round 2 
round 1 

round 0 

round 2 
round 1 

phase 0 

phase 1 

For p=n: work optimal, but not cost optimal – p processors 
occupied in 2log p rounds = O(p log p)  
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Strategy for distributed memory models 

1. Each process has block x[0,…,n/p-1] 
2. Compute prefix sums locally, store local sum 
3. Exscan(local sums); 
4. Add exclusive prefix locally to all x[0,…,n/p-1] 

Observation: total work is 2*n + p log p, twice Tseq(n) 
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Lesson: work-optimal parallel algorithms often have larger 
contant factors than best sequential algorithm. Inherently? 

x: 

y: y[i] = ∑x[j] 

Exscan(y,z) z[i] = y[0]+…+y[i-1] 
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for (k=1; k<n; k<<=1) { 

  for (i=k; i<n; i++) x[i] = x[i-k]+x[i]; 

  barrier; 

} 

Yet another data parallel prefix-sums algorithm 

•Why does this work? Invariant? 
 
•All indices active in all rounds, work O(n log n) 
•But only log n rounds 

[Hillis, Steele: Data Parallel Algorithms. CACM 29(12), 1170-1183, 1986]  

Why might it not 
work? Dependencies!! 
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Other „collective“ operations 

•Broadcast: one process has data, after operation all processes 
have data  
•Scatter: data of one process distributed in blocks to other 
processes 
•Gather: blocks from all processes collected at one process 
•Allgather: blocks from all processes collected at all processes 
•Broadcast-to-all: same 
•Alltoall: each process has blocks of data, one block for each 
other process 

Mostly for distributed memory programming models. A subset 
of processes collectively carry out operation 

For performance reasons (locality), can make sense also in shared 
memory programming and architecture models 


