
©Jesper Larsson Träff WS11/12

Introduction to Parallel Computing
Shared-memory systems and programming

Jesper Larsson Träff

Technical University of Vienna

Parallel Computing

©Jesper Larsson Träff WS11/12

Shared-memory architectures & machines

M

P P P P

Shared-memory
model

Naive, shared memory (programming) model: processors
execute processes, processes are not synchronized, processes
exchange information through shared memory, special methods
for sharing memory between processes, NUMA but directly
visible

©Jesper Larsson Träff WS11/12

M

P

cache

Cache: small, fast memory, close to processor,
accessed main memory locations are stored
temporarily in cache, reused when possible

•Main memory: Gbytes, access times > 100 cycles
•Cache: Kbytes->Mbytes, access times,1-20 cycles

Typically 2-3 levels of caches in modern processors, and several
special caches, TLB, victim cache, instruction cache, …

Caches may help to alleviate/hide memory („von
Neumann“) bottlenect

Closer to „reality“:

©Jesper Larsson Träff WS11/12

Caches, recap.

Cache consists of a number of lines that stores blocks of
memory. A cache line holds a block and additional status
information (dirty/valid bit, tag)

Typical block size: 64Bytes

Caches exploit and makes sense because of:
•Temporal locality: locations are typically used several times
in close succession, several operations on same operand
•Spatial locality: when a location is addressed, typically
locations close to it (a+1, a+2, …) will be also be used

Properties of algorithms/programs, and not always so

©Jesper Larsson Träff WS11/12

Memory read a:
if address a already in cache, reuse from there, if not read
from memory through cache, evict previous line

a B-> cache line

Access to main memory in block size units B, aligned to block
boundary

Block boundary

©Jesper Larsson Träff WS11/12

Memory write a:
different possibilities. If a is already in cache, write overwrites;
if a is not in cache

•Write allocate: if a is not in cache, read a
•Write non-allocate: write directly to memory

•Write-through cache: each write is immediately passed on to
memory (typically non-allocate)
•Write back: cache line block is written back when line is
evicted (typically write allocate)

©Jesper Larsson Träff WS11/12

Replacement policies for associative caches
•LRU: least recently used
•LFU : least frequently used

Address a:
•If a can go into only one specific line of the cache: directly
mapped
•If a can go into any line of the cache: fully associative

•If a can go into any of a small set of lines: set-associative
(typically 2-way, 4-way)

Typically, all maintained in hardware

©Jesper Larsson Träff WS11/12

M

P P P P

Shared-memory
model, cc-NUMA

M M M …

cache cache cache cache

Cache-coherent
non.uniform
memory access

Multiprocessor/multi-core caches

Typically, several cores shares caches at some levels

©Jesper Larsson Träff WS11/12

Cache coherence

a == 1 a == 1

Processor/core 0 and 1 with private caches, both have read
location a into cache. Processor 0 writes to a?

M

a =7;
b = a; // ??

Read by 1 occurs „after“
write by 0. If b is still 1,
cache system is not
coherent

©Jesper Larsson Träff WS11/12

Cache is coherent if
1. If processor P writes to a at time t1 and reads a at t2>t1,

and there are no other writes (by P or other) to a between
t1 and t2, then P reads the value written at t1

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and
no other P writes to a between t1 and t2, then P2 reads the
value written by P1 at t1

3. If P1 and P2 writes to a at the same time, then either the
value of P1 or the value of P2 is stored at a

Let the order of memory accesses to a specific location a be
given by the program order

Ad 1. Program order is preserved for each processor for
locations that are not written by other processors

©Jesper Larsson Träff WS11/12

Cache is coherent if
1. If processor P writes to a at time t1 and reads a at t2>t1,

and there are no other writes (by P or other) to a between
t1 and t2, then P reads the value written at t1

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and
no other P writes to a between t1 and t2, then P2 reads the
value written by P1 at t1

3. If P1 and P2 writes to a at the same time, then either the
value of P1 or the value of P2 is stored at a

Let the order of memory accesses to a specific location a be
given by the program order

Ad 2. Here, t1 and t2 have to be „sufficiently“ separated in
time. Updates by P1 must eventually become visible to the other
processors

©Jesper Larsson Träff WS11/12

Cache is coherent if
1. If processor P writes to a at time t1 and reads a at t2>t1,

and there are no other writes (by P or other) to a between
t1 and t2, then P reads the value written at t1

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and
no other P writes to a between t1 and t2, then P2 reads the
value written by P1 at t1

3. If P1 and P2 writes to a at the same time, then either the
value of P1 or the value of P2 is stored at a

Let the order of memory accesses to a specific location a be
given by the program order

Ad 3. Writes are required to „serialize“. Either of the values
simultaneously written will be stored. „Same time“ means
„sufficiently close“ in time.

©Jesper Larsson Träff WS11/12

cc-NUMA systems (most multi-core and SMP nodes): cache
coherent, non-uniform memory access

Cache coherence maintained by hardware at the cache line level.
Standard approaches and protocols:

•Update based
•Invalidation based

•Snooping/bus based
•Directory based

All: expensive in hardware („transistors“, „power“); can affect
performance negatively

©Jesper Larsson Träff WS11/12

Sharing/false sharing

Cache coherence is maintained at the cache line level. Processor
0 updates y, processor 1 updates x (with e.g. &x == &z[1], &y =
&z[2])

y x

for (i=0; i<n; i++) y += i-1;

for (i=0; i<n; i++) x += 2*i;

Although x and y are different memory locations, each update
will cause cache coherency traffic!! Because cache coherency is
at the cache line level, x and y are falsely shared

©Jesper Larsson Träff WS11/12

Memory consistency

In what order do writes to different locations not necessarily
in cache become visible in memory and to other processors?

x = 0;
// … some code
x = 1;
if (y==0) {
 // body
}

y = 0;
// … some code
y = 1;
if (x==0) {
 // body
}

Core 0: Core 1:

Can core 0 and core 1 both execute body of if-statement?

x not in cache
of core 1, y not
in cache of
core 0

©Jesper Larsson Träff WS11/12

x = 0;
// … some code
x = 1;
if (y==0) {
 // body
}

y = 0;
// … some code
y = 1;
if (x==0) {
 // body
}

Core 0: Core 1:

If x=1; y=1; appears at the same time, no cores execute body

If core 0 in body, then core 1 has executed y=0; but not y=1;
thus core 1 cannot enter body

Correct?
Only under sequential
consistency (or similar)

©Jesper Larsson Träff WS11/12

Sequential consistency: memory accesses of each processor
are performed in program order; program result is as for some
interleaving of the memory accesses of all processors

Sequential consistency is typically not guaranteed by modern
multiprocessors:

•Caches, may delay writes
•Write buffers, may delay and/or reorder writes
•Memory network: may reorder writes
•Compiler: may reorder updates

Relaxed consistency models (see other lecture…) pose weaker
constraints on hardware, may still allow correctness reasoning

©Jesper Larsson Träff WS11/12

In short:
To guarantee intended effect/correctness of a shared-memory
multiprocessor program, special instructions that enforce
memory updates to take effect may have to be used

Example:

memory fence(f) : completes all writes before the instruction
and sets flag f

Another processor waiting for f will „know“ that all writes of
the other processor before f was set will have been completed

©Jesper Larsson Träff WS11/12

Other approaches to alleviating memory bottleneck

•Prefetching: start loading operands well before use

•Multi-threading: when a thread („virtual processor“) issues a
load, switch to another thread

Note: multi-threading requires explicitly parallel programs

Note: both prefetching and multi-threading are latency
hiding techniques. Memory bandwidth is still required for
the number of outstanding memory requests

©Jesper Larsson Träff WS11/12

TU Wien parallel computing shared-memory node

4xAMD „magny cours“ 12-core Opteron 6168 processors
128GByte main memory, 1.9GHz, total number of cores 48

•Per core L1 cache: 128KB
•Per core L2 cache 512KB
•Shared L3 cache 12288KB

Name:
saturn.par.tuwien.ac.at

©Jesper Larsson Träff WS11/12

12 core = 2x6 cores, 2
dies on chip?

HT: HyperTransport – standardized processor-processor
interconnect

©Jesper Larsson Träff WS11/12

48-core shared-memory
system from4x12-core

©Jesper Larsson Träff WS11/12

From University of Utrecht, EuroBen homepage: www.phys.uu.nl/eurben

Check-exercise: try to find the (superscalar) issue width? Peak
performance? of the Opteron/Magny Cours processor

http://www.phys.uu.nl/eurben

©Jesper Larsson Träff WS11/12

L1 cache: 64KB data, 64KB instruction

Vector extensions

©Jesper Larsson Träff WS11/12

Thread model

Thread: independent stream of instructions that can be
scheduled by the OS. Typically, threads live inside an OS
„process“, and shares all global information of the process
(Thread: „smallest unit that can be independently scheduled“)

Process: program in
execution.

UNIX process global information:
•File pointers
•Global variables
•Static variables
•Heap storage

Per thread: local variables (stack), registers, „thread
local storage“

©Jesper Larsson Träff WS11/12

POSIX threads, pthreads

Standard thread library API for UNIX (Linux etc.) since 1995:
IEEE/ANSI 1003.1c-1995

Official standard documents cost money; standard available as
man pages, internet, several tutorials and books

POSIX: Portable Operating Systems Interface for uniX

Low-level interface for C/UNIX thread programming

More modern thread model, including memory model: Java threads

©Jesper Larsson Träff WS11/12

(p)threads „Programming model“

1. Fork-join type parallelism: a thread can „spawn“ (start) any
number of new threads (up to system limitations), wait for
threads to terminate

2. Initially one main („master“) thread is active. Code for
thread is a procedure/function

3. Spawned threads are peers, any thread can wait for
termination of any other thread

4. Threads are scheduled by the underlying system, may or
may not run simultaneously, may or may not be scheduled to
available processors/cores

©Jesper Larsson Träff WS11/12

5. No implicit synchronization between threads, threads
progress independently, and asynchronously

6. Threads share process global data

7. Coordination mechanisms for protecting access to shared
variables (locks, condition variables). All concurrent updates
must be protected, otherwise program illegal, outcome
undefined

8. …

Pthreads: no cost model, no memory model, …

©Jesper Larsson Träff WS11/12

Pragmatics (for parallel computing): runable threads are
expected to be scheduled to free cores. Scheduling and binding
(mapping to specific core) can be influenced

Process: program in
execution.

M

C0 C1 C2 C47

©Jesper Larsson Träff WS11/12

pthreads for C:

Main program is main thread, spawns off and waits for
termination of additional threads. Thread code: C function

•Include header <pthread.h>

•All pthread types and functions prefixed by pthread_

•pthread functions return error code, or status information,
good practice to check!! (not done here…)

Compile with

gcc -Wall -o pthreadshello pthreadshello.c -pthread

©Jesper Larsson Träff WS11/12

Starting/spawning a thread

#include <pthread.h>

int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine)(void *),

 void *arg);

pthread_t: type of thread object (opaque), thread id returned
here (pointer), must be allocated globally by spawning thread

static pthread_t newthread

©Jesper Larsson Träff WS11/12

Starting/spawning a thread

#include <pthread.h>

int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine)(void *),

 void *arg);

void *(start_routine)(void *): type template for the
function to run as thread. Takes arguments via generic pointer,
returns generic pointer, standard C convention

void *newcode(void *genericargs) {

 myarg_t realargs = (myarg_t*)genericargs;

 // work to be done by this thread

}

©Jesper Larsson Träff WS11/12

Starting/spawning a thread

#include <pthread.h>

int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine)(void *),

 void *arg);

void *: pointer to arguments, must have beeen allocated by
spawning thread in static memory (heap)

struct {

 // args

} *

©Jesper Larsson Träff WS11/12

Starting/spawning a thread

#include <pthread.h>

int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine)(void *),

 void *arg);

Execution of thread can be influenced by attributes:
stacksize, scheduling properties, … NULL, or

Not this lecture

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_destroy(pthread_attr_t *attr);

©Jesper Larsson Träff WS11/12

Finalizing/terminating thread

#include <pthread.h>

void pthread_exit(void *status);

Terminates thread, pointer to return status can be supplied;
return status can be caught by joining thread

Joining threads

#include <pthread.h>

int pthread_join(pthread_t thread, void **status);

©Jesper Larsson Träff WS11/12

int main () {
 pthread _t t;
 pthread_create(&t,…);
 … // main continues

}

threadcode() {
 // …
 pthread_exit(NULL);
}

pthread_join(t,NULL);

Main thread New thread Some other thread

©Jesper Larsson Träff WS11/12

#include <stdio.h>

#include <stdlib.h>

// pthreads header

#include <pthread.h>

// global state; here read-only – don‘t do this…

int threads_glob;

void *something(void *argument){

 int rank = (int)argument;

 printf("Thread rank %d of %d responding\n",

 rank,threads_glob);

 pthread_exit(NULL);

}

A small example

C style: cast void *
argument back to
intended type

©Jesper Larsson Träff WS11/12

#include <stdio.h>

#include <stdlib.h>

// pthreads header

#include <pthread.h>

// global state; here read-only – don‘t do this…

int threads_glob;

void *something(void *argument){

 int rank = (int)argument;

 printf("Thread rank %d of %d responding\n",

 rank,threads_glob);

 pthread_exit(NULL);

}

A small example

Here misuse of
pointer to store rank

©Jesper Larsson Träff WS11/12

int main(int argc, char *argv[]){

 int threads, rank;

 int i; pthread_t *handle;

 threads = 1;

 for (i=1; i<argc&&argv[i][0]=='-'; i++) {

 if (argv[i][1]=='t')

 i++,sscanf(argv[i],"%d",&threads);

 }

 threads_glob = threads;

 // number of threads read and stored globally

 handle =

 (pthread_t*)malloc(threads*sizeof(pthread_t));

 // fork the threads

 for (i=0; i<threads; i++) {

 pthread_create(&handle[i],NULL,

 something,(void*)i);

 }

Getting
command line
arguments

Local scalar variable cast into generic void
pointer, correct, but dangerous misuse

©Jesper Larsson Träff WS11/12

#include <stdio.h>

#include <stdlib.h>

// pthreads header

#include <pthread.h>

// global state; here read-only – don‘t do this…

int threads_glob;

void *something(void *argument){

 int rank = *(int*)argument;

 printf("Thread rank %d of %d responding\n",

 rank,threads_glob);

 pthread_exit(NULL);

}

Better: cast and
deref

©Jesper Larsson Träff WS11/12

int main(int argc, char *argv[]){

 int threads, rank;

 int i; pthread_t *handle;

 threads = 1;

 for (i=1; i<argc&&argv[i][0]=='-'; i++) {

 if (argv[i][1]=='t')

 i++,sscanf(argv[i],"%d",&threads);

 }

 threads_glob = threads;

 // number of threads read and stored globally

 handle =

 (pthread_t*)malloc(threads*sizeof(pthread_t));

 // fork the threads

 for (i=0; i<threads; i++) {

 pthread_create(&handle[i],NULL,

 something,&i);

 }

Problem?

©Jesper Larsson Träff WS11/12

int main(int argc, char *argv[]){

 int threads, rank;

 int i; pthread_t *handle;

 threads = 1;

 for (i=1; i<argc&&argv[i][0]=='-'; i++) {

 if (argv[i][1]=='t')

 i++,sscanf(argv[i],"%d",&threads);

 }

 threads_glob = threads;

 // number of threads read and stored globally

 handle =

 (pthread_t*)malloc(threads*sizeof(pthread_t));

 // fork the threads

 for (i=0; i<threads; i++) {

 pthread_create(&handle[i],NULL,

 something,&i);

 }

Problem?

Only one (local) variable, may be overwritten
before thread has copied into local

©Jesper Larsson Träff WS11/12

Race condition:
Outcome of parallel progam execution is dependent on the
relative timing of the updates by processors/threads

Example:
a value (storage of i) is overwritten by one thread, may (or may
not) happen before the other threads have read intended
value. Program outcome dependent on relative timing of
threads. Bad, unintended non-determinism…

©Jesper Larsson Träff WS11/12

int main(int argc, char *argv[]){

 int threads, *rank;

 int i; pthread_t *handle;

 // … get the number of threads

 handle =

 (pthread_t*)malloc(threads*sizeof(pthread_t));

 rank = (int*)malloc(threads*sizeof(int));

 // fork the threads

 for (i=0; i<threads; i++) {

 rank[i] = i;

 pthread_create(&handle[i],NULL,

 something,&rank[i]);

 }

 // join the threads again

 for (i=0; i<threads; i++) pthread_join(handle[i],NULL);

 free(rank); free(handle);

 return 0;

}

Own location for each
thread, no overwrite

Wait for threads to
terminate Free storage nicely

©Jesper Larsson Träff WS11/12

#include <assert.h>

int main(int argc, char *argv[]){

 int threads, *rank;

 int i; pthread_t *handle;

 // … get the number of threads, allocate

 // fork the threads

 for (i=0; i<threads; i++) {

 rank[i] = i;

 errcode = pthread_create(&handle[i],NULL,

 something,&rank[i]);

 assert(errcode==0);

 }

 // …

}

Checking return codes with assertions
Enables assertion
checking, macro
assert(expr);

Assertion errcode==0
expected to evaluate to
true (≠0), otherwise abort

#define NDEBUG
// assertion checking disabled

©Jesper Larsson Träff WS11/12

for (i=0; i<threads; i++) {

 rank[i] = i;

 pthread_create(&handle[i],NULL,

 something,&rank[i]);

 }

 // join the threads again

 for (i=0; i<threads; i++) pthread_join(handle[i],NULL);

Potential problem: sequential spawning of treads can limit
scalability (Amdahl).

In general: thread creation can be expensive

Fix: spawn recursively

©Jesper Larsson Träff WS11/12

#include <pthread.h>

pthread_t pthread_self(void);

#include <pthread.h>

int pthread_equal(pthread_t thread_1,

 pthread_t thread_2);

pthread_t thread identifiers are opaque; normally user gives
thread „identity“ (as in example), a thread can inquire ist own
pthread_t id; pthread_t id‘s can be compared

©Jesper Larsson Träff WS11/12

Explicit parallelization of data parallel loop

for (i=0; i<n; i++) {

 a[i] = f(i);

}

Thread i (on core i) performs

for (i=start; i<end; i++) {

 a[i] = f(i);

}

start = i*n/threads
end = (i+1)*n/threads

©Jesper Larsson Träff WS11/12

Explicit parallelization of data parallel loop

for (i=0; i<n; i++) {

 a[i] = f(i);

}

loopblock(void *what)

{

 rankindex_t *ix = (rankindex_t*)what;

 int *a = ix->array;

 int i, start=ix->start, end=ix->end ;

 for (i=start; i<end; i++) a[i] = f(i);

}

typedef struct {

 int *array;

 // pointer shared, global data

 int start, end;

 int rank; // threads rank

} rankindex_t;

Function for
loop block

Arguments struct

©Jesper Larsson Träff WS11/12

Example: matrix-vector product

for (i=0; i<n; i++) {

 y[i] = 0;

 for (j=0;j<m; j++) {

 y[i] += x[i][j]*A[j];

 }

}

y= x*A, nxm matrix x, m vector A

Nested loop

Parallelized by tiling outer loop

for (i=rank; i<n; i+=threads) {

 y[i] = 0;

 …

Each thread rank
handles every
threads‘th index

©Jesper Larsson Träff WS11/12

for (i=rank; i<n; i+=threads) {

 y[i] = 0;

 for (j=0;j<m; j++) {

 y[i] += x[i][j]*A[j];

 }

}

Thread rank:

Problem?

y[0] = 0;

y[1] = 0;

y[2] = 0;

y[3] = 0;

y values go into (local) caches

©Jesper Larsson Träff WS11/12

for (i=rank; i<n; i+=threads) {

 y[i] = 0;

 for (j=0;j<m; j++) {

 y[i] += x[i][j]*A[j];

 }

}

Thread rank:

y[0] += x[i][j]…;

y[1]

y[2]

y[3]

False sharing: updates on y causes
either cache update traffic or
invalidates/memory reads

+= x[i][j]…;

+= x[i][j]…;

+= x[i][j]…;

©Jesper Larsson Träff WS11/12

for (i=rank*n/p; i<(rank+1)*n/p; i++) {

 y[i] = 0;

 for (j=0;j<m; j++) {

 y[i] += x[i][j]*a[j];

 }

}

Thread rank:

Solution?

Exercise: test effects of false sharing (best and worst cases)
on TU Wien parallel computing shared-memory node, with
explicit thread affinity

©Jesper Larsson Träff WS11/12

Binding threads to cores

#define _GNU_SOURCE

#include <pthread.h>

int pthread_setaffinity_np(pthread_t thread,

 size_t cpusetsize,

 const cpu_set_t *cpuset);

Int pthread_getaffinity_np(pthread_t thread,

 size_t cpusetsize,

 cpu_set_t *cpuset);

_np: non-portable, non-standard extension to pthreads (but
commonly supported in some form)

Thread will be migrated to one of the cores in cpuset

©Jesper Larsson Träff WS11/12

Coordination constructs for avoiding race conditions

•Locks/mutex‘es – for ensuring mutual exclusion

•Condition variables

•Advanced, non-standard features: semaphores, barriers, spin
locks

Note: these are all classical concurrent computing constructs.
Some classical algorithms to solve the problems under weak
architecture assumptions: Dekker‘s algorithm, Lamport‘s bakery, …

Caution: the constructs were developed for few resources, not
necessarily sufficient for highly parallel, scalable programming

©Jesper Larsson Träff WS11/12

Critical section:
Code manipulating shared resources, that must not be
concurrently manipulated by other active entities (threads,
processes, …)

Shared resources: simple variables, data structures, devices

Pthread „model“: it is not allowed to update shared variables
outside of critical sections. The lock constructs shall ensure a
consistent view of memory.

Mutual exclusion property/algorithm: at most one thread in
given critical section

©Jesper Larsson Träff WS11/12

Lock: shared object between any number of threads.

Lock state: locked (acquired), or unlocked (released)

At most one thread can acquire the lock, must release after use.
When a thread attempts to acquire a lock that is already
acquired by another thread it is blocked, and waits until the lock
is released

If any thread that is waiting to acquire a lock is eventually
granted the lock, the lock is called fair!!

Locks

©Jesper Larsson Träff WS11/12

#include <pthread.h>

Int pthread_mutex_init(pthread_mutex_t *mutex,

 const pthread_mutex_attr *attr);

#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex);

Pthread lock is called mutex, type pthread_mutex_t

Static allocation and initialization with

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Dynamically allocated mutexes

©Jesper Larsson Träff WS11/12

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Locking and unlocking

©Jesper Larsson Träff WS11/12

a = x;

Thread 0:

b = x;

Thread 1:

x = c;

Thread 2:

Race condition: depends on relative timing of threads

Unsafe program, what is the intended value of x for thread 0
and 1?

x = 0;

©Jesper Larsson Träff WS11/12

lock(&lock);

a = x;

unlock(&lock);

Thread 0:

lock(&lock);

b = x;

unlock(&lock);

Thread 1:

lock(&lock);

x = c;

unlock(&lock);

Thread 2:

Mutual exclusion ensured – enforced by locking

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Both read and write accesses to x need to be protected by the
lock mutex

©Jesper Larsson Träff WS11/12

lock(&lock);

a = x;

unlock(&lock);

Thread 0:

lock(&lock);

b = x;

unlock(&lock);

Thread 1:

lock(&lock);

x = c;

unlock(&lock);

Thread 2:

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Note: pthread locks are not fair, no guarantee that a thread
trying to acquire a lock will eventually acquire it

Mutual exclusion ensured – enforced by locking

©Jesper Larsson Träff WS11/12

lock(&lock);

lock(&lock);

a = x;

unlock(&lock);

Thread 0:

lock(&lock);

b = x;

unlock(&lock);

Thread 1:

lock(&lock);

x = c;

unlock(&lock);

Thread 2:

Deadlock!

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Deadlock: two or more threads are in a situation where they
dependently on each other cannot progress. Deadlock will
eventually proliferate to all threads

©Jesper Larsson Träff WS11/12

a = f(x);

Thread 0:

b = f(x);

Thread 1:

c = f(y);

Thread 2:

What about this?

No apparent races, independent evaluation of some function f

OK? Depends on f, must be such that it can indeed be
executed concurrently: „tread safe“

©Jesper Larsson Träff WS11/12

Thread safety

1. Functions that do not protect (write access) to shared
variables

2. Functions that keep state over successive invocations
(static variables).

3. Functions that return pointers to static variables
4. Functions that call thread-unsafe functions

Tautological definition: a function is thread-safe if it can be
executed concurrently by any number of threads and will always
produce correct results

Non-thread safe functions are

©Jesper Larsson Träff WS11/12

Careful with functions supplied by other party, e.g. system
functions

Example: rand() keeps state internally in static variables,
notoriously not thread safe

Some system functions are made thread safe by locking. Can
have undesirable effects – serialization slowdown, deadlock

©Jesper Larsson Träff WS11/12

#include <pthread.h>

int pthread_mutex_trylock(pthread_mutex_t *mutex);

If mutex is not held by other tread, lock acquired; if already
held by other thread EBUSY is returned, calling thread is not
blocked

Testing and getting lock/non-blocking lock

More on locks

©Jesper Larsson Träff WS11/12

Thread 0:
…

pthread_mutex_lock(&lock1);

pthread_mutex_lock(&lock2);

…

Thread 1:
…

pthread_mutex_lock(&lock2);

pthread_mutex_lock(&lock1);

…

pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER;

Can – and will – lead to deadlock!!

Beware: even the most „unlikely“ deadlock situation will
eventually happen! Design correct programs…

Dead-locks:

©Jesper Larsson Träff WS11/12

e1 e2

Multiple locks, example: list processing

Problem with locks: code for different threads may have been
written with different locking conventions, by different people,
at different times…

To remove e2, may
need lock on e1 and e2

©Jesper Larsson Träff WS11/12

#include <pthread.h>

int pthread_rwlock_init(pthread_rwlock_t *rwlock,

 const pthread_rwlockattr_t *attr);

#include <pthread.h>

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

More flexible locks: reader/writer locks

Allow several threads to acquire lock for reading shared
variables, single thread to acquire for writing

©Jesper Larsson Träff WS11/12

#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

©Jesper Larsson Träff WS11/12

rdlock(&lock);

a = x;

unlock(&lock);

Thread 0:

rdlock(&lock);

b = x;

unlock(&lock);

Thread 1:

wrlock(&lock);

x = c;

unlock(&lock);

Thread 2:

pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER;

Thread 0 and 1 can both enter their critical section
simultaneously, thread 2 can only alone be in its critical section

©Jesper Larsson Träff WS11/12

rdlock(&lock);

a = x;

unlock(&lock);

Thread 0:

rdlock(&lock);

b = x;

unlock(&lock);

Thread 1:

wrlock(&lock);

x = c;

unlock(&lock);

Thread 2:

pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER;

Note: pthread locks are not fair, no guarantee that a thread
trying to acquire a lock will eventually acquire it

©Jesper Larsson Träff WS11/12

#include <pthread.h>

int pthread_cond_init(pthread_cond_t *cond,

 const pthread_cond_attr *attr);

int pthread_cond_destroy(pthread_cond_t *cond);

More lock flexibility: condition variables

Thread may temporalily relinquish lock, and wait (suspend)
for condition-signal

©Jesper Larsson Träff WS11/12

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *cond,

 pthread_mutex_t *mutex);

Wait for signal on condition variable inside critical section

Thread suspended (waits), lock is temporarily relinquished.
When thread it later resumed (woken up) by a signal from
some other thread, it has again acquired lock

Good practice: recheck whether wait-condition is fulfilled

Deadlock: threads mutually wait on some condition, no thread
signals

©Jesper Larsson Träff WS11/12

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *cond,

 pthread_mutex_t *mutex);

Wait for signal on condition variable inside critical section

Thread suspended (waits), lock is temporarily relinquished.
When thread it later resumed (woken up) by a signal from
some other thread, it has again acquired lock

Good practice: recheck wheter wait-condition is fulfilled.

There can be spurious wakeups – threads signaled wrongly or
getting a signal spuriously from pthreads

©Jesper Larsson Träff WS11/12

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);

#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t *cond);

Signal some waiting thread

Signal all waiting threads

If more than one thread is waiting, which gets signal is
undetermined (can be influenced by attributes); broadcast
signals one after another

©Jesper Larsson Träff WS11/12

pthread_mutex_lock(&lock);

// in critical section

// if condition not fulfilled, relinquish lock by waiting

while (!condition()) pthread_cond_wait(&cond,&lock);

// thread has been signalled, condition holds:

// again in critical section

pthread_mutex_unlock(&lock);

Standard condition variable pattern

Thread-code
Thread acquires lock,
enters critical section

Waits/suspends on condition
variable, lock released

After signal, lock is again acquired (mutual exclusion!),
condition can be rechecked

Thread releases lock normally

©Jesper Larsson Träff WS11/12

Example: readers-writers lock with condition variables

Idea:
Keep track of number of readers, pending writers, whether
there is a writer, condition variables to suspend readers and
writers trying to acquire lock, standard mutex for ensuring
mutual exclusion to the shared data structure

typedef struct {

 int readers;

 int waiting, writer;

 pthread_cond_t read_ok, write_ok;

 pthread_mutex_t gateway;

} rwlock_t;

©Jesper Larsson Träff WS11/12

Init function: no readers, no writer, no pending; initialize
mutex and condition variables

void rwlock_rlock(rwlock_t *rwlock)

{

 pthread_mutex_lock(&rwlock->gateway);

 while (rwlock->waiting>0||rwlock->writer) {

 pthread_cond_wait(&rwlock->read_ok,

 &rwlock->gateway);

 }

 rwlock->readers++;

 pthread_mutex_unlock(&rwlock->gateway);

}

Acquire reading lock

©Jesper Larsson Träff WS11/12

void rwlock_wlock(rwlock_t *rwlock)

{

 pthread_mutex_lock(&rwlock->gateway);

 rwlock->waiting++;

 while (rwlock->writer||rwlock->readers>0) {

 pthread_cond_wait(&rwlock->writer_ok,

 &rwlock->gateway);

 }

 rwlock->waiting--;

 rwlock->writer = 1;

 pthread_mutex_unlock(&rwlock->gateway);

}

Acquire single writing lock

©Jesper Larsson Träff WS11/12

void rwlock_ulock(rwlock_t *rwlock)

{

 pthread_mutex_lock(&rwlock->gateway);

 if (rwlock->writer) rwlock->writer = 0;

 else rwlock->readers--;

 pthread_mutex_unlock(&rwlock->gateway);

 // resume threads waiting to acquire

 if (rwlock->readers==0&&rwlock->waiting>0) {

 pthread_cond_signal(&rwlock->writer_ok);

 } else pthread_cond_broadcast(&rwlock->reader_ok);

}

Unlock: wake up threads waiting to acquire lock

Signal can
be sent
outside
critical
section

But actually race: readers/waiting can be changed by
other threads after unlock

©Jesper Larsson Träff WS11/12

Correctness:
Establish (prove) invariants: readers counts the number of
threads having acquired read lock, writer is true if and only if
a process has acquired write lock, etc.

(Un)Fairness properties:
Threads acquiring write lock can starve threads wanting to
acquire read lock (??)

•Newer writer can starve older writer
•Newer reader can acquire lock before older reader – or writer

Note: the original implementation from <book?> was
not correct at all

©Jesper Larsson Träff WS11/12

void rwlock_ulock(rwlock_t *rwlock)

{

 pthread_mutex_lock(&rwlock->gateway);

 if (rwlock->writer) rwlock->writer = 0;

 else rwlock->readers--;

 // resume threads waiting to acquire

 if (rwlock->readers==0&&rwlock->waiting>0) {

 pthread_cond_signal(&rwlock->writer_ok);

 } else pthread_cond_broadcast(&rwlock->reader_ok);

 pthread_mutex_unlock(&rwlock->gateway);

}

Unlock: wake up threads waiting to acquire lock

Thread signals but keeps lock; signals sent after lock release

©Jesper Larsson Träff WS11/12

Example: Barrier synchronization with condition variables

Each thread execution <barrier> shall wait until all/some number
of threads have executed <barrier>

<barrier>

<barrier>

<barrier>

<barrier>
<barrier>

Threads can proceed

©Jesper Larsson Träff WS11/12

typedef struct {

 int tc; // thread count

 pthread_cond_t barrier_ok;

 pthread_mutex_t barwait;

} barrier_t;

void barrier(barrier_t *b, int tc)

{

 pthread_mutex_lock(&b->barwait);

 b->tc++;

 if (b->tc==tc) {

 b->tc =0;

 pthread_cond_broadcast(&b->barrier_ok);

 else pthread_cond_wait(&b->barrier_ok,&b->barwait);

 pthread_mutex_unlock(&b->barwait);

}

Naive barrier

Also from <book?>

©Jesper Larsson Träff WS11/12

Note:
1. This barrier implementation is not scalable, O(p)
2. Probably not safe on spurious wake ups
3. Other problems

Fixes:
1. Tree structured barrier
2. Extra flag

[Mellor-Crummey, Scott: Algorithms for Scalable Synchronization on
Shared-Memory Multiprocessors. ACM TOPLAS (1): 21-65 (1991)]

©Jesper Larsson Träff WS11/12

#include <pthread.h>

int pthread_spin_destroy(pthread_spinlock_t *lock);

int pthread_spin_init(pthread_spinlock_t *lock,

 int pshared);

Spin locks – specific implementation for performance

Mutex semantics, but different
pragmatics/implementation/performance

©Jesper Larsson Träff WS11/12

#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *lock);

int pthread_spin_trylock(pthread_spinlock_t *lock);

#include <pthread.h>

int pthread_spin_unlock(pthread_spinlock_t *lock);

Pragmatics/implementation:
thread waiting to acquire lock does not suspend, waits for lock
release by „spinning“ on flag

Contrast: mutex locks, thread blocking on lock may be
suspended (put to sleep) by OS, and resumed when lock is
released

©Jesper Larsson Träff WS11/12

#include <sched.h>

int sched_yield(void);

Hint:
Hand-implemented locks, or other data structure requiring
waiting – useful to suspend thread and yield processor to some
other thread

©Jesper Larsson Träff WS11/12

Spinlocks: possibly faster on dedicated (parallel) applications on
dedicated systems, expensive OS suspension not required.

On overloaded systems – more threads than cores/processors –
spinlocks can behave very badly

Portability caveat:
to enforce „spinning“ behavior, explicit use of spinlocks needed,
program needs rewrite/recompilation/conditional compilation.

Why not controlled by mutex-attributes?

©Jesper Larsson Träff WS11/12

Example: coming to terms without locks

Task: find all primes between 2 and 10^9

Idea: first independently, and in parallel, check all 10^9-1
candidates

Observation: check very fast for some numbers – those with
a small prime factor; also, the number of primes in different
intervals differ, by prime number theorem

Note: for illustration purposes only, for better ideas see [Crandall,
Pomerance: Prime numbers. Springer, 2002]

©Jesper Larsson Träff WS11/12

Statically scheduled data parallel loop will likely lead to load
imbalance

for (i=2; i<1000000000; i++) {

 if (isPrime(i)) printf(„Found %d\n“,i);

}

If a few of the processors execute only the expensive isPrime
checks, Tpar will be close to Tseq, no Speedup

Static schedule: each thread executes block of 1000000000/p
successive iterations

©Jesper Larsson Träff WS11/12

Better solution: use a shared, global counter

int i = 0; // shared global

// Thread i code

while (i<1000000000) {

 int j = i; i++; // thread gets next value of i

 if (isPrime(j)) printf(„Found %d\n“,j);

}

Problem?

©Jesper Larsson Träff WS11/12

i++; translates into

tmp = i;

tmp = tmp+1;

i = tmp;

tmp = i;

tmp = tmp+1;

i = tmp;

Thread 0: Thread 1:

tmp = i;

tmp = tmp+1;

i = tmp;

i incremented by 1 only – race condition!!

Both threads
reads same
value for i

©Jesper Larsson Träff WS11/12

Better solution: use a shared, global counter

int i = 0; // shared global

// Thread i code

while (i<1000000000) {

 int j;

 pthread_mutex_lock(&counter);

 j = i; i++;

 pthread_mutex_unlock(&counter);

 if (isPrime(j)) printf(„Found %d\n“,j);

}

Problem?

©Jesper Larsson Träff WS11/12

Better solution: use a shared, global counter

int i = 0; // shared global

// Thread i code

while (i<1000000000) {

 int j;

 pthread_mutex_lock(&counter);

 j = i; i++;

 pthread_mutex_unlock(&counter);

 if (isPrime(j)) printf(„Found %d\n“,j);

}

Thread 0

Thread 0 acquired lock,
may be interrupted for
arbitrarily long time; no
progress

©Jesper Larsson Träff WS11/12

Better solution: use a shared, global counter with atomic increment

int i = 0; // shared global

// Thread i code

while (i<1000000000) {

 int j = fetch_and_inc(&i); // return value of i, inc

 if (isPrime(j)) printf(„Found %d\n“,j);

}

Correct. Threads can
always progress

Example of lock-free algorithm: each thread will always be able
to progress – no matter what other threads are doing

©Jesper Larsson Träff WS11/12

Atomic instructions in modern multi-core processors

•fetch-and-inc(a): atomically return old value of a, increment
•fecth-and-dec(a): atomically return old value of a, decrement

•fetch-and-add(a,x): atomically return old value of a, add x to a

•test-and-set/compare-and-swap (e,u,a): if content of a is equal
to e, replace content of a with u, atomically

•LL/SC

See: [Herlihy, Shavit: The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008]

©Jesper Larsson Träff WS11/12

Work-pools, master-worker paradigm

„Master maintains pool of work, workers ask for work, execute,
return new work/results to master, until all done“

Work-pool

C0 C1 C2 Cx

Master thread: master-
worker paradigm

©Jesper Larsson Träff WS11/12

time

C0 C1 Ci C(p-1)

Getting work: explicitly asking master, or
accessing shared data structure

Master/Work-pool possible scalability bottleneck

©Jesper Larsson Träff WS11/12

Implementation sketch, work executed in generated order

Threads:
1. Acquire mutex, check list, if non-empty take from front,

otherwise wait on condition variable.

2. Execute work.

3. New work: acquire mutex, insert at end of deque, wake up
waiting threads

Until termination

Use deque data structure as work-pool

©Jesper Larsson Träff WS11/12

typedef struct work {

 void (*routine)(void *args);

 void *args;

 struct work *next;

} work_t;

General work-task structure

Work pool: linked list, first and last element

work work work

©Jesper Larsson Träff WS11/12

Task parallel algorithms use work-pool-like implementation to
keep threads busy executing tasks

void QuickSort(int x[],n) {

 if (n<=1) return;

 pivot = choosepivot(x,n); // x[pivot] is pivot element

 ix = partition(x,pivot); // ix is index of pivot after

 spawn QuickSort(x,ix); // recurse

 spawn QuickSort(x+ix+1,n-1-ix);

}

With linear partition and optimal pivot parallel time is
O(n+n/2+n/4+…) = O(n) – with p O(log n) cannot do better

Spawned task
may execute in
parallel on
other core

©Jesper Larsson Träff WS11/12

[Robert D. Blumofe, Charles E. Leiserson: Scheduling Multithreaded
Computations by Work Stealing. J. ACM 46(5): 720-748 (1999)]

Problems:
1. Centralized resource, bad for scalability

2. Locks: thread updating shared resource can lock out all

other threads indefinitely

Solutions:
1. Local task queues, a thread primarily uses local queue, when

empty steals some work from some other thread‘s queue

2. Lock-free data structures enabling a thread always to either
make progress by itself, or ensure that some other thread is
making progress

Work-stealing: Cilk, TBB, …

©Jesper Larsson Träff WS11/12

C0 C1 C2 Cx

Put new work in
local queue

Local
dequeues

©Jesper Larsson Träff WS11/12

C0 C1 C2 Cx

Put new work in
local queue

Get work from
local queue

Local
dequeues

©Jesper Larsson Träff WS11/12

Randomized stealing: good theoretical properties, O(d+W/p)
with high probability under certain conditions, d: depth, W: work

Deterministic stealing: can provide good locality properties

C0 C1 C2 Cx

If local queue
empty, steal from
other thread

©Jesper Larsson Träff WS11/12

To lock or not to lock for performance: difficult, practical
issue, application and system dependent

Lock-free data structures: active research area, practical and
theoretical issues and challenges

Solutions:
Lock-free data structures (deques, stacks, …) make extensive use
of strong atomic operations: CAS (compare-and-swap)

Caution:

See: master lecture on advanced multiprocessor programming

©Jesper Larsson Träff WS11/12

OpenMP

See www.openmp.org

Developed by group of vendors/compiler companies, univesities,
users. Official standard since 1997, maintained by A(chitecture)
R(eview) B(oard) , non-profit organization owning the OpenMP
trademark

Standard for (mostly) data parallel shared-memory
programming in C/C++/Fortran, „Open Multi-Processing“

Latest release of standard: OpenMP 3.1, July 2011

Also www.compunity.org

http://www.openmp.org/
http://www.compunity.org/

©Jesper Larsson Träff WS11/12

ARB Permanent Members:

•AMD
•Cray
•Fujitsu
•HP
•IBM
•Intel
•NEC
•The Portland Group, Inc.
•Oracle Corporation
•ORNL
•Microsoft
•Texas Instruments
•CAPS-Entreprise
•NVIDIA

Auxiliary Members:

•ANL
•ASC/LLNL
•cOMPunity
•EPCC
•LANL
•NASA
•RWTH Aachen University
•Texas Advanced Computing Center

Chair of Language committee: Bronis de Supinski, LLNL

©Jesper Larsson Träff WS11/12

Basic idea:

•Provide for gradual parallelization of C/Fortran programs
by identifying constructs – loops - where parallelism can
easily be exploited

•Constructs and type of parallelism identified by
language-pragmas (and a few library operations)

•Requires compiler support

•Idea: a correct OpenMP program is always a correct
sequential program (library calls may have to be replaced)

©Jesper Larsson Träff WS11/12

Most C/Fortran compilers now support OpenMP

•GNU gcc

•Intel (one of the first to fully support OpenMP)
•IBM
•Portland Group
•Microsoft
•HP
•Cray
•…

Lack of/bad compiler support did for some years limit use of
OpenMP. Efficient support of OpenMP probably not trivial

©Jesper Larsson Träff WS11/12

M

P P P P

OpenMP architecture model

Naive, flat, shared-memory model, processors-memory, no
explicit cost-model, UMA

©Jesper Larsson Träff WS11/12

OpenMP programming model

1. Parallelism is (mostly) implicit

2. Fork-join parallelism: master thread implicitly spawns
threads through OpenMP construct (pragma), threads join
at end of construct

3. Number of threads limited by number of processors/cores

4. Threads intended to be executed in parallel by available
cores/processors

5. Work of OpenMP construct divided across threads

©Jesper Larsson Träff WS11/12

6. Threads can share variables; shared variables are shared
among all threads

7. Threads can have private variables

8. Unintended updates of shared variables can lead to race
conditions

9. Synchronization constructs for preventing race conditions

10. OpenMP 3.0: task model Not this lecture

©Jesper Larsson Träff WS11/12

OpenMP par construct

End of construct

Master thread

Parallel threads share work

Per default, all
variables shared

Variables can be
declared private,
executing thread
only

Data transfer between shared and private (copies) variables is
transparent, implicit

Implicit
barrier

©Jesper Larsson Träff WS11/12

OpenMP for C:

•Include header <omp.h>

•OpenMP constructs identified by #pragma <directive>
[clauses]

•Some library routines for getting number of threads,
synchronization mechanisms, …

•Library routines prefixed by omp_

•Macro _OPENMP defined (to version date) for conditional
compilation

©Jesper Larsson Träff WS11/12

Compile with

gcc -Wall -fopenmp -o openmphello –O3 openmphello.c

©Jesper Larsson Träff WS11/12

OpenMP for Fortran:

•OpenMP constructs surrounded by !$OMP <directive>
[clauses]

Not this lecture

©Jesper Larsson Träff WS11/12

#include <stdio.h>

#include <stdlib.h>

#include <omp.h> // OpenMP header

int main(int argc, char *argv[]) {

 int threads, myid;

 int i; threads = 1;

 for (i=1; i<argc&&argv[i][0]=='-'; i++) {

 if (argv[i][1]=='t') sscanf(argv[++i],"%d",&threads);

 }

 printf("Maximum number of threads possible is %d\n",
 omp_get_max_threads());

 // …

}

1st example

OpenMP library
call

Normally some small multiple of number of
physical processors/cores

©Jesper Larsson Träff WS11/12

int main(int argc, char *argv[]){

 int threads, myid;

 int i; threads = 1;

 // …

 if (threads<omp_get_max_threads()) {

 if (threads<1) threads = 1;

 omp_set_num_threads(threads);

 } else {

 threads = omp_get_max_threads();

 }

 // …

}

Just setting shared
variable threads to at
most max_threads

©Jesper Larsson Träff WS11/12

int main(int argc, char *argv[]){

 int threads, myid;

 int i; threads = 1;

// …

#pragma omp parallel num_threads(threads)

 {

 myid = omp_get_thread_num();

 printf("Thread %d of %d active\n",myid,threads);

 }

 return 0;

}

OpenMP directive: parallel
region executed by
num_threads cores

Library call: get thread id – should
rarely be needed

©Jesper Larsson Träff WS11/12

OpenMP par construct

End of construct

Master thread

#pragma omp parallel

{

 // threads

}

Basic work sharing constructs

©Jesper Larsson Träff WS11/12

OpenMP par construct

End of construct

Master thread

#pragma omp parallel

{

 #pragma omp for

 for (i=0; i<n; i++) {

 // iterations shared

 }

}

Basic work sharing constructs

Data parallel loop scheduled over available threads

©Jesper Larsson Träff WS11/12

OpenMP par construct

End of construct

Master thread

#pragma omp parallel

{

 #pragma omp sections

 #pragma omp section

 {

 // A

 }

 #pragma omp section

 {

 // B

 }

 // …

}

Basic work sharing constructs

Static, finite task parallelism

©Jesper Larsson Träff WS11/12

OpenMP par construct

End of construct

Master thread

#pragma omp parallel

{

 #pragma omp single

 {

 // some thread

 }

}

Basic work sharing constructs

Sequential code in parallel construct, no mutual exclusion

©Jesper Larsson Träff WS11/12

OpenMP par construct

End of construct

Master thread

#pragma omp parallel

{

 #pragma omp master

 {

 // master thread 0

 }

}

Basic work sharing constructs

Sequential code by master in parallel construct, no mutual
exclusion

©Jesper Larsson Träff WS11/12

The parallel construct

#pragma omp parallel [clause ...]

<structured block>

Starts an explicit parallel section/block/region with default
number of threads

Example, explicit parallelization of loop of independent iterations

for (i=0; i<n; i++) {

 a[i] = f(i);

}

©Jesper Larsson Träff WS11/12

#pragma omp parallel

{

 int i;

 int block = n/omp_get_num_threads();

 int start = omp_get_thread_num()*block;

 int end = start+block;

 for (i=start; i<end; i++) {

 a[i] = f(i);

 }

}

Local variables, per thread

Implicit barrier, all threads have completed their loop, back to
master thread, all iterations have been completed

©Jesper Larsson Träff WS11/12

#pragma omp parallel

{

 int i;

 int block = n/omp_get_num_threads();

 int start = omp_get_thread_num()*block;

 int end = start+block;

 for (i=start; i<end; i++) {

 a[i] = f(i);

 }

}

Note:
Not allowed to jump into or break out of parallel region (same
for the work sharing and other OpenMP constructs).

©Jesper Larsson Träff WS11/12

#pragma omp parallel

{

 int i;

 int block = n/omp_get_num_threads();

 int start = omp_get_thread_num()*block;

 int end = start+block;

 for (i=start; i<end; i++) {

 a[i] = f(i);

 }

}

OpenMP library calls

©Jesper Larsson Träff WS11/12

Default number of threads determined by

1. Environment (run command), can be changed by environment
variable OMP_NUM_THREADS, e.g

setenv OMP_NUM_THREADS 5

2. Explicit setting in program by library call
omp_set_num_threads(t);

3. Clause num_threads(t) in #pragma omp parallel
construct

Note: 3 overrides 2; 2 overrides 1

©Jesper Larsson Träff WS11/12

Library functions for (explicit) thread access

#include <omp.h>

void omp_set_num_threads(int num_threads);

int omp_get_num_threads(void);

int omp_get_max_threads(void);

int omp_get_thread_num(void);

int omp_get_num_procs(void);

Threads in parallel region are numbered successively from 0 to
omp_get_num_threads()-1

Master thread has number 0

©Jesper Larsson Träff WS11/12

Library functions for (explicit) thread access

#include <omp.h>

void omp_set_num_threads(int num_threads);

int omp_get_num_threads(void);

int omp_get_max_threads(void);

int omp_get_thread_num(void);

int omp_get_num_procs(void);

Number of default threads for OpenMP regions can be set by
omp_set_num_threads(t). Maximum number of threads
allowed by system is omp_get_max_threads();

©Jesper Larsson Träff WS11/12

#pragma omp parallel if (n<1000) num_threads(4)

{

 int i;

 int block = n/omp_get_num_threads();

 int start = omp_get_thread_num()*block;

 int end = start+block;

 for (i=start; i<end; i++) {

 a[i] = f(i);

 }

}

Conditional clause, scalar
expression evaluated at
runtime

Fixing number
of threads for
region

©Jesper Larsson Träff WS11/12

int *a;

a = (int*)malloc(n*sizeof(a*));

#pragma omp parallel

{

 int i;

 int block = n/omp_get_num_threads();

 int start = omp_get_thread_num()*block;

 int end = start+block;

 for (i=start; i<end; i++) {

 a[i] = f(i);

 }

}

Local variables, per thread

Variables declared before parallel region are per default shared
for all threads

Will be shared

©Jesper Larsson Träff WS11/12

Sharing can be controlled at entry to parallel region

•Clause shared(<list of vars>)
•Clause private(<list of vars>)
•Clause firstprivate(<list of vars>)
•Clause lastprivate(<list of vars>)

•Clauses default(shared), default(none)

For variables declared as private, a local copy per thread is
created. With private: not initialized, with firstprivate
initalized to value in master thread prior to parallel section;
lastprivate copies value from „last“ thread back

©Jesper Larsson Träff WS11/12

int *a;

a = (int*)malloc(n*sizeof(a*));

#pragma omp parallel private(a)

{

 int i;

 int block = n/omp_get_num_threads();

 int start = omp_get_thread_num()*block;

 int end = start+block;

 for (i=start; i<end; i++) {

 a[i] = f(i);

 }

}

Variables declared before parallel region are per default shared
for all threads

Pointer is private

©Jesper Larsson Träff WS11/12

int a[200]

#pragma omp parallel private(a)

{

 int i;

 int block = n/omp_get_num_threads();

 int start = omp_get_thread_num()*block;

 int end = start+block;

 for (i=start; i<end; i++) {

 a[i] = f(i);

 }

}

Variables declared before parallel region are per default shared
for all threads

Pointer and array
content private??

©Jesper Larsson Träff WS11/12

int *a;

a = (int*)malloc(n*sizeof(a*));

#pragma omp parallel default(none) \

private(a)

{

 int i;

 int block = n/omp_get_num_threads();

 int start = omp_get_thread_num()*block;

 int end = start+block;

 for (i=start; i<end; i++) {

 a[i] = f(i);

 }

}

Good practice(?): disable default rule, explicit sharing
declaration for all variables in enclosing scope

Pointer is private

C preprocessor
line continuation

©Jesper Larsson Träff WS11/12

if (scalar_expression)

private (list)

shared (list)

default (shared | none)

firstprivate (list)

reduction (operator: list)

copyin (list)

num_threads (integer-expression)

Summary of clauses for #pragma omp parallel

See later for reduction clause…

©Jesper Larsson Träff WS11/12

Work sharing constructs: loop, sections, single/master

OpenMP constructs for assignment of threads to
statements/blocks of code

#pragma omp parallel

if (omp_get_thread_num()==0) {

 // do that

} else if (omp_get_thread_num==1) {

 // do this

} else …

Instead explicit, and possibly inefficient assignment/scheduling

OpenMP provides implicit means of assigning work to threads

©Jesper Larsson Träff WS11/12

Parallel sections

#pragma omp sections [clause ...]

{

#pragma omp section

 taskA(…);

#pragma omp section

{

 // explicit block of code for some task

}

#pragma omp section

…

}

Discrete, fixed number of tasks will be assigned to active threads

More threads
than tasks:
some threads
idle

©Jesper Larsson Träff WS11/12

Parallel sections

#pragma omp sections [clause ...]

{

#pragma omp section

 taskA(…);

#pragma omp section

{

 // explicit block of code for some task

}

#pragma omp section

…

}

More tasks
than threads:
Some threads
execute more
than one task,
scheduling
implementation
dependent

Discrete, fixed number of tasks will be assigned to active threads

©Jesper Larsson Träff WS11/12

Example: loop with two independent operations

int i;

float a[N], b[N], c[N], d[N];

for (i=0; i < N; i++) {

 a[i] = …;

 b[i] = …;

}

for (i=0; i < N; i++) {

 c[i] = a[i] + b[i];

 d[i] = a[i] * b[i];

}

©Jesper Larsson Träff WS11/12

int i;

float a[N], b[N], c[N], d[N];

for (i=0; i < N; i++) {

 a[i] = …;

 b[i] = …;

}

#pragma omp parallel deafult(none) \

shared(a,b,c,d) private(i)

{

 #pragma omp sections nowait

 {

 #pragma omp section

 for (i=0; i < N; i++) c[i] = a[i] + b[i];

 #pragma omp section

 for (i=0; i < N; i++) d[i] = a[i] * b[i];

 } /* end of sections */

} /* end of parallel section */

„Task 1“

„Task 2“

©Jesper Larsson Träff WS11/12

private (list)

firstprivate (list)

lastprivate (list)

reduction (operator: list)

nowait

Summary of clauses for #pragma omp sections

For reduction and nowait, see later…

©Jesper Larsson Träff WS11/12

Single construct, master construct

Block inside parallel region that is to be executed by only one
thread, either arbitrarily, or by master thread (Master:
omp_get_thread_num()==0)

#pragma omp single [clause]

#pragma omp master

Some – but only one - thread executes block, implicit barrier
after block

Master thread executes block, no barrier

©Jesper Larsson Träff WS11/12

#pragma omp parallel

{

 int i;

 int block = n/omp_get_num_threads();

 int start = omp_get_thread_num()*block;

 int end = start+block;

#pragma omp single

 readarray(b,n);

 for (i=start; i<end; i++) {

 a[i] = b[i];

 }

#pragma omp single

 printf(„now done?“);

}

Implicit barrier, all
threads will see
their part of the
array

Dangerous: No
barrier before
single

©Jesper Larsson Träff WS11/12

#pragma omp parallel

{

 int i;

 int block = n/omp_get_num_threads();

 int start = omp_get_thread_num()*block;

 int end = start+block;

#pragma omp master

 readarray(b,n);

 for (i=start; i<end; i++) {

 a[i] = b[i];

 }

#pragma omp barrier

#pragma omp single

 writearray(a,n); // all updates done!

}

Explicit barrier,

Master thread reads;
dangerous because
no barrier

Implicit barrier here

©Jesper Larsson Träff WS11/12

#pragma omp parallel

{

 int i;

 int block = n/omp_get_num_threads();

 int start = omp_get_thread_num()*block;

 int end = start+block;

#pragma omp single

 readarray(b,n);

 for (i=start; i<end; i++) {

 a[i] = b[i];

 }

#pragma omp barrier

#pragma omp single nowait

 printf(„now done?“);

}

Eliminate implicit
barrier

Implicit barrier here

©Jesper Larsson Träff WS11/12

private (list)

firstprivate (list)

nowait

Summary of clauses for #pragma omp single

nowait: implicit barrier synchronization at end of construct will
not take place

Also: sections, for constructs. Not: parallel

Use with care for performance tuning

©Jesper Larsson Träff WS11/12

Parallel for

Basic work sharing construct – iterations of a loop distributed
among default available threads

Example: loop parallelization

for (i=0; i<n; i++) {

 a[i] = f(i);

}

#pragma omp for [clause]

©Jesper Larsson Träff WS11/12

#pragma omp parallel

{

 int i;

#pragma omp for

 for (i=0; i<n; i++) {

 a[i] = f(i);

 }

}

Loop iterations divided according to default schedule across
threads

Basic rule: total number of iterations must be known before
loop, all threads must compute same iterations bound

Iteration variable per
default private

©Jesper Larsson Träff WS11/12

int i;

#pragma omp parallel for

for (i=0; i<n; i++) {

 a[i] = f(i);

}

Parallel loop shorthand

•Implicit barrier after loop
•No break, or jump into/out of loop

©Jesper Larsson Träff WS11/12

Illegal

#pragma omp parallel for

for (;;) {

 // C open loop

}

#pragma omp parallel for

for (i=0; i<n; i++) {

 if (exceptional(i)) break;

 if (i%2==0) continue;

}

Number of iterations
unknown, not in canonical
form

Break out of loop.
Continue ok, does not
change number of
iterations

OpenMP compiler may complain

©Jesper Larsson Träff WS11/12

For loops must be in canonical form

for (i = i0;

i<n

i<=n

i>=n

i>n

;

i++

++i

i—

--i

i+=inc

i-=inc

i=i+inc

i=i-inc

) { <body> }

•No break, goto out of loop body; continue allowed
•Lower, upper, increment expressions must not change during
loop iterations

i: iteration variable
i0: lower bound
n: upper bound
inc: incement

©Jesper Larsson Träff WS11/12

#pragma omp parallel for

for (i=0; i<n; i*=2) {

 a[i] = …;

}

Also illegal

Number of iterations known, but not in canonical form

©Jesper Larsson Träff WS11/12

Parallel for schedules

•Per default, iteration space divided into blocks of approx. n/p
iterations, one block is assigned to each thread. Blocks of
iterations: chunks in OpenMP
•Schedule, assignment to threads, can be changed by schedule
clause
•Chosen schedule can have a huge effect on performance (false
sharing, e.g.)

p: number of threads, n number of iterations

©Jesper Larsson Träff WS11/12

Schedule clause, chunksize optional

•schedule(static,<chunksize>): iterations divided into
chunks of size (default approx. n/p), chunks assigned to threads in
a round robin fashion

•schedule(dynamic,<chunksize): chunks are distributed to
threads as threads become free and request work (default
chunksize 1)

•schedule(guided,<chunksize>): as dynamic, but chunksize is
adjusted downwards to the number of unassigned iterations
divided by p (default chunksize 1)

•schedule(auto): schedule is determined by compiler or runtime

•schedule(runtime): schedule left to runtime & environment

©Jesper Larsson Träff WS11/12

Chunk 0 Chunk 1 Chunk p+1 Chunk p Chunk p-1

Thread 0

Thread 1

Thread p-1

Thread 0

Thread 1

schedule(static,<chunksize>)

Chunks executed in order in parallel, thread i executes chunk i%p

©Jesper Larsson Träff WS11/12

Chunk 0 Chunk 1 Chunk p+1 Chunk p Chunk p-1

Thread i

Thread j

Thread k

Thread k

Thread i

schedule(dynamic,<chunksize>)

Chunks executed in order, each thread executes some chunk,
thread i executes next available chunk

Work-pool like: chunk = fetch_and_add(&i,chunksize);

©Jesper Larsson Träff WS11/12

With runtime scheduling schedule can be set by environment
variable, e.g.

setenv OMP_SCHEDULE „guided“

setenv OMP_SCHEDULE „dynamic, 4“

setenv OMP_SCHEDULE „static, 100“

Note: number of threads allocated for parallel construct may
be set/adjusted at runtime – dynamic threads

#define OMP_DYNAMIC true/false

#include <omp.h>

void omp_set_dynamic(int dynamic_threads)

int omp_get_dynamic(void)

©Jesper Larsson Träff WS11/12

#pragma parallel for

for (i=0; i<n; i++) {

 y[i] = 0;

 for (j=0;j<m; j++) {

 y[i] += x[i][j]*A[j];

 }

}

y= x*A, nxm matrix x, m vector A

Example: matrix-vector

Default:
each thread performs
n/p successive
iterations of inner loop

©Jesper Larsson Träff WS11/12

#pragma parallel for schedule(static)

for (i=0; i<n; i++) {

 y[i] = 0;

 for (j=0;j<m; j++) {

 y[i] += x[i][j]*A[j];

 }

}

y= x*A, nxm matrix x, m vector A

Example: matrix-vector

As default:
each thread
performs n/p
successive
iterations of
inner loop

©Jesper Larsson Träff WS11/12

#pragma parallel for schedule(static,1)

for (i=0; i<n; i++) {

 y[i] = 0;

 for (j=0;j<m; j++) {

 y[i] += x[i][j]*A[j];

 }

}

y= x*A, nxm matrix x, m vector A

Example: matrix-vector

Chunks of
single
iteration.
Probably
causes false
sharing

To experiment with best schedule, e.g. use runtime and set
actual schedule by environment variable

©Jesper Larsson Träff WS11/12

schedule (type [,chunk])

ordered

private (list)

firstprivate (list)

lastprivate (list)

shared (list)

reduction (operator: list)

collapse (n)

nowait

Summary of clauses for #pragma omp for

Reduction, see later…

©Jesper Larsson Träff WS11/12

Correctness, independence

OpenMP principle:
Parallel regions and all work sharing constructs assume that
code regions executed by threads can be safely executed in
parallel

Code region executions must be independent: no update to a
shared variable in one region can have an effect on other region

OpenMP principle:
It is the programmers responsibility to ensure independence.
Compiler & runtime are not required to check, will not do

©Jesper Larsson Träff WS11/12

Pi program fragment followed by program fragment Pj;
sequentially Pj executed after Pj

Pi

Pj

I: variables read in P (input)
O: variables written in P (output)

1. Oi intersection Ij = Ø
2. Ii intesection Oj = Ø
3. Oi intersection Oj= Ø

The two fragments are independent and can be executed in
parallel if

„Bernstein‘s conditions“

[A. J. Bernstein: “Program Analysis
for Parallel Processing”. IEEE Trans.
on Electronic Computers. EC-15,
pp. 757–62, 1966]

©Jesper Larsson Träff WS11/12

Pi

Pj

1. Oi intersection Ij ≠ Ø

Pi writes to a variable that is read by Pj

Flow dependency, true dependency

Pi must be executed before Pj

fl
ow

©Jesper Larsson Träff WS11/12

Pi

Pj

2. Oj intersection Ii ≠ Ø

Pj writes to a variable that was read by Pi

Anti dependency

Pi Pj Pj cannot be executed
before/concurrently with Pi

anti

©Jesper Larsson Träff WS11/12

Pi

Pj

3. Oi intersection Oj ≠ Ø

Pi and Pj writes to the same variable

Output dependency

Pi Pj

Becomes race condition if Pi
and Pj are executed in
different
order/concurrently

output

©Jesper Larsson Träff WS11/12

for (i=k; i<n; i++) a[i] = a[i-k]+a[i];

for (i=0; i<n-k; i++) a[i] = a[i]+a[i+k];

for (i=1; i<n; i++) if (isprime(i))

a[0] = a[i];

Loop carried flow dependency, if k>0

Dependency is between different iterations of loop, sequentially
later iteration i+k depends on output of iteration i

Loop carried anti-dependency

Loop carried output dependency, if more than one prime before n

©Jesper Larsson Träff WS11/12

Simple rule of thumb for OpenMP parallelizable loops

1. Array updates only
2. Each array element updated in at most one iteration
3. No iteration reads element assigned by another iteration

Dependencies within same iteration allowed

for (i=0; i<n; i++) {

 a[i] = f(i);

 b[i] = g(i);

 c[i] = a[i]+b[i];

}

#pragma omp parallel for

for (i=0; i<n; i++) {

 a[i] = f(i);

 b[i] = g(i);

 c[i] = a[i]+b[i];

}

©Jesper Larsson Träff WS11/12

#pragma omp parallel for

for (i=0; i<n; i++) a[i] = f(i);

#pragma omp parallel for

for (i=0; i<n; i++) b[i] = g(i);

#pragma omp parallel for

for (i=0; i<n; i++) c[i] = a[i]+b[i];

Or

Implicit
barrier

Probably inefficient, better

#pragma omp parallel for nowait

for (i=0; i<n; i++) a[i] = f(i);

#pragma omp parallel for

for (i=0; i<n; i++) b[i] = g(i);

#pragma omp parallel for

for (i=0; i<n; i++) c[i] = a[i]+b[i];

No barrier after
for; ok since no
dependency on a in
next loop

Barrier needed

©Jesper Larsson Träff WS11/12

for (i=k; i<n; i++) a[i] = a[i]+a[i+k];

for (i=k; i<n; i++) aa[i] = a[i]+a[i+k];

// swap

tmp = a; a = aa; aa = tmp;

Some loop carried dependencies

can be eleminated with temporary variables

aa temporary (extra) array – not only pointer! No loop-carried
dependencies

©Jesper Larsson Träff WS11/12

#pragma omp parallel for firstprivate(k)

for (i=k; i<n; i++) aa[i] = a[i]+a[i+k];

// swap

tmp = a; a = aa; aa = tmp;

Thus

Standard example: solving Poisson equation, loop

u[i][j] <- ¼(u[i][j-1]+u[i][j+1]+u[i-1][j]+u[u+1][j]-h^2*f(i,j))

©Jesper Larsson Träff WS11/12

#pragma omp parallel for

for (i=1; i<n-1; i++) {

 for (j=1; j<n; j++) {

 unext[i][j] = 0.25*(u[i][j-1]+u[i][j+1]+…);

 }

}

uu = u; u = unext; unext = uu; // swap

Needs allocation of full temporary matrix, space O(n^2).

Copy back may be needed if result of last iteration is in the
temporary array

©Jesper Larsson Träff WS11/12

Parallel prefix-sums computation (1st loop)

for (k=1; k<n; k=kk) {

 kk = k<<1; // double

 for (i=kk-1; i<n, i+=kk) {

 x[i] = x[i-k]+x[i];

 }

 barrier;

}

No loop carried
dependency; x[i] are
every kk‘th element
and only updated,
not read in other
iteration

for (k=1; k<n; k=kk) {

 kk = k<<1; // double

#pragma omp parallel for

 for (i=kk-1; i<n, i+=kk) {

 x[i] = x[i-k]+x[i];

 }

} Implicit barrier after parallel for region

©Jesper Larsson Träff WS11/12

Some dependencies cannot be resolved easily, require different
approach

for (i=k; i<n; i++) a[i] = a[i-1]+a[i];

Sequential computation of all inclusive prefix sums. Parallel
algorithms solve problem work-optimally in O(n/p+log p)

No explicit support in OpenMP

©Jesper Larsson Träff WS11/12

Some dependencies cannot be resolved easily, require different
approach

for (i=k; i<n; i++) a[i] = a[i-1]+a[i];

Sequential computation of all inclusive prefix sums. Parallel
algorithms solve problem work-optimally in O(n/p+log p)

No explicit support in OpenMP

for (i=k; i<n; i++) sum = sum+a[i];

Different from

Reduction pattern, can be handled by OpenMP compiler & runtime

©Jesper Larsson Träff WS11/12

Example: Erathostenes prime sieve

for (i=2; i<n; i++) mark[i] = 1;

k = 0;

for (i=2; i*i<n; i++) {

 if (mark[i]) prime[k++] = i;

 for (j=i*i; j<n; j+=i) mark[j] = 0;

}

for (; i<n; i++) if (mark[i]) prime[k++] = i;

Finds all primes up to n by crossing out multiples of each newly
found prime. Task is to return the found primes in increasing
order in array prime

Note: by addition only

©Jesper Larsson Träff WS11/12

n mark

©Jesper Larsson Träff WS11/12

n

for (i=2; i<n; i++) mark[i] = 1;

mark

Initialize mark array

Implementation: bit array, only odd numbers, etc.

©Jesper Larsson Träff WS11/12

n

i==2:
mark[i] true, so prime, unmark multiples

mark

©Jesper Larsson Träff WS11/12

n

i==3:
mark[i] true, so prime, unmark multiples

mark

©Jesper Larsson Träff WS11/12

n

i==4:
mark[i] false, not prime, continue

mark

©Jesper Larsson Träff WS11/12

n

i==5:
mark[i] true, so prime, unmark multiples

Etc, until √n

mark

©Jesper Larsson Träff WS11/12

for (i=2; i<n; i++) mark[i] = 1;

k = 0;

for (i=2; i*i<n; i++) {

 if (mark[i]) prime[k++] = i;

 for (j=i*i; j<n; j+=i) mark[j] = 0;

}

for (; i<n; i++) if (mark[i]) prime[k++] = i;

Lemma: This Sieve-of-Erathostenes finds all primes from 2 to
n in O(n √n), actually O(n log log n)

Need only to
eliminate multiples
up to √n

All multiples less than i^2 have been eliminated

©Jesper Larsson Träff WS11/12

„Proof“:

•Correctness:
If p*q = x then either p ≤ √n or q ≤ √n

Invariant: before iteration i, all multiples of j<i have been
crossed out. Therefore, when i is found marked (therefore
prime), 2*i, 3*i, 4*i, … (i-1)*i and multiples have been
eliminated. It suffices to cross out from i*i

•Time:
By prime number theorem etc. ∑p prime≤n: n/p = n ln ln n

Note: exponential in size of n which is O(log n), pseudopolynomial

©Jesper Larsson Träff WS11/12

#pragma omp parallel for

for (i=2; i<n; i++) mark[i] = 1;

k = 0;

for (i=2; i*i<n; i++) {

 if (mark[i]) prime[k++] = i;

#pragma omp parallel for

 for (j=i*i; j<n; j+=i) mark[j] = 0;

}

#pragma omp parallel for

for (; i<n; i++) if (mark[i]) prime[k++] = i;

Inner loop can be
parallelized

Not in canonical form Loop-carried dependencies

©Jesper Larsson Träff WS11/12

Solution 1: enforce sequential order

#pragma omp parallel for

for (i=2; i<n; i++) mark[i] = 1;

k = 0;

for (i=2; i*i<n; i++) {

 if (mark[i]) prime[k++] = i;

#pragma omp parallel for

 for (j=i*i; j<n; j+=i) mark[j] = 0;

}

int ii = i;

#pragma omp parallel for ordered

for (i=ii; i<n; i++) if (mark[i]) {

#pragma omp ordered

 prime[k++] = i;

}

Sequential order
will be enforced
for ordered
region

Why necessary?

©Jesper Larsson Träff WS11/12

ordered clause in parallel for region enforces same order of
iterations for the ordered region

Ordered region #pragma omp ordered

Only one ordered region in parallel ordered for loop. Many
restrictions

Parallelization by OpenMP system hardly done, can lead to
slowdown

©Jesper Larsson Träff WS11/12

Solution 2: index computation in parallel

#pragma omp parallel for

for (i=2; i<n; i++) mark[i] = 1;

k = 0;

for (i=2; i*i<n; i++) {

 if (mark[i]) prime[k++] = i;

#pragma omp parallel for

 for (j=i*i; j<n; j+=i) mark[j] = 0;

}

int ii = i;

#pragma omp parallel for

for (i=ii; i<n; i++) kix[i] = (mark[i]) ? 1 : 0;

Exscan(kix+m,n-m); // all prefix-sums

#pragma omp parallel for

for (i=m; i<n; i++) if (mark[i]) prime[k+kix[i]] = i;

©Jesper Larsson Träff WS11/12

Solution 2: index computation in parallel

#pragma omp parallel for

for (i=2; i<n; i++) mark[i] = 1;

k = 0;

for (i=2; i*i<n; i++) {

 if (mark[i]) prime[k++] = i;

#pragma omp parallel for

 for (j=i*i; j<n; j+=i) mark[j] = 0;

}

int ii = i;

#pragma omp parallel for

for (i=ii; i<n; i++) kix[i] = (mark[i]) ? 1 : 0;

Exscan(kix+m,n-m); // all prefix-sums

#pragma omp parallel for

for (i=m; i<n; i++) if (mark[i]) prime[k+kix[i]] = i;

Indexing
marked
elements by
exclusive
scan

©Jesper Larsson Träff WS11/12

n mark

0 1 1 3 2 2 3 3 kix

©Jesper Larsson Träff WS11/12

Solution 2: index computation in parallel

#pragma omp parallel for

for (i=2; i<n; i++) mark[i] = 1;

k = 0;

for (i=2; i*i<n; i++) {

 if (mark[i]) prime[k++] = i;

#pragma omp parallel for

 for (j=i*i; j<n; j+=i) mark[j] = 0;

}

int ii = i;

#pragma omp parallel for

for (i=ii; i<n; i++) kix[i] = (mark[i]) ? 1 : 0;

Exscan(kix+m,n-m); // all prefix-sums

#pragma omp parallel for

for (i=m; i<n; i++) if (mark[i]) prime[k+kix[i]] = i;

Bonus exercise:
Use parallel-prefix
implementation,
see if better
performance can
be achieved than
with ordered

©Jesper Larsson Träff WS11/12

Parallel work-time:

O(n log log n/p + √n)

Inner loop and last loop parallelized, number of (sequential)
iterations of outer loop √n

©Jesper Larsson Träff WS11/12

Reductions

sum = 0;

for (i=0; i<n; i++) sum += i;

Standard operation with flow and output dependencies

sum = 0;

for (i=0; i<n; i++) sum += expr(a[i]);

Such patterns can be recognized by OpenMP compiler, and
efficient algorithm/runtime support used

©Jesper Larsson Träff WS11/12

sum = 0;

#pragma omp parallel reduction(+,sum)

for (i=0; i<n; i++) sum += i;

reduction(<operator>,<variable list>) clause
specifies reduction with operator on list of variables

Operator: +, *,-,&,|,^,&&,|| and min/max computations

©Jesper Larsson Träff WS11/12

int i, b, c;

float a, d;

a = 0.0;

b = 0;

c = y[0];

d = x[0];

#pragma omp parallel for private(i) shared(x, y, n) \

reduction(+:a) reduction(^:b) \

reduction(min:c) reduction(max:d)

for (i=0; i<n; i++) {

 a += x[i];

 b ^= y[i];

 if (c > y[i]) c = y[i];

 d = fmaxf(d,x[i]);

}

More reductions

Two different
min/max expressions

©Jesper Larsson Träff WS11/12

#pragma omp parallel shared(a) private(i)

{

#pragma omp master

a = 0;

// To avoid race condition, barrier here

#pragma omp barrier

#pragma omp for reduction(+:a)

for (i = 0; i < 10; i++) {

a += i;

}

#pragma omp single

printf ("Sum is %d\n", a);

}

Parallel region with worksharing constructs and reduction

©Jesper Larsson Träff WS11/12

Critical sections, atomic operations

#pragma omp critical [(<name>)]

(named) critical section. In parallel region, enforces mutual
exclusion of thread code region

Critical sections are statically designated (compile time)

©Jesper Larsson Träff WS11/12

int t;

#pragma omp parallel

{

 t = omp_get_thread_num();

 print(„Thread id is %d\n“,t);

}

Race condition
because of
shared t

©Jesper Larsson Träff WS11/12

int t;

#pragma omp parallel

{

#pragma omp critical

 {

 t = omp_get_thread_num();

 print(„Thread id is %d\n“,t);

 }

}

Now in critical
section, mutual
exclusion (update of
shared t) guaranteed

©Jesper Larsson Träff WS11/12

x++;

x--;

++x;

--x;

x op= expr;

x = x op expr;

#pragma omp atomic update

<expression statement>

#pragma omp atomic read

pvar = svar; // read shared variable atomically

#pragma omp atomic write

svar = pvar; // write to shared variable atomically

Expression-
statement
can be

op:

+, *, -, /, &,

^, |, <<, >>

©Jesper Larsson Träff WS11/12

Locks for mutual exclusion created dynamically

#include <omp.h>

void omp_init_lock(omp_lock_t *lock);

void omp_init_nest_lock(omp_nest_lock_t *lock);

void omp_destroy_lock(omp_lock_t *lock);

void omp_destroy_nest_lock(omp_nest_lock_t *lock);

Must be allocated/initialized, and destroyed again

No fairness guarantee

©Jesper Larsson Träff WS11/12

#include <omp.h>

void omp_set_lock(omp_lock_t *lock);

void omp_set_nest__lock(omp_nest_lock_t *lock);

void omp_unset_lock(omp_lock_t *lock);

void omp_unset_nest_lock(omp_nest_lock_t *lock);

int omp_test_lock(omp_lock_t *lock);

int omp_test_nest_lock(omp_nest_lock_t *lock);

©Jesper Larsson Träff WS11/12

Summary: Five ways of handling simple reduction

for (i=k; i<n; i++) sum = sum+a[i];

#pragma omp parallel for reduction(+,sum)

for (i=k; i<n; i++) sum = sum+a[i];

Canonical way, best potential for good performance: reduction
clause

Project/exercise: compare this to hand-written prefix algorithm

©Jesper Larsson Träff WS11/12

#pragma omp parallel for ordered

for (i=k; i<n; i++) {

#pragma omp ordered

 sum = sum+a[i];

}

Sequential thinking, enforce sequential order with ordered
clause

Performance pitfall: probably close to sequential loop (plus
overhead?)

©Jesper Larsson Träff WS11/12

#pragma omp parallel for

for (i=k; i<n; i++) {

#prgama omp critical

 sum = sum+a[i];

}

Concurrent thinking: Critical section

Might perform reasonably if much other work in parallel region
for the threads, but probably not

Correct only if operator + is commutative!

Variant: use locks, same problems

©Jesper Larsson Träff WS11/12

#pragma omp parallel for

for (i=k; i<n; i++) {

#pragma omp atomic

 sum = sum+a[i];

}

Delegate to hardware: atomic operations

©Jesper Larsson Träff WS11/12

#include <omp.h>

double omp_get_wtime(void);

double omp_get_wtick(void);

Wall clock time in OpenMP

Timing OpenMP computations for performance eavluation

Wall-clock time in seconds since some time in the past returned

©Jesper Larsson Träff WS11/12

Discussion, not covered

Easy to use, but limited language addition for parallel thread
programming: data parallel loops, access to possibly hardware-
supported atomic operations, plus some-level concurrent
programming like primitives

Stepwise parallelization idea?? Program structure will need
change (e.g. canonical loops, dependency elimination)

©Jesper Larsson Träff WS11/12

Discussion, not covered

Not covered:
•Nesting: work-sharing constructs can be nested, but are
executed by single thread only, unless OpenMP 3.0 nesting is
supported
•Task construct, OpenMP 3.0
•Memory flushing, #pragma omp flush
•A few other things…

