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Shared-memory architectures & machines 

M 

P P P P 

Shared-memory 
model 

Naive, shared memory (programming) model: processors 
execute processes, processes are not synchronized, processes 
exchange information through shared memory, special methods 
for sharing memory between processes, NUMA but directly 
visible 
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M 

P 

cache 

Cache: small, fast memory, close to processor, 
accessed main memory locations are stored 
temporarily in cache, reused when possible 

•Main memory: Gbytes, access times > 100 cycles 
•Cache: Kbytes->Mbytes, access times,1-20 cycles 

Typically 2-3 levels of caches in modern processors, and several 
special caches, TLB, victim cache, instruction cache, … 

Caches may help to alleviate/hide memory („von 
Neumann“) bottlenect 

Closer to „reality“: 
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Caches, recap. 

Cache consists of a number of lines that stores blocks of 
memory. A cache line holds a block and additional status 
information (dirty/valid bit, tag)  

Typical block size: 64Bytes 

Caches exploit and makes sense because of: 
•Temporal locality: locations are typically used several times 
in close succession, several operations on same operand  
•Spatial locality: when a location is addressed, typically 
locations close to it (a+1, a+2, …) will be also be used 

Properties of algorithms/programs, and not always so 
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Memory read a: 
if address a already in cache, reuse from there, if not read 
from memory through cache, evict previous line 

a B-> cache line 

Access to main memory in block size units B, aligned to block 
boundary 

Block boundary 
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Memory write a: 
different possibilities. If a is already in cache, write overwrites; 
if a is not in cache 

•Write allocate: if a is not in cache, read a 
•Write non-allocate: write directly to memory 

•Write-through cache: each write is immediately passed on to 
memory (typically non-allocate) 
•Write back: cache line block is written back when line is 
evicted (typically write allocate) 
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Replacement policies for associative caches 
•LRU: least recently used 
•LFU : least frequently used 

Address a: 
•If a can go into only one specific line of the cache: directly 
mapped  
•If a can go into any line of the cache: fully associative 
 
•If a can go into any of a small set of lines: set-associative 
(typically 2-way, 4-way) 

Typically, all maintained in hardware 
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M 

P P P P 

Shared-memory 
model, cc-NUMA 

M M M … 

cache cache cache cache 

Cache-coherent 
non.uniform 
memory access 

Multiprocessor/multi-core caches  

Typically, several cores shares caches at some levels 
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Cache coherence 

a == 1 a == 1 

Processor/core 0 and 1 with private caches, both have read 
location a into cache. Processor 0 writes to a? 

M 

a =7; 
b = a; // ??  

Read by 1 occurs „after“ 
write by 0. If b is still 1, 
cache system is not 
coherent 
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Cache is coherent if 
1. If processor P writes to a at time t1 and reads a at t2>t1, 

and there are no other writes (by P or other) to a between 
t1 and t2, then P reads the value written at t1 

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and 
no other P writes to a between t1 and t2, then P2 reads the 
value written by P1 at t1 

3. If P1 and P2 writes to a at the same time, then either the 
value of P1 or the value of P2 is stored at a 

Let the order of memory accesses to a specific location a be 
given by the program order 

Ad 1. Program order is preserved for each processor for 
locations that are not written by other processors 
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Cache is coherent if 
1. If processor P writes to a at time t1 and reads a at t2>t1, 

and there are no other writes (by P or other) to a between 
t1 and t2, then P reads the value written at t1 

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and 
no other P writes to a between t1 and t2, then P2 reads the 
value written by P1 at t1 

3. If P1 and P2 writes to a at the same time, then either the 
value of P1 or the value of P2 is stored at a 

Let the order of memory accesses to a specific location a be 
given by the program order 

Ad 2. Here, t1 and t2 have to be „sufficiently“ separated in 
time. Updates by P1 must eventually become visible to the other 
processors 
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Cache is coherent if 
1. If processor P writes to a at time t1 and reads a at t2>t1, 

and there are no other writes (by P or other) to a between 
t1 and t2, then P reads the value written at t1 

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and 
no other P writes to a between t1 and t2, then P2 reads the 
value written by P1 at t1 

3. If P1 and P2 writes to a at the same time, then either the 
value of P1 or the value of P2 is stored at a 

Let the order of memory accesses to a specific location a be 
given by the program order 

Ad 3. Writes are required to „serialize“. Either of the values 
simultaneously written will be stored. „Same time“ means 
„sufficiently close“ in time. 
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cc-NUMA systems (most multi-core and SMP nodes): cache 
coherent, non-uniform memory access 

Cache coherence maintained by hardware at the cache line level. 
Standard approaches and protocols: 
 
•Update based 
•Invalidation based 
 
•Snooping/bus based 
•Directory based 
 
All: expensive in hardware („transistors“, „power“); can affect 
performance negatively 
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Sharing/false sharing 

Cache coherence is maintained at the cache line level. Processor 
0 updates y, processor 1 updates x (with e.g. &x == &z[1], &y = 
&z[2]) 

y x 

for (i=0; i<n; i++) y += i-1; 

for (i=0; i<n; i++) x += 2*i; 

Although x and y are different memory locations, each update 
will cause cache coherency traffic!! Because cache coherency is 
at the cache line level, x and y are falsely shared 
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Memory consistency 

In what order do writes to different locations not necessarily 
in cache become visible in memory and to other processors? 

x = 0; 
// … some code 
x = 1; 
if (y==0) { 
  // body  
} 

y = 0; 
// … some code 
y = 1; 
if (x==0) { 
  // body  
} 

Core 0: Core 1: 

Can core 0 and core 1 both execute body of if-statement? 

x not in cache 
of core 1, y not 
in cache of 
core 0 
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x = 0; 
// … some code 
x = 1; 
if (y==0) { 
  // body  
} 

y = 0; 
// … some code 
y = 1; 
if (x==0) { 
  // body  
} 

Core 0: Core 1: 

If x=1; y=1; appears at the same time, no cores execute body 

If core 0 in body, then core 1 has executed y=0; but not y=1; 
thus core 1 cannot enter body 

Correct? 
Only under sequential 
consistency (or similar) 
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Sequential consistency: memory accesses of each processor 
are performed in program order; program result is as for some 
interleaving of the memory accesses of all processors 

Sequential consistency is typically not guaranteed by modern 
multiprocessors: 

•Caches, may delay writes 
•Write buffers, may delay and/or reorder writes 
•Memory network: may reorder writes 
•Compiler: may reorder updates 

Relaxed consistency models (see other lecture…) pose weaker 
constraints on hardware, may still allow correctness reasoning  
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In short: 
To guarantee intended effect/correctness of a shared-memory 
multiprocessor program, special instructions that enforce 
memory updates to take effect may have to be used 

Example:  
 
memory fence(f) : completes all writes before the instruction 
and sets flag f 
 
Another processor waiting for f will „know“ that all writes of 
the other processor before f was set will have been completed 
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Other approaches to alleviating memory bottleneck 

•Prefetching: start loading operands well before use 
 
•Multi-threading: when a thread („virtual processor“) issues a 
load, switch to another thread 

Note: multi-threading requires explicitly parallel programs 

Note: both prefetching and multi-threading are latency 
hiding techniques. Memory bandwidth is still required for 
the number of outstanding memory requests 
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TU Wien parallel computing shared-memory node 

4xAMD „magny cours“ 12-core Opteron 6168 processors 
128GByte main memory, 1.9GHz, total number of cores 48 

•Per core L1 cache: 128KB 
•Per core L2 cache 512KB 
•Shared L3 cache 12288KB 

Name: 
saturn.par.tuwien.ac.at 
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12 core = 2x6 cores, 2 
dies on chip? 

HT: HyperTransport – standardized processor-processor 
interconnect 
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48-core shared-memory 
system from4x12-core 
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From University of Utrecht, EuroBen homepage: www.phys.uu.nl/eurben  

Check-exercise: try to find the (superscalar) issue width? Peak 
performance? of the Opteron/Magny Cours processor 

http://www.phys.uu.nl/eurben
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L1 cache: 64KB data, 64KB instruction 

Vector extensions 
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Thread model 

Thread: independent stream of instructions that can be 
scheduled by the OS. Typically, threads live inside an OS 
„process“, and shares all global information of the process 
(Thread: „smallest unit that can be independently scheduled“) 

Process: program in 
execution.  

UNIX process global information: 
•File pointers 
•Global variables 
•Static variables 
•Heap storage 

Per thread: local variables (stack), registers, „thread 
local storage“ 
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POSIX threads, pthreads 

Standard thread library API for UNIX (Linux etc.) since 1995: 
IEEE/ANSI 1003.1c-1995 
 
Official standard documents cost money; standard available as 
man pages, internet, several tutorials and books 

POSIX: Portable Operating Systems Interface for uniX 

Low-level interface for C/UNIX thread programming 

More modern thread model, including memory model: Java threads 
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(p)threads „Programming model“ 

1. Fork-join type parallelism: a thread can „spawn“ (start) any 
number of new threads (up to system limitations), wait for 
threads to terminate 
 

2. Initially one main („master“) thread is active. Code for 
thread is a procedure/function 
 

3. Spawned threads are peers, any thread can wait for 
termination of any other thread 
 

4. Threads are scheduled by the underlying system, may or 
may not run simultaneously, may or may not be scheduled to 
available processors/cores 
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5. No implicit synchronization between threads, threads 
progress independently, and asynchronously 
 

6. Threads share process global data 
 

7. Coordination mechanisms for protecting access to shared 
variables (locks, condition variables). All concurrent updates 
must be protected, otherwise program illegal, outcome 
undefined 
 

8. … 

Pthreads: no cost model, no memory model, … 
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Pragmatics (for parallel computing): runable threads are 
expected to be scheduled to free cores. Scheduling and binding 
(mapping to specific core) can be influenced 

Process: program in 
execution.  

M 

C0 C1 C2 C47 
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pthreads for C: 

Main program is main thread, spawns off and waits for 
termination of additional threads. Thread code: C function 

•Include header <pthread.h> 
 
•All pthread types and functions prefixed by pthread_ 
 

•pthread functions return error code, or status information, 
good practice to check!! (not done here…) 

Compile with 
 
gcc -Wall -o pthreadshello pthreadshello.c -pthread 



©Jesper Larsson Träff WS11/12 

Starting/spawning a thread 

#include <pthread.h> 

 

int pthread_create(pthread_t *thread,  

        const pthread_attr_t *attr, 

        void *(*start_routine)(void *), 

        void *arg); 

pthread_t: type of thread object (opaque), thread id returned 
here (pointer), must be allocated globally by spawning thread 

static pthread_t newthread 
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Starting/spawning a thread 

#include <pthread.h> 

 

int pthread_create(pthread_t *thread,  

        const pthread_attr_t *attr, 

        void *(*start_routine)(void *), 

        void *arg); 

void *(start_routine)(void *): type template for the 
function to run as thread. Takes arguments via generic pointer, 
returns generic pointer, standard C convention 

void *newcode(void *genericargs) { 

  myarg_t realargs = (myarg_t*)genericargs; 

  // work to be done by this thread 

} 
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Starting/spawning a thread 

#include <pthread.h> 

 

int pthread_create(pthread_t *thread,  

        const pthread_attr_t *attr, 

        void *(*start_routine)(void *), 

        void *arg); 

void *: pointer to arguments, must have beeen allocated by 
spawning thread in static memory (heap) 

struct { 

  // args 

} * 
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Starting/spawning a thread 

#include <pthread.h> 

 

int pthread_create(pthread_t *thread,  

        const pthread_attr_t *attr, 

        void *(*start_routine)(void *), 

        void *arg); 

Execution of thread can be influenced by attributes: 
stacksize, scheduling properties, … NULL, or 

Not this lecture 

#include <pthread.h> 

 

int pthread_attr_init(pthread_attr_t *attr); 

int pthread_attr_destroy(pthread_attr_t *attr);  
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Finalizing/terminating thread 

#include <pthread.h> 

 

void pthread_exit(void *status); 

Terminates thread, pointer to return status can be supplied; 
return status can be caught by joining thread 

Joining threads 

#include <pthread.h> 

 

int pthread_join(pthread_t thread, void **status); 



©Jesper Larsson Träff WS11/12 

int main () { 
  pthread _t t; 
    pthread_create(&t,…); 
  … // main continues 
 
 
} 

threadcode() { 
   // … 
  pthread_exit(NULL); 
} 

pthread_join(t,NULL); 

Main thread New thread Some other thread 
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#include <stdio.h> 

#include <stdlib.h> 

 

// pthreads header 

#include <pthread.h> 

 

// global state; here read-only – don‘t do this… 

int threads_glob; 

 

void *something(void *argument){ 

  int rank = (int)argument;   

 

  printf("Thread rank %d of %d responding\n", 

         rank,threads_glob); 

  pthread_exit(NULL); 

} 

A small example 

C style: cast void * 
argument back to 
intended type 
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#include <stdio.h> 

#include <stdlib.h> 

 

// pthreads header 

#include <pthread.h> 

 

// global state; here read-only – don‘t do this… 

int threads_glob; 

 

void *something(void *argument){ 

  int rank = (int)argument;   

 

  printf("Thread rank %d of %d responding\n", 

         rank,threads_glob); 

  pthread_exit(NULL); 

} 

A small example 

Here misuse of 
pointer to store rank 
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int main(int argc, char *argv[]){ 

  int threads, rank; 

  int i;  pthread_t *handle; 

 

  threads = 1; 

  for (i=1; i<argc&&argv[i][0]=='-'; i++) { 

    if (argv[i][1]=='t') 

      i++,sscanf(argv[i],"%d",&threads); 

  } 

  threads_glob = threads; 

  // number of threads read and stored globally 

 

  handle = 

    (pthread_t*)malloc(threads*sizeof(pthread_t)); 

  // fork the threads 

  for (i=0; i<threads; i++) { 

    pthread_create(&handle[i],NULL, 

        something,(void*)i); 

  } 

Getting 
command line 
arguments 

Local scalar variable cast into generic void 
pointer, correct, but dangerous misuse 
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#include <stdio.h> 

#include <stdlib.h> 

 

// pthreads header 

#include <pthread.h> 

 

// global state; here read-only – don‘t do this… 

int threads_glob; 

 

void *something(void *argument){ 

  int rank = *(int*)argument;   

 

  printf("Thread rank %d of %d responding\n", 

         rank,threads_glob); 

  pthread_exit(NULL); 

} 

Better: cast and 
deref 
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int main(int argc, char *argv[]){ 

  int threads, rank; 

  int i;  pthread_t *handle; 

 

  threads = 1; 

  for (i=1; i<argc&&argv[i][0]=='-'; i++) { 

    if (argv[i][1]=='t') 

      i++,sscanf(argv[i],"%d",&threads); 

  } 

  threads_glob = threads; 

  // number of threads read and stored globally 

 

  handle = 

    (pthread_t*)malloc(threads*sizeof(pthread_t)); 

  // fork the threads 

  for (i=0; i<threads; i++) { 

    pthread_create(&handle[i],NULL, 

        something,&i); 

  } 

Problem? 
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int main(int argc, char *argv[]){ 

  int threads, rank; 

  int i;  pthread_t *handle; 

 

  threads = 1; 

  for (i=1; i<argc&&argv[i][0]=='-'; i++) { 

    if (argv[i][1]=='t') 

      i++,sscanf(argv[i],"%d",&threads); 

  } 

  threads_glob = threads; 

  // number of threads read and stored globally 

 

  handle = 

    (pthread_t*)malloc(threads*sizeof(pthread_t)); 

  // fork the threads 

  for (i=0; i<threads; i++) { 

    pthread_create(&handle[i],NULL, 

        something,&i); 

  } 

Problem? 

Only one (local) variable, may be overwritten 
before thread has copied into local 
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Race condition:  
Outcome of parallel progam execution is dependent on the 
relative timing of the updates by processors/threads 

Example: 
a value (storage of i) is overwritten by one thread, may (or may 
not) happen before the other threads have read intended 
value. Program outcome dependent on relative timing of 
threads. Bad, unintended non-determinism… 
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int main(int argc, char *argv[]){ 

  int threads, *rank; 

  int i;  pthread_t *handle; 

 

  // … get the number of threads  

  handle = 

    (pthread_t*)malloc(threads*sizeof(pthread_t)); 

  rank = (int*)malloc(threads*sizeof(int)); 

  // fork the threads 

  for (i=0; i<threads; i++) { 

    rank[i] = i; 

    pthread_create(&handle[i],NULL, 

        something,&rank[i]); 

  } 

  // join the threads again 

  for (i=0; i<threads; i++) pthread_join(handle[i],NULL); 

  free(rank); free(handle); 

  return 0; 

} 

Own location for each 
thread, no overwrite 

Wait for threads to 
terminate Free storage nicely 
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#include <assert.h> 

 

int main(int argc, char *argv[]){ 

  int threads, *rank; 

  int i;  pthread_t *handle; 

 

  // … get the number of threads, allocate  

 

  // fork the threads 

  for (i=0; i<threads; i++) { 

    rank[i] = i; 

    errcode = pthread_create(&handle[i],NULL, 

            something,&rank[i]); 

    assert(errcode==0); 

  } 

  // … 

} 

Checking return codes with assertions 
Enables assertion 
checking, macro 
assert(expr); 

Assertion errcode==0 
expected to evaluate to 
true (≠0), otherwise abort 

#define NDEBUG 
// assertion checking disabled 
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for (i=0; i<threads; i++) { 

    rank[i] = i; 

    pthread_create(&handle[i],NULL, 

        something,&rank[i]); 

  } 

  // join the threads again 

  for (i=0; i<threads; i++) pthread_join(handle[i],NULL); 

Potential problem: sequential spawning of treads can limit 
scalability (Amdahl). 
 
In general: thread creation can be expensive 

Fix: spawn recursively 
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#include <pthread.h> 

 

pthread_t pthread_self(void); 

#include <pthread.h> 

 

int pthread_equal(pthread_t thread_1,  

       pthread_t thread_2); 

pthread_t thread identifiers are opaque; normally user gives 
thread „identity“ (as in example), a thread can inquire ist own 
pthread_t id; pthread_t id‘s can be compared 
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Explicit parallelization of data parallel loop 

for (i=0; i<n; i++) { 

   a[i] = f(i); 

} 

Thread i (on core i) performs 

for (i=start; i<end; i++) { 

   a[i] = f(i); 

} 

start = i*n/threads 
end = (i+1)*n/threads 
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Explicit parallelization of data parallel loop 

for (i=0; i<n; i++) { 

   a[i] = f(i); 

} 

loopblock(void *what)   

{ 

  rankindex_t *ix = (rankindex_t*)what; 

  int *a = ix->array; 

  int i, start=ix->start, end=ix->end ; 

 

  for (i=start; i<end; i++) a[i] = f(i); 

} 

typedef struct { 

  int *array;  

  // pointer shared, global data 

  int start, end; 

  int rank; // threads rank 

} rankindex_t; 

Function for 
loop block 

Arguments struct 
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Example: matrix-vector product 

for (i=0; i<n; i++) { 

  y[i] = 0; 

  for (j=0;j<m; j++) { 

    y[i] += x[i][j]*A[j]; 

  } 

} 

y= x*A, nxm matrix x, m vector A 

Nested loop 

Parallelized by tiling outer loop 

for (i=rank; i<n; i+=threads) { 

  y[i] = 0; 

  … 

Each thread rank 
handles every 
threads‘th index 
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for (i=rank; i<n; i+=threads) { 

  y[i] = 0; 

  for (j=0;j<m; j++) { 

    y[i] += x[i][j]*A[j]; 

  } 

} 

Thread rank: 

Problem? 

y[0] = 0; 

y[1] = 0; 

y[2] = 0; 

y[3] = 0; 

y values go into (local) caches 
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for (i=rank; i<n; i+=threads) { 

  y[i] = 0; 

  for (j=0;j<m; j++) { 

    y[i] += x[i][j]*A[j]; 

  } 

} 

Thread rank: 

y[0] +=  x[i][j]…; 

y[1] 

y[2] 

y[3] 

False sharing: updates on y causes 
either cache update traffic or 
invalidates/memory reads 

+=  x[i][j]…; 

+=  x[i][j]…; 

+=  x[i][j]…; 
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for (i=rank*n/p; i<(rank+1)*n/p; i++) { 

  y[i] = 0; 

  for (j=0;j<m; j++) { 

    y[i] += x[i][j]*a[j]; 

  } 

} 

Thread rank: 

Solution? 

Exercise: test effects of false sharing (best and worst cases) 
on TU Wien parallel computing shared-memory node, with 
explicit thread affinity 
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Binding threads to cores 

#define _GNU_SOURCE 

#include <pthread.h> 

 

int pthread_setaffinity_np(pthread_t thread,  

    size_t cpusetsize, 

    const cpu_set_t *cpuset); 

Int pthread_getaffinity_np(pthread_t thread, 

    size_t cpusetsize, 

    cpu_set_t *cpuset); 

_np: non-portable, non-standard extension to pthreads (but 
commonly supported in some form) 

Thread will be migrated to one of the cores in cpuset 
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Coordination constructs for avoiding race conditions 

•Locks/mutex‘es – for ensuring mutual exclusion 
 
•Condition variables 
 
 
•Advanced, non-standard features: semaphores, barriers, spin 
locks 

Note: these are all classical concurrent computing constructs. 
Some classical algorithms to solve the problems under weak 
architecture assumptions: Dekker‘s algorithm, Lamport‘s bakery, … 

Caution: the constructs were developed for few resources, not 
necessarily sufficient for highly parallel, scalable programming 
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Critical section: 
Code manipulating shared resources, that must not be 
concurrently manipulated by other active entities (threads, 
processes, …) 

Shared resources: simple variables, data structures, devices 

Pthread „model“: it is not allowed to update shared variables 
outside of critical sections. The lock constructs shall ensure a 
consistent view of memory. 

Mutual exclusion property/algorithm: at most one thread in 
given critical section 



©Jesper Larsson Träff WS11/12 

Lock: shared object between any number of threads.  
 
Lock state: locked (acquired), or unlocked (released) 
 
At most one thread can acquire the lock, must release after use. 
When a thread attempts to acquire a lock that is already 
acquired by another thread it is blocked, and waits until the lock 
is released 
 
If any thread that is waiting to acquire a lock is eventually 
granted the lock, the lock is called fair!! 

Locks 
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#include <pthread.h> 

 

Int pthread_mutex_init(pthread_mutex_t *mutex, 

      const pthread_mutex_attr *attr); 

#include <pthread.h> 

 

int pthread_mutex_destroy(pthread_mutex_t *mutex); 

Pthread lock is called mutex, type pthread_mutex_t 

Static allocation and initialization with 

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 

Dynamically allocated mutexes 
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#include <pthread.h> 

 

int pthread_mutex_lock(pthread_mutex_t *mutex); 

int pthread_mutex_unlock(pthread_mutex_t *mutex); 

Locking and unlocking 
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a = x; 

Thread 0: 

b = x; 

Thread 1: 

x = c; 

Thread 2: 

Race condition: depends on relative timing of threads 

Unsafe program, what is the intended value of x for thread 0 
and 1? 

x = 0; 
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lock(&lock); 

a = x; 

unlock(&lock); 

Thread 0: 

lock(&lock); 

b = x; 

unlock(&lock); 

Thread 1: 

lock(&lock); 

x = c; 

unlock(&lock); 

Thread 2: 

Mutual exclusion ensured – enforced by locking 

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 

Both read and write accesses to x need to be protected by the 
lock mutex 
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lock(&lock); 

a = x; 

unlock(&lock); 

Thread 0: 

lock(&lock); 

b = x; 

unlock(&lock); 

Thread 1: 

lock(&lock); 

x = c; 

unlock(&lock); 

Thread 2: 

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 

Note: pthread locks are not fair, no guarantee that a thread 
trying to acquire a lock will eventually acquire it 

Mutual exclusion ensured – enforced by locking 
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lock(&lock); 

lock(&lock); 

a = x; 

unlock(&lock); 

Thread 0: 

lock(&lock); 

b = x; 

unlock(&lock); 

Thread 1: 

lock(&lock); 

x = c; 

unlock(&lock); 

Thread 2: 

Deadlock! 

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 

Deadlock: two or more threads are in a situation where they 
dependently on each other cannot progress. Deadlock will 
eventually proliferate to all threads 
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a = f(x); 

Thread 0: 

b = f(x); 

Thread 1: 

c = f(y); 

Thread 2: 

What about this? 

No apparent races, independent evaluation of some function f 

OK? Depends on f, must be such that it can indeed be 
executed concurrently: „tread safe“ 
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Thread safety 

1. Functions that do not protect (write access) to shared 
variables 

2. Functions that keep state over successive invocations 
(static variables).  

3. Functions that return pointers to static variables 
4. Functions that call thread-unsafe functions  

Tautological definition: a function is thread-safe if it can be 
executed concurrently by any number of threads and will always 
produce correct results 

Non-thread safe functions are 
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Careful with functions supplied by other party, e.g. system 
functions 
 
Example: rand() keeps state internally in static variables, 
notoriously not thread safe 

Some system functions are made thread safe by locking. Can 
have undesirable effects – serialization slowdown, deadlock 
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#include <pthread.h> 

 

int pthread_mutex_trylock(pthread_mutex_t *mutex); 

If mutex is not held by other tread, lock acquired; if already 
held by other thread EBUSY is returned, calling thread is not 
blocked 

Testing and getting lock/non-blocking lock 

More on locks 
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Thread 0: 
… 

pthread_mutex_lock(&lock1); 

pthread_mutex_lock(&lock2); 

… 

Thread 1: 
… 

pthread_mutex_lock(&lock2); 

pthread_mutex_lock(&lock1); 

… 

pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER; 

pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER; 

Can – and will – lead to deadlock!! 

Beware: even the most „unlikely“ deadlock situation will 
eventually happen! Design correct programs… 

Dead-locks: 
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e1 e2 

Multiple locks, example: list processing 

Problem with locks: code for different threads may have been 
written with different locking conventions, by different people, 
at different times… 

To remove e2, may 
need lock on e1 and e2 
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#include <pthread.h> 

 

int pthread_rwlock_init(pthread_rwlock_t *rwlock, 

  const pthread_rwlockattr_t *attr); 

#include <pthread.h> 

 

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock); 

More flexible locks: reader/writer locks 

Allow several threads to acquire lock for reading shared 
variables, single thread to acquire for writing 
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#include <pthread.h> 

 

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock); 

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock); 

 

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock); 

  

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock); 

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);  
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rdlock(&lock); 

a = x; 

unlock(&lock); 

Thread 0: 

rdlock(&lock); 

b = x; 

unlock(&lock); 

Thread 1: 

wrlock(&lock); 

x = c; 

unlock(&lock); 

Thread 2: 

pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER; 

Thread 0 and 1 can both enter their critical section 
simultaneously, thread 2 can only alone be in its critical section 
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rdlock(&lock); 

a = x; 

unlock(&lock); 

Thread 0: 

rdlock(&lock); 

b = x; 

unlock(&lock); 

Thread 1: 

wrlock(&lock); 

x = c; 

unlock(&lock); 

Thread 2: 

pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER; 

Note: pthread locks are not fair, no guarantee that a thread 
trying to acquire a lock will eventually acquire it 
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#include <pthread.h> 

 

int pthread_cond_init(pthread_cond_t *cond, 

     const pthread_cond_attr *attr); 

int pthread_cond_destroy(pthread_cond_t *cond); 

More lock flexibility: condition variables 

Thread may temporalily relinquish lock, and wait (suspend) 
for condition-signal 
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#include <pthread.h> 

 

int pthread_cond_wait(pthread_cond_t *cond, 

     pthread_mutex_t *mutex); 

Wait for signal on condition variable inside critical section 

Thread suspended (waits), lock is temporarily relinquished. 
When thread it later resumed (woken up) by a signal from 
some other thread, it has again acquired lock 

Good practice: recheck whether wait-condition is fulfilled 

Deadlock: threads mutually wait on some condition, no thread 
signals 
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#include <pthread.h> 

 

int pthread_cond_wait(pthread_cond_t *cond, 

     pthread_mutex_t *mutex); 

Wait for signal on condition variable inside critical section 

Thread suspended (waits), lock is temporarily relinquished. 
When thread it later resumed (woken up) by a signal from 
some other thread, it has again acquired lock 

Good practice: recheck wheter wait-condition is fulfilled. 
 
There can be spurious wakeups – threads signaled wrongly or 
getting a signal spuriously from pthreads 
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#include <pthread.h> 

 

int pthread_cond_signal(pthread_cond_t *cond); 

#include <pthread.h> 

 

int pthread_cond_broadcast(pthread_cond_t *cond); 

Signal some waiting thread 

Signal all waiting threads 

If more than one thread is waiting, which gets signal is 
undetermined (can be influenced by attributes); broadcast 
signals one after another 
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pthread_mutex_lock(&lock); 

 

// in critical section 

 

// if condition not fulfilled, relinquish lock by waiting 

while (!condition()) pthread_cond_wait(&cond,&lock); 

 

// thread has been signalled, condition holds: 

// again in critical section 

 

pthread_mutex_unlock(&lock); 

Standard condition variable pattern 

Thread-code 
Thread acquires lock, 
enters critical section 

Waits/suspends on condition 
variable, lock released 

After signal, lock is again acquired (mutual exclusion!), 
condition can be rechecked 

Thread releases lock normally 



©Jesper Larsson Träff WS11/12 

Example: readers-writers lock with condition variables 

Idea: 
Keep track of number of readers, pending writers, whether 
there is a writer, condition variables to suspend readers and 
writers trying to acquire lock, standard mutex for ensuring 
mutual exclusion to the shared data structure 

typedef struct { 

  int readers; 

  int waiting, writer; 

  pthread_cond_t read_ok, write_ok; 

  pthread_mutex_t gateway; 

} rwlock_t; 



©Jesper Larsson Träff WS11/12 

Init function: no readers, no writer, no pending; initialize 
mutex and condition variables 

void rwlock_rlock(rwlock_t *rwlock) 

{ 

  pthread_mutex_lock(&rwlock->gateway); 

  while (rwlock->waiting>0||rwlock->writer) { 

    pthread_cond_wait(&rwlock->read_ok, 

     &rwlock->gateway); 

  } 

  rwlock->readers++;  

  pthread_mutex_unlock(&rwlock->gateway); 

} 

Acquire reading lock 
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void rwlock_wlock(rwlock_t *rwlock) 

{ 

  pthread_mutex_lock(&rwlock->gateway); 

  rwlock->waiting++; 

  while (rwlock->writer||rwlock->readers>0) {   

    pthread_cond_wait(&rwlock->writer_ok, 

     &rwlock->gateway); 

  } 

  rwlock->waiting--; 

  rwlock->writer = 1; 

  pthread_mutex_unlock(&rwlock->gateway); 

} 

Acquire single writing lock 
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void rwlock_ulock(rwlock_t *rwlock) 

{ 

  pthread_mutex_lock(&rwlock->gateway); 

  if (rwlock->writer) rwlock->writer = 0; 

  else rwlock->readers--; 

  pthread_mutex_unlock(&rwlock->gateway); 

 

  // resume threads waiting to acquire 

  if (rwlock->readers==0&&rwlock->waiting>0) { 

    pthread_cond_signal(&rwlock->writer_ok); 

  } else pthread_cond_broadcast(&rwlock->reader_ok); 

} 

Unlock: wake up threads waiting to acquire lock 

Signal can 
be sent 
outside 
critical 
section 

But actually race: readers/waiting can be changed by 
other threads after unlock 
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Correctness: 
Establish (prove) invariants: readers counts the number of 
threads having acquired read lock, writer is true if and only if 
a process has acquired write lock, etc. 

(Un)Fairness properties: 
Threads acquiring write lock can starve threads wanting to 
acquire read lock (??) 
 
•Newer writer can starve older writer 
•Newer reader can acquire lock before older reader – or writer 

Note: the original implementation from <book?> was 
not correct at all 
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void rwlock_ulock(rwlock_t *rwlock) 

{ 

  pthread_mutex_lock(&rwlock->gateway); 

  if (rwlock->writer) rwlock->writer = 0; 

  else rwlock->readers--; 

 

  // resume threads waiting to acquire 

  if (rwlock->readers==0&&rwlock->waiting>0) { 

    pthread_cond_signal(&rwlock->writer_ok); 

  } else pthread_cond_broadcast(&rwlock->reader_ok); 

 

  pthread_mutex_unlock(&rwlock->gateway); 

} 

Unlock: wake up threads waiting to acquire lock 

Thread signals but keeps lock; signals sent after lock release 
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Example: Barrier synchronization with condition variables 

Each thread execution <barrier> shall wait until all/some number 
of threads have executed <barrier> 

<barrier> 

<barrier> 

<barrier> 

<barrier> 
<barrier> 

Threads can proceed 
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typedef struct { 

  int tc; // thread count 

  pthread_cond_t barrier_ok; 

  pthread_mutex_t barwait; 

} barrier_t; 

void barrier(barrier_t  *b, int tc) 

{ 

  pthread_mutex_lock(&b->barwait); 

  b->tc++; 

  if (b->tc==tc) { 

    b->tc =0; 

    pthread_cond_broadcast(&b->barrier_ok); 

  else pthread_cond_wait(&b->barrier_ok,&b->barwait); 

  pthread_mutex_unlock(&b->barwait); 

} 

Naive barrier 

Also from <book?> 
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Note: 
1. This barrier implementation is not scalable, O(p) 
2. Probably not safe on spurious wake ups 
3. Other problems 

Fixes: 
1. Tree structured barrier 
2. Extra flag 

[Mellor-Crummey, Scott: Algorithms for Scalable Synchronization on 
Shared-Memory Multiprocessors. ACM TOPLAS (1): 21-65 (1991)] 
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#include <pthread.h> 

 

int pthread_spin_destroy(pthread_spinlock_t *lock); 

int pthread_spin_init(pthread_spinlock_t *lock, 

     int pshared);  

Spin locks – specific implementation for performance 

Mutex semantics, but different 
pragmatics/implementation/performance 
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#include <pthread.h> 

 

int pthread_spin_lock(pthread_spinlock_t *lock); 

int pthread_spin_trylock(pthread_spinlock_t *lock);  

#include <pthread.h> 

 

int pthread_spin_unlock(pthread_spinlock_t *lock);  

Pragmatics/implementation: 
thread waiting to acquire lock does not suspend, waits for lock 
release by „spinning“ on flag 

Contrast: mutex locks, thread blocking on lock may be 
suspended (put to sleep) by OS, and resumed when lock is 
released 
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#include <sched.h> 

 

int sched_yield(void); 

Hint: 
Hand-implemented locks, or other data structure requiring 
waiting – useful to suspend thread and yield processor to some 
other thread 
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Spinlocks: possibly faster on dedicated (parallel) applications on 
dedicated systems, expensive OS suspension not required. 
 
On overloaded systems – more threads than cores/processors – 
spinlocks can behave very badly 

Portability caveat: 
to enforce „spinning“ behavior, explicit use of spinlocks needed, 
program needs rewrite/recompilation/conditional compilation. 
 
Why not controlled by mutex-attributes? 
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Example: coming to terms without locks 

Task: find all primes between 2 and 10^9 

Idea: first independently, and in parallel, check all 10^9-1 
candidates 

Observation: check very fast for some numbers – those with 
a small prime factor; also, the number of primes in different 
intervals differ, by prime number theorem 

Note: for illustration purposes only, for better ideas see [Crandall, 
Pomerance: Prime numbers. Springer, 2002] 
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Statically scheduled data parallel loop will likely lead to load 
imbalance 

for (i=2; i<1000000000; i++) { 

  if (isPrime(i)) printf(„Found %d\n“,i); 

} 

If a few of the processors execute only the expensive isPrime 
checks, Tpar will be close to Tseq, no Speedup 

Static schedule: each thread executes block of 1000000000/p 
successive iterations 
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Better solution: use a shared, global counter 

int i = 0; // shared global 

 

// Thread i code 

while (i<1000000000) { 

  int j = i; i++; // thread gets next value of i 

  if (isPrime(j)) printf(„Found %d\n“,j); 

} 

Problem? 
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i++; translates into 

tmp = i; 

tmp = tmp+1; 

i = tmp; 

tmp = i; 

 

tmp = tmp+1; 

i = tmp; 

Thread 0: Thread 1: 

tmp = i; 

 

tmp = tmp+1; 

i = tmp; 

i incremented by 1 only – race condition!! 

Both threads 
reads same 
value for i 
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Better solution: use a shared, global counter 

int i = 0; // shared global 

 

// Thread i code 

while (i<1000000000) { 

  int j;  

  pthread_mutex_lock(&counter); 

  j = i; i++; 

  pthread_mutex_unlock(&counter); 

  if (isPrime(j)) printf(„Found %d\n“,j); 

} 

Problem? 
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Better solution: use a shared, global counter 

int i = 0; // shared global 

 

// Thread i code 

while (i<1000000000) { 

  int j;  

  pthread_mutex_lock(&counter); 

  j = i; i++; 

 

 

   

 

  pthread_mutex_unlock(&counter); 

  if (isPrime(j)) printf(„Found %d\n“,j); 

} 

Thread 0 

Thread 0 acquired lock, 
may be interrupted for 
arbitrarily long time; no 
progress 
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Better solution: use a shared, global counter with atomic increment  

int i = 0; // shared global 

 

// Thread i code 

while (i<1000000000) { 

  int j = fetch_and_inc(&i); // return value of i, inc 

  if (isPrime(j)) printf(„Found %d\n“,j); 

} 

Correct. Threads can 
always progress 

Example of lock-free algorithm: each thread will always be able 
to progress – no matter what other threads are doing 
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Atomic instructions in modern multi-core processors 

•fetch-and-inc(a): atomically return old value of a, increment 
•fecth-and-dec(a): atomically return old value of a, decrement 
 
•fetch-and-add(a,x): atomically return old value of a, add x to a 
 
•test-and-set/compare-and-swap (e,u,a): if content of a is equal 
to e, replace content of a with u, atomically 
 
•LL/SC 

See: [Herlihy, Shavit: The Art of Multiprocessor Programming. Morgan 
Kaufmann, 2008] 
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Work-pools, master-worker paradigm 

„Master maintains pool of work, workers ask for work, execute, 
return new work/results to master, until all done“ 

Work-pool 

C0 C1 C2 Cx 

Master thread: master-
worker paradigm 
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time 

C0 C1 Ci C(p-1) 

Getting work: explicitly asking master, or 
accessing shared data structure 

Master/Work-pool possible scalability bottleneck 
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Implementation sketch, work executed in generated order 

Threads:  
1. Acquire mutex, check list, if non-empty take from front, 

otherwise wait on condition variable.  
 

2. Execute work. 
 

3. New work: acquire mutex, insert at end of deque, wake up 
waiting threads 
 

Until termination 

Use deque data structure as work-pool 
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typedef struct work { 

  void (*routine)(void *args); 

  void *args; 

  struct work *next; 

} work_t; 

General work-task structure 

Work pool: linked list, first and last element 

work work work 
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Task parallel algorithms use work-pool-like implementation to 
keep threads busy executing tasks 

void QuickSort(int x[],n) { 

  if (n<=1) return; 

 

  pivot = choosepivot(x,n); // x[pivot] is pivot element 

  ix = partition(x,pivot); // ix is index of pivot after 

  spawn QuickSort(x,ix); // recurse 

  spawn QuickSort(x+ix+1,n-1-ix); 

} 

With linear partition and optimal pivot parallel time is 
O(n+n/2+n/4+…) = O(n) – with p O(log n) cannot do better 

Spawned task 
may execute in 
parallel on 
other core 
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[Robert D. Blumofe, Charles E. Leiserson: Scheduling Multithreaded 
Computations by Work Stealing. J. ACM 46(5): 720-748 (1999)] 

Problems: 
1. Centralized resource, bad for scalability 

 
2. Locks: thread updating shared resource can lock out all 

other threads indefinitely 

Solutions: 
1. Local task queues, a thread primarily uses local queue, when 

empty steals some work from some other thread‘s queue 
 

2. Lock-free data structures enabling a thread always to either 
make progress by itself, or ensure that some other thread is 
making progress 

Work-stealing: Cilk, TBB, … 
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C0 C1 C2 Cx 

Put new work in 
local queue 

Local 
dequeues 
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C0 C1 C2 Cx 

Put new work in 
local queue 

Get work from 
local queue 

Local 
dequeues 



©Jesper Larsson Träff WS11/12 

Randomized stealing: good theoretical properties, O(d+W/p) 
with high probability under certain conditions, d: depth, W: work 

Deterministic stealing: can provide good locality properties 

C0 C1 C2 Cx 

If local queue 
empty, steal from 
other thread 
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To lock or not to lock for performance: difficult, practical 
issue, application and system dependent 
 
Lock-free data structures: active research area, practical and 
theoretical issues and challenges 

Solutions: 
Lock-free data structures (deques, stacks, …) make extensive use 
of strong atomic operations: CAS (compare-and-swap) 

Caution: 

See: master lecture on advanced multiprocessor programming 
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OpenMP 

See www.openmp.org   

Developed by group of vendors/compiler companies, univesities, 
users. Official standard since 1997, maintained by A(chitecture) 
R(eview) B(oard) , non-profit organization owning the OpenMP 
trademark 

Standard for (mostly) data parallel shared-memory 
programming  in C/C++/Fortran,  „Open Multi-Processing“ 

Latest release of standard: OpenMP 3.1, July 2011 

Also www.compunity.org  

http://www.openmp.org/
http://www.compunity.org/
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ARB Permanent Members: 
 
•AMD 
•Cray 
•Fujitsu 
•HP 
•IBM 
•Intel 
•NEC 
•The Portland Group, Inc. 
•Oracle Corporation 
•ORNL 
•Microsoft 
•Texas Instruments 
•CAPS-Entreprise 
•NVIDIA 

Auxiliary Members: 
 
•ANL 
•ASC/LLNL 
•cOMPunity 
•EPCC 
•LANL 
•NASA 
•RWTH Aachen University 
•Texas Advanced Computing Center 

Chair of Language committee: Bronis de Supinski, LLNL 
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Basic idea: 
 
•Provide for gradual parallelization of C/Fortran programs 
by identifying constructs – loops - where parallelism can 
easily be exploited 
 
•Constructs and type of parallelism identified by 
language-pragmas (and a few library operations) 

•Requires compiler support 
 
•Idea: a correct OpenMP program is always a correct 
sequential program (library calls may have to be replaced) 
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Most C/Fortran compilers now support OpenMP 
 
•GNU gcc 
 
•Intel (one of the first to fully support OpenMP) 
•IBM 
•Portland Group 
•Microsoft 
•HP 
•Cray 
•… 

Lack of/bad compiler support did for some years limit use of 
OpenMP. Efficient support of OpenMP probably not trivial 
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M 

P P P P 

OpenMP architecture model 

Naive, flat, shared-memory model, processors-memory, no 
explicit cost-model, UMA 
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OpenMP programming model 

1. Parallelism is (mostly) implicit 
 

2. Fork-join parallelism: master thread implicitly spawns 
threads through OpenMP construct (pragma), threads join 
at end of construct 
 

3. Number of threads limited by number of processors/cores 
 

4. Threads intended to be executed in parallel by available 
cores/processors 
 

5.  Work of OpenMP construct divided across threads 
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6. Threads can share variables; shared variables are shared 
among all threads 
 

7. Threads can have private variables 
 

8. Unintended updates of shared variables can lead to race 
conditions 
 

9. Synchronization constructs for preventing race conditions 
 

10. OpenMP 3.0: task model Not this lecture 
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OpenMP par construct 

End of construct 

Master thread 

Parallel threads share work 

Per default, all 
variables shared 

Variables can be 
declared private, 
executing thread 
only 

Data transfer between shared and private (copies) variables is 
transparent, implicit 

Implicit 
barrier 
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OpenMP for C: 

•Include header <omp.h> 
 
•OpenMP constructs identified by #pragma <directive> 
[clauses] 

 

•Some library routines for getting number of threads, 
synchronization mechanisms, … 
 
•Library routines prefixed by omp_ 
 

•Macro _OPENMP defined (to version date) for conditional 
compilation 
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Compile with 
 
gcc -Wall  -fopenmp -o openmphello –O3 openmphello.c 
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OpenMP for Fortran: 

 
•OpenMP constructs surrounded by !$OMP <directive> 
[clauses] 

 
Not this lecture 
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#include <stdio.h> 

#include <stdlib.h> 

 

#include <omp.h> // OpenMP header 

 

int main(int argc, char *argv[]) { 

  int threads, myid; 

  int i;  threads = 1; 

 

  for (i=1; i<argc&&argv[i][0]=='-'; i++) { 

    if (argv[i][1]=='t') sscanf(argv[++i],"%d",&threads);  

 } 

 

  printf("Maximum number of threads possible is %d\n", 
   omp_get_max_threads()); 

  // … 

} 

1st example 

OpenMP library 
call 

Normally some small multiple of number of 
physical processors/cores 
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int main(int argc, char *argv[]){ 

   int threads, myid; 

  int i;  threads = 1; 

 

  // … 

 

  if (threads<omp_get_max_threads()) { 

    if (threads<1) threads = 1; 

    omp_set_num_threads(threads);  

 } else { 

    threads = omp_get_max_threads(); 

  } 

 

  // … 

} 

Just setting shared 
variable threads to at 
most max_threads 
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int main(int argc, char *argv[]){ 

   int threads, myid; 

  int i;  threads = 1; 

 

// … 

 

#pragma omp parallel num_threads(threads) 

  { 

    myid = omp_get_thread_num(); 

    printf("Thread %d of %d active\n",myid,threads); 

  } 

 

  return 0; 

} 

OpenMP directive: parallel 
region executed by 
num_threads cores 

Library call: get thread id – should 
rarely be needed 
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OpenMP par construct 

End of construct 

Master thread 

#pragma omp parallel 

{ 

  // threads 

} 

Basic work sharing constructs  
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OpenMP par construct 

End of construct 

Master thread 

#pragma omp parallel 

{ 

  #pragma omp for 

  for (i=0; i<n; i++) { 

    // iterations shared 

  } 

} 

Basic work sharing constructs  

Data parallel loop scheduled over available threads 
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OpenMP par construct 

End of construct 

Master thread 

#pragma omp parallel 

{ 

  #pragma omp sections 

  #pragma omp section 

  { 

    // A 

  } 

  #pragma omp section 

  { 

     // B 

  } 

  // … 

} 

Basic work sharing constructs  

Static, finite task parallelism 
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OpenMP par construct 

End of construct 

Master thread 

#pragma omp parallel 

{ 

  #pragma omp single 

  { 

    // some thread 

  } 

} 

Basic work sharing constructs  

Sequential code in parallel construct, no mutual exclusion 



©Jesper Larsson Träff WS11/12 

OpenMP par construct 

End of construct 

Master thread 

#pragma omp parallel 

{ 

  #pragma omp master 

  { 

    // master thread 0 

  } 

} 

Basic work sharing constructs  

Sequential code by master in parallel construct, no mutual 
exclusion 
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The parallel construct 

#pragma omp parallel [clause ...] 

<structured block>  

Starts an explicit parallel section/block/region with default 
number of threads 

Example, explicit parallelization of loop of independent iterations 

for (i=0; i<n; i++) { 

  a[i] = f(i); 

} 
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#pragma omp parallel 

{ 

  int i; 

  int block = n/omp_get_num_threads(); 

  int start = omp_get_thread_num()*block; 

  int end = start+block; 

 

  for (i=start; i<end; i++) { 

    a[i] = f(i); 

  } 

} 

Local variables, per thread 

Implicit barrier, all threads have completed their loop, back to 
master thread, all iterations have been completed 
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#pragma omp parallel 

{ 

  int i; 

  int block = n/omp_get_num_threads(); 

  int start = omp_get_thread_num()*block; 

  int end = start+block; 

 

  for (i=start; i<end; i++) { 

    a[i] = f(i); 

  } 

} 

Note: 
Not allowed to jump into or break out of parallel region (same 
for the work sharing and other OpenMP constructs).  
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#pragma omp parallel 

{ 

  int i; 

  int block = n/omp_get_num_threads(); 

  int start = omp_get_thread_num()*block; 

  int end = start+block; 

 

  for (i=start; i<end; i++) { 

    a[i] = f(i); 

  } 

} 

OpenMP library calls 
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Default number of threads determined by 

1. Environment (run command), can be changed by environment 
variable OMP_NUM_THREADS, e.g 

setenv OMP_NUM_THREADS 5 

2. Explicit setting in program by library call 
omp_set_num_threads(t); 

3. Clause num_threads(t) in #pragma omp parallel 
construct 

Note: 3 overrides 2; 2 overrides 1 
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Library functions for (explicit) thread access  

#include <omp.h> 

 

void omp_set_num_threads(int num_threads); 

int omp_get_num_threads(void); 

 

int omp_get_max_threads(void); 

 

int omp_get_thread_num(void); 

 

int omp_get_num_procs(void); 

Threads in parallel region are numbered successively from 0 to 
omp_get_num_threads()-1 

 
Master thread has number 0 
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Library functions for (explicit) thread access  

#include <omp.h> 

 

void omp_set_num_threads(int num_threads); 

int omp_get_num_threads(void); 

 

int omp_get_max_threads(void); 

 

int omp_get_thread_num(void); 

 

int omp_get_num_procs(void); 

Number of default threads for OpenMP regions can be set by 
omp_set_num_threads(t). Maximum number of threads 
allowed by system is omp_get_max_threads(); 
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#pragma omp parallel if (n<1000) num_threads(4) 

{ 

  int i; 

  int block = n/omp_get_num_threads(); 

  int start = omp_get_thread_num()*block; 

  int end = start+block; 

 

  for (i=start; i<end; i++) { 

    a[i] = f(i); 

  } 

} 

Conditional clause, scalar 
expression evaluated at 
runtime 

Fixing number 
of threads for 
region 
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int *a; 

a = (int*)malloc(n*sizeof(a*)); 

 

#pragma omp parallel 

{ 

  int i; 

  int block = n/omp_get_num_threads(); 

  int start = omp_get_thread_num()*block; 

  int end = start+block; 

 

  for (i=start; i<end; i++) { 

    a[i] = f(i); 

  } 

} 

Local variables, per thread 

Variables declared before parallel region are per default shared 
for all threads 

Will be shared 
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Sharing can be controlled at entry to parallel region 

•Clause shared(<list of vars>) 
•Clause private(<list of vars>) 
•Clause firstprivate(<list of vars>) 
•Clause lastprivate(<list of vars>) 
 
•Clauses default(shared), default(none)  

For variables declared as private, a local copy per thread is 
created. With private: not initialized, with firstprivate 
initalized to value in master thread prior to parallel section; 
lastprivate copies value from „last“ thread back 
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int *a; 

a = (int*)malloc(n*sizeof(a*)); 

 

#pragma omp parallel private(a) 

{ 

  int i; 

  int block = n/omp_get_num_threads(); 

  int start = omp_get_thread_num()*block; 

  int end = start+block; 

 

  for (i=start; i<end; i++) { 

    a[i] = f(i); 

  } 

} 

Variables declared before parallel region are per default shared 
for all threads 

Pointer is private 
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int a[200] 

 

#pragma omp parallel private(a) 

{ 

  int i; 

  int block = n/omp_get_num_threads(); 

  int start = omp_get_thread_num()*block; 

  int end = start+block; 

 

  for (i=start; i<end; i++) { 

    a[i] = f(i); 

  } 

} 

Variables declared before parallel region are per default shared 
for all threads 

Pointer and array 
content private?? 
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int *a; 

a = (int*)malloc(n*sizeof(a*)); 

 

#pragma omp parallel default(none) \ 

private(a) 

{ 

  int i; 

  int block = n/omp_get_num_threads(); 

  int start = omp_get_thread_num()*block; 

  int end = start+block; 

 

  for (i=start; i<end; i++) { 

    a[i] = f(i); 

  } 

} 

Good practice(?): disable default rule, explicit sharing 
declaration for all variables in enclosing scope 

Pointer is private 

C preprocessor 
line continuation 
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if (scalar_expression)  

private (list)  

shared (list)  

default (shared | none)  

firstprivate (list)  

reduction (operator: list)  

copyin (list)  

num_threads (integer-expression) 

Summary of clauses for #pragma omp parallel 

See later for reduction clause… 
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Work sharing constructs: loop, sections, single/master 

OpenMP constructs for assignment of threads to 
statements/blocks of code  

#pragma omp parallel 

if (omp_get_thread_num()==0) { 

  // do that 

} else if (omp_get_thread_num==1) { 

  // do this 

} else … 

Instead explicit, and possibly inefficient assignment/scheduling 

OpenMP provides implicit means of assigning work to threads 
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Parallel sections 

#pragma omp sections [clause ...] 

{  

#pragma omp section 

  taskA(…); 

#pragma omp section 

{ 

  // explicit block of code for some task 

} 

#pragma omp section 

… 

} 

Discrete, fixed number of tasks will be assigned to active threads 

More threads 
than tasks: 
some threads 
idle 
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Parallel sections 

#pragma omp sections [clause ...] 

{  

#pragma omp section 

  taskA(…); 

#pragma omp section 

{ 

  // explicit block of code for some task 

} 

#pragma omp section 

… 

} 

More tasks 
than threads: 
Some threads 
execute more 
than one task, 
scheduling 
implementation 
dependent 
 

Discrete, fixed number of tasks will be assigned to active threads 
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Example: loop with two independent operations 

int i; 

float a[N], b[N], c[N], d[N]; 

 

for (i=0; i < N; i++) { 

  a[i] = …; 

  b[i] = …; 

} 

 

for (i=0; i < N; i++) { 

  c[i] = a[i] + b[i]; 

  d[i] = a[i] * b[i]; 

} 
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int i; 

float a[N], b[N], c[N], d[N];  

for (i=0; i < N; i++) { 

  a[i] = …; 

  b[i] = …; 

} 

 

#pragma omp parallel deafult(none) \ 

shared(a,b,c,d) private(i) 

{ 

  #pragma omp sections nowait 

  { 

    #pragma omp section 

    for (i=0; i < N; i++) c[i] = a[i] + b[i]; 

    #pragma omp section 

    for (i=0; i < N; i++) d[i] = a[i] * b[i]; 

  } /* end of sections */ 

} /* end of parallel section */  

„Task 1“ 

„Task 2“ 
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private (list) 

firstprivate (list)  

lastprivate (list)  

reduction (operator: list)  

nowait  

Summary of clauses for #pragma omp sections 

For reduction and nowait, see later… 
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Single construct, master construct 

Block inside parallel region that is to be executed by only one 
thread, either arbitrarily, or by master thread (Master: 
omp_get_thread_num()==0) 

#pragma omp single [clause] 

#pragma omp master 

Some – but only one - thread executes block, implicit barrier 
after block 

Master thread executes block, no barrier  
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#pragma omp parallel 

{ 

  int i; 

  int block = n/omp_get_num_threads(); 

  int start = omp_get_thread_num()*block; 

  int end = start+block; 

 

#pragma omp single 

  readarray(b,n); 

 

  for (i=start; i<end; i++) { 

    a[i] = b[i]; 

  } 

 

#pragma omp single 

  printf(„now done?“); 

} 

Implicit barrier, all 
threads will see 
their part of the 
array 

Dangerous: No 
barrier before 
single 
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#pragma omp parallel 

{ 

  int i; 

  int block = n/omp_get_num_threads(); 

  int start = omp_get_thread_num()*block; 

  int end = start+block; 

 

#pragma omp master 

  readarray(b,n); 

 

  for (i=start; i<end; i++) { 

    a[i] = b[i]; 

  } 

 

#pragma omp barrier  

#pragma omp single 

  writearray(a,n); // all updates done! 

} 

Explicit barrier, 

Master thread reads; 
dangerous because 
no barrier 

Implicit barrier here 
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#pragma omp parallel 

{ 

  int i; 

  int block = n/omp_get_num_threads(); 

  int start = omp_get_thread_num()*block; 

  int end = start+block; 

 

#pragma omp single 

  readarray(b,n); 

 

  for (i=start; i<end; i++) { 

    a[i] = b[i]; 

  } 

 

#pragma omp barrier 

#pragma omp single nowait 

  printf(„now done?“); 

} 

Eliminate implicit 
barrier 

Implicit barrier here 
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private (list) 

firstprivate (list)  

nowait  

Summary of clauses for #pragma omp single 

nowait: implicit barrier synchronization at end of construct will 
not take place 

Also: sections, for constructs. Not: parallel 

Use with care for performance tuning 
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Parallel for 

Basic work sharing construct – iterations of a loop distributed 
among default available threads 

Example: loop parallelization 

for (i=0; i<n; i++) { 

  a[i] = f(i); 

} 

#pragma omp for [clause] 
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#pragma omp parallel 

{ 

  int i; 

 

#pragma omp for 

  for (i=0; i<n; i++) { 

    a[i] = f(i); 

  } 

} 

Loop iterations divided according to default schedule across 
threads 

Basic rule: total number of iterations must be known before 
loop, all threads must compute same iterations bound 

Iteration variable per 
default private 
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int i; 

 

#pragma omp parallel for 

for (i=0; i<n; i++) { 

    a[i] = f(i); 

} 

Parallel loop shorthand 

•Implicit barrier after loop 
•No break, or jump into/out of loop 
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Illegal 

#pragma omp parallel for 

for (;;) { 

  // C open loop 

} 

#pragma omp parallel for 

for (i=0; i<n; i++) { 

  if (exceptional(i)) break; 

  if (i%2==0) continue; 

} 

Number of iterations 
unknown, not in canonical 
form 

Break out of loop. 
Continue ok, does not 
change number of 
iterations 

OpenMP compiler may complain 
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For loops must be in canonical form 

for (i = i0; 

i<n 

i<=n 

i>=n 

i>n 

; 

i++ 

++i 

i— 

--i 

i+=inc 

i-=inc 

i=i+inc 

i=i-inc 

) { <body> } 

•No break, goto out of loop body; continue allowed 
•Lower, upper, increment expressions must not change during 
loop iterations 

i: iteration variable 
i0: lower bound 
n: upper bound  
inc: incement 
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#pragma omp parallel for 

for (i=0; i<n; i*=2) { 

  a[i] = …; 

} 

Also illegal 

Number of iterations known, but not in canonical form 



©Jesper Larsson Träff WS11/12 

Parallel for schedules 

•Per default, iteration space divided into blocks of approx. n/p 
iterations, one block is assigned to each thread. Blocks of 
iterations: chunks in OpenMP 
•Schedule, assignment to threads, can be changed by schedule 
clause 
•Chosen schedule can have a huge effect on performance (false 
sharing, e.g.) 

p: number of threads, n number of iterations 
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Schedule clause, chunksize optional 

•schedule(static,<chunksize>): iterations divided into 
chunks of size (default approx. n/p), chunks assigned to threads in 
a round robin fashion 
 
•schedule(dynamic,<chunksize): chunks are distributed to 
threads as threads become free and request work (default 
chunksize 1) 
 
•schedule(guided,<chunksize>): as dynamic, but chunksize is 
adjusted downwards to the number of unassigned iterations 
divided by p (default chunksize 1) 
 
•schedule(auto): schedule is determined by compiler or runtime 
 
•schedule(runtime): schedule left to runtime & environment 
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Chunk 0 Chunk 1 Chunk p+1 Chunk p Chunk p-1 

Thread 0 

Thread 1 

Thread p-1 

Thread 0 

Thread 1 

schedule(static,<chunksize>) 

Chunks executed in order in parallel, thread i executes chunk i%p 
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Chunk 0 Chunk 1 Chunk p+1 Chunk p Chunk p-1 

Thread i 

Thread j 

Thread k 

Thread k 

Thread i 

schedule(dynamic,<chunksize>) 

Chunks executed in order, each thread executes some chunk, 
thread i executes next available chunk 

Work-pool like: chunk = fetch_and_add(&i,chunksize); 
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With runtime scheduling schedule can be set by environment 
variable, e.g. 

setenv OMP_SCHEDULE „guided“ 

setenv OMP_SCHEDULE „dynamic, 4“ 

setenv OMP_SCHEDULE „static, 100“ 

Note: number of threads allocated for parallel construct may 
be set/adjusted at runtime – dynamic threads 

#define OMP_DYNAMIC true/false 

#include <omp.h> 

 

void omp_set_dynamic(int dynamic_threads) 

int omp_get_dynamic(void) 
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#pragma parallel for 

for (i=0; i<n; i++) { 

  y[i] = 0; 

  for (j=0;j<m; j++) { 

    y[i] += x[i][j]*A[j]; 

  } 

} 

y= x*A, nxm matrix x, m vector A 

Example: matrix-vector 

Default: 
each thread performs 
n/p successive 
iterations of inner loop 
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#pragma parallel for schedule(static) 

for (i=0; i<n; i++) { 

  y[i] = 0; 

  for (j=0;j<m; j++) { 

    y[i] += x[i][j]*A[j]; 

  } 

} 

y= x*A, nxm matrix x, m vector A 

Example: matrix-vector 

As default: 
each thread 
performs n/p 
successive 
iterations of 
inner loop 
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#pragma parallel for schedule(static,1) 

for (i=0; i<n; i++) { 

  y[i] = 0; 

  for (j=0;j<m; j++) { 

    y[i] += x[i][j]*A[j]; 

  } 

} 

y= x*A, nxm matrix x, m vector A 

Example: matrix-vector 

Chunks of 
single 
iteration. 
Probably 
causes false 
sharing 

To experiment with best schedule, e.g. use runtime and set 
actual schedule by environment variable 
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schedule (type [,chunk])  

ordered 

private (list)  

firstprivate (list)  

lastprivate (list)  

shared (list)  

reduction (operator: list)  

collapse (n)  

nowait 

Summary of clauses for #pragma omp for 

Reduction, see later… 
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Correctness, independence 

OpenMP principle: 
Parallel regions and all work sharing constructs assume that 
code regions executed by threads can be safely executed in 
parallel 

Code region executions must be independent: no update to a 
shared variable in one region can have an effect on other region 

OpenMP principle: 
It is the programmers responsibility to ensure independence. 
Compiler & runtime are not required to check, will not do 
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Pi program fragment followed by program fragment Pj; 
sequentially Pj executed after Pj 

Pi 

Pj 

I: variables read in P (input) 
O: variables written in P (output) 

1. Oi intersection Ij = Ø 
2. Ii intesection Oj = Ø 
3. Oi intersection Oj= Ø  

The two fragments are independent and can be executed in 
parallel if 

„Bernstein‘s conditions“ 

[A. J. Bernstein: “Program Analysis 
for Parallel Processing”. IEEE Trans. 
on Electronic Computers. EC-15, 
pp. 757–62, 1966] 
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Pi 

Pj 

1. Oi intersection Ij ≠ Ø 

Pi writes to a variable that is read by Pj 

Flow dependency, true dependency 

Pi must be executed before Pj 

fl
ow
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Pi 

Pj 

2. Oj intersection Ii ≠ Ø 

Pj writes to a variable that was read by Pi 

Anti dependency 

Pi Pj Pj cannot be executed 
before/concurrently with Pi 

anti 
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Pi 

Pj 

3. Oi intersection Oj ≠ Ø 

Pi and Pj writes to the same variable 

Output dependency 

Pi Pj 

Becomes race condition if Pi 
and Pj are executed in 
different 
order/concurrently 

output 
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for (i=k; i<n; i++) a[i] = a[i-k]+a[i]; 

for (i=0; i<n-k; i++) a[i] = a[i]+a[i+k]; 

for (i=1; i<n; i++) if (isprime(i)) 

a[0] = a[i]; 

Loop carried flow dependency, if k>0 

Dependency is between different iterations of loop, sequentially 
later iteration i+k depends on output of iteration i 

Loop carried anti-dependency 

Loop carried output dependency, if more than one prime before n 
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Simple rule of thumb for OpenMP parallelizable loops 

1. Array updates only 
2. Each array element updated in at most one iteration 
3. No iteration reads element assigned by another iteration 

Dependencies within same iteration allowed 

for (i=0; i<n; i++) { 

  a[i] = f(i); 

  b[i] = g(i); 

  c[i] = a[i]+b[i]; 

} 

#pragma omp parallel for 

for (i=0; i<n; i++) { 

  a[i] = f(i); 

  b[i] = g(i); 

  c[i] = a[i]+b[i]; 

} 
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#pragma omp parallel for 

for (i=0; i<n; i++) a[i] = f(i); 

#pragma omp parallel for 

for (i=0; i<n; i++) b[i] = g(i); 

#pragma omp parallel for 

for (i=0; i<n; i++) c[i] = a[i]+b[i]; 

Or 

Implicit 
barrier 

Probably inefficient, better 

#pragma omp parallel for nowait 

for (i=0; i<n; i++) a[i] = f(i); 

#pragma omp parallel for 

for (i=0; i<n; i++) b[i] = g(i); 

#pragma omp parallel for 

for (i=0; i<n; i++) c[i] = a[i]+b[i]; 

No barrier after 
for; ok since no 
dependency on a in 
next loop  

Barrier needed 
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for (i=k; i<n; i++) a[i] = a[i]+a[i+k]; 

for (i=k; i<n; i++) aa[i] = a[i]+a[i+k]; 

// swap 

tmp = a; a = aa; aa = tmp; 

Some loop carried dependencies 

can be eleminated with temporary variables 

aa temporary (extra) array – not only pointer! No loop-carried 
dependencies 
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#pragma omp parallel for firstprivate(k) 

for (i=k; i<n; i++) aa[i] = a[i]+a[i+k]; 

// swap 

tmp = a; a = aa; aa = tmp; 

Thus 

Standard example: solving Poisson equation, loop 

u[i][j] <- ¼(u[i][j-1]+u[i][j+1]+u[i-1][j]+u[u+1][j]-h^2*f(i,j)) 
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#pragma omp parallel for 

for (i=1; i<n-1; i++) { 

  for (j=1; j<n; j++) { 

    unext[i][j] = 0.25*(u[i][j-1]+u[i][j+1]+…); 

  } 

} 

uu = u; u = unext; unext = uu; // swap 

Needs allocation of full temporary matrix, space O(n^2). 
 
Copy back may be needed if result of last iteration is in the 
temporary array  
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Parallel prefix-sums  computation (1st loop) 

for (k=1; k<n; k=kk) { 

  kk = k<<1; // double 

  for (i=kk-1; i<n, i+=kk) { 

    x[i] = x[i-k]+x[i]; 

  } 

  barrier; 

} 

No loop carried 
dependency; x[i] are 
every kk‘th element 
and only updated, 
not read in other 
iteration 

for (k=1; k<n; k=kk) { 

  kk = k<<1; // double 

#pragma omp parallel for 

  for (i=kk-1; i<n, i+=kk) { 

    x[i] = x[i-k]+x[i]; 

  } 

} Implicit barrier after parallel for region 
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Some dependencies cannot be resolved easily, require different 
approach 

for (i=k; i<n; i++) a[i] = a[i-1]+a[i]; 

Sequential computation of all inclusive prefix sums. Parallel 
algorithms solve problem work-optimally in O(n/p+log p) 

No explicit support in OpenMP 
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Some dependencies cannot be resolved easily, require different 
approach 

for (i=k; i<n; i++) a[i] = a[i-1]+a[i]; 

Sequential computation of all inclusive prefix sums. Parallel 
algorithms solve problem work-optimally in O(n/p+log p) 

No explicit support in OpenMP 

for (i=k; i<n; i++) sum = sum+a[i]; 

Different from 

Reduction pattern, can be handled by OpenMP compiler & runtime 
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Example: Erathostenes prime sieve 

for (i=2; i<n; i++) mark[i] = 1; 

 

k = 0; 

for (i=2; i*i<n; i++) { 

  if (mark[i]) prime[k++] = i; 

  for (j=i*i; j<n; j+=i) mark[j] = 0; 

} 

 

for (; i<n; i++) if (mark[i]) prime[k++] = i; 

Finds all primes up to n by crossing out multiples of each newly 
found prime. Task is to return the found primes in increasing 
order in array prime 
 
Note: by addition only 
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n mark 
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n 

for (i=2; i<n; i++) mark[i] = 1; 

mark 

Initialize mark array 
 
Implementation: bit array, only odd numbers, etc. 
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n 

i==2: 
mark[i] true, so prime, unmark multiples 

mark 
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n 

i==3: 
mark[i] true, so prime, unmark multiples 

mark 
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n 

i==4: 
mark[i] false, not prime, continue 

mark 
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n 

i==5: 
mark[i] true, so prime, unmark multiples 

Etc, until √n 

mark 
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for (i=2; i<n; i++) mark[i] = 1; 

 

k = 0; 

for (i=2; i*i<n; i++) { 

  if (mark[i]) prime[k++] = i; 

  for (j=i*i; j<n; j+=i) mark[j] = 0; 

} 

 

for (; i<n; i++) if (mark[i]) prime[k++] = i; 

Lemma: This Sieve-of-Erathostenes finds all primes from 2 to 
n in O(n √n), actually O(n log log n) 

Need only to 
eliminate multiples 
up to √n 

All multiples less than i^2 have been eliminated 
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„Proof“: 
 
•Correctness: 
If p*q = x then either p ≤ √n or q ≤ √n 
 
Invariant: before iteration i, all multiples of j<i have been 
crossed out. Therefore, when i is found marked (therefore 
prime), 2*i, 3*i, 4*i, … (i-1)*i and multiples have been 
eliminated. It suffices to cross out from i*i 
 
•Time: 
By prime number theorem etc. ∑p prime≤n: n/p = n ln ln n 

Note: exponential in size of n which is O(log n), pseudopolynomial 
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#pragma omp parallel for 

for (i=2; i<n; i++) mark[i] = 1; 

 

k = 0; 

for (i=2; i*i<n; i++) { 

  if (mark[i]) prime[k++] = i; 

#pragma omp parallel for 

  for (j=i*i; j<n; j+=i) mark[j] = 0; 

} 

 

#pragma omp parallel for 

for (; i<n; i++) if (mark[i]) prime[k++] = i; 

Inner loop can be 
parallelized 

Not in canonical form Loop-carried dependencies 
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Solution 1: enforce sequential order 

#pragma omp parallel for 

for (i=2; i<n; i++) mark[i] = 1; 

 

k = 0; 

for (i=2; i*i<n; i++) { 

  if (mark[i]) prime[k++] = i; 

#pragma omp parallel for 

  for (j=i*i; j<n; j+=i) mark[j] = 0; 

} 

int ii = i; 

#pragma omp parallel for ordered 

for (i=ii; i<n; i++) if (mark[i]) { 

#pragma omp ordered 

  prime[k++] = i; 

} 

Sequential order 
will be enforced 
for ordered 
region  

Why necessary? 
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ordered clause in parallel for region enforces same order of 
iterations for the ordered region 

Ordered region #pragma omp ordered 

Only one ordered region in parallel ordered for loop. Many 
restrictions 

Parallelization by OpenMP system hardly done, can lead to 
slowdown 
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Solution 2: index computation in parallel 

#pragma omp parallel for 

for (i=2; i<n; i++) mark[i] = 1; 

 

k = 0; 

for (i=2; i*i<n; i++) { 

  if (mark[i]) prime[k++] = i; 

#pragma omp parallel for 

  for (j=i*i; j<n; j+=i) mark[j] = 0; 

} 

int ii = i; 

#pragma omp parallel for 

for (i=ii; i<n; i++) kix[i] = (mark[i]) ? 1 : 0; 

Exscan(kix+m,n-m); // all prefix-sums 

#pragma omp parallel for 

for (i=m; i<n; i++) if (mark[i]) prime[k+kix[i]] = i; 
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Solution 2: index computation in parallel 

#pragma omp parallel for 

for (i=2; i<n; i++) mark[i] = 1; 

 

k = 0; 

for (i=2; i*i<n; i++) { 

  if (mark[i]) prime[k++] = i; 

#pragma omp parallel for 

  for (j=i*i; j<n; j+=i) mark[j] = 0; 

} 

int ii = i; 

#pragma omp parallel for 

for (i=ii; i<n; i++) kix[i] = (mark[i]) ? 1 : 0; 

Exscan(kix+m,n-m); // all prefix-sums 

#pragma omp parallel for 

for (i=m; i<n; i++) if (mark[i]) prime[k+kix[i]] = i; 

Indexing 
marked 
elements by 
exclusive 
scan 
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n mark 

0 1 1 3 2 2 3 3 kix 
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Solution 2: index computation in parallel 

#pragma omp parallel for 

for (i=2; i<n; i++) mark[i] = 1; 

 

k = 0; 

for (i=2; i*i<n; i++) { 

  if (mark[i]) prime[k++] = i; 

#pragma omp parallel for 

  for (j=i*i; j<n; j+=i) mark[j] = 0; 

} 

int ii = i; 

#pragma omp parallel for 

for (i=ii; i<n; i++) kix[i] = (mark[i]) ? 1 : 0; 

Exscan(kix+m,n-m); // all prefix-sums 

#pragma omp parallel for 

for (i=m; i<n; i++) if (mark[i]) prime[k+kix[i]] = i; 

Bonus exercise: 
Use parallel-prefix 
implementation, 
see if better 
performance can 
be achieved than 
with ordered 
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Parallel work-time: 
 
O(n log log n/p + √n) 
 
Inner loop and last loop parallelized, number of (sequential) 
iterations of outer loop √n 
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Reductions 

sum = 0; 

for (i=0; i<n; i++) sum += i; 

Standard operation with flow and output dependencies 

sum = 0; 

for (i=0; i<n; i++) sum += expr(a[i]); 

Such patterns can be recognized by OpenMP compiler, and 
efficient algorithm/runtime support used 
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sum = 0; 

#pragma omp parallel reduction(+,sum) 

for (i=0; i<n; i++) sum += i; 

reduction(<operator>,<variable list>) clause 
specifies reduction with operator on list of variables  

Operator: +, *,-,&,|,^,&&,|| and min/max computations 



©Jesper Larsson Träff WS11/12 

int i, b, c; 

float a, d; 

a = 0.0; 

b = 0; 

c = y[0]; 

d = x[0]; 

#pragma omp parallel for private(i) shared(x, y, n) \ 

reduction(+:a) reduction(^:b) \ 

reduction(min:c) reduction(max:d) 

for (i=0; i<n; i++) { 

  a += x[i]; 

  b ^= y[i]; 

  if (c > y[i]) c = y[i]; 

  d = fmaxf(d,x[i]); 

} 

More reductions 

Two different 
min/max expressions 
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#pragma omp parallel shared(a) private(i) 

{ 

#pragma omp master 

a = 0; 

// To avoid race condition, barrier here 

#pragma omp barrier 

 

#pragma omp for reduction(+:a) 

for (i = 0; i < 10; i++) { 

a += i; 

} 

#pragma omp single 

printf ("Sum is %d\n", a); 

} 

Parallel region with worksharing constructs and reduction 
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Critical sections, atomic operations 

#pragma omp critical [(<name>)] 

(named) critical section. In parallel region, enforces mutual 
exclusion of thread code region 

Critical sections are statically designated (compile time) 
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int t; 

 

#pragma omp parallel 

{ 

  t = omp_get_thread_num(); 

  print(„Thread id is %d\n“,t); 

} 

Race condition 
because of 
shared t 
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int t; 

 

#pragma omp parallel 

{ 

#pragma omp critical 

  { 

    t = omp_get_thread_num(); 

    print(„Thread id is %d\n“,t); 

  } 

} 

Now in critical 
section, mutual 
exclusion (update of 
shared t) guaranteed 
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x++; 

x--; 

++x; 

--x; 

x op= expr; 

x = x op expr; 

#pragma omp atomic update 

<expression statement> 

#pragma omp atomic read 

pvar = svar; // read shared variable atomically 

#pragma omp atomic write 

svar = pvar; // write to shared variable atomically 

Expression-
statement 
can be 

op: 

+, *, -, /, &, 

^, |, <<, >>  
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Locks for mutual exclusion created dynamically 

#include <omp.h> 

 

void omp_init_lock(omp_lock_t *lock); 

void omp_init_nest_lock(omp_nest_lock_t *lock); 

 

void omp_destroy_lock(omp_lock_t *lock); 

void omp_destroy_nest_lock(omp_nest_lock_t *lock); 

Must be allocated/initialized, and destroyed again 

No fairness guarantee 
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#include <omp.h> 

 

void omp_set_lock(omp_lock_t *lock); 

void omp_set_nest__lock(omp_nest_lock_t *lock); 

 

void omp_unset_lock(omp_lock_t *lock); 

void omp_unset_nest_lock(omp_nest_lock_t *lock); 

 

int omp_test_lock(omp_lock_t *lock); 

int omp_test_nest_lock(omp_nest_lock_t *lock); 
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Summary: Five ways of handling simple reduction 

for (i=k; i<n; i++) sum = sum+a[i]; 

#pragma omp parallel for reduction(+,sum) 

for (i=k; i<n; i++) sum = sum+a[i]; 

Canonical way, best potential for good performance: reduction 
clause 

Project/exercise: compare this to hand-written prefix algorithm 
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#pragma omp parallel for ordered 

for (i=k; i<n; i++) { 

#pragma omp ordered 

  sum = sum+a[i]; 

} 

Sequential thinking, enforce sequential order with ordered 
clause 

Performance pitfall: probably close to sequential loop (plus 
overhead?) 
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#pragma omp parallel for 

for (i=k; i<n; i++) { 

#prgama omp critical 

  sum = sum+a[i]; 

} 

Concurrent thinking: Critical section 

Might perform reasonably if much other work in parallel region 
for the threads, but probably not 

Correct only if operator + is commutative! 

Variant: use locks, same problems 
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#pragma omp parallel for 

for (i=k; i<n; i++) { 

#pragma omp atomic 

  sum = sum+a[i]; 

} 

Delegate to hardware: atomic operations 
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#include <omp.h> 

 

double omp_get_wtime(void); 

double omp_get_wtick(void); 

Wall clock time in OpenMP 

Timing OpenMP computations for performance eavluation 

Wall-clock time in seconds since some time in the past returned 
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Discussion, not covered 

Easy to use, but limited language addition for parallel thread 
programming: data parallel loops, access to possibly hardware-
supported atomic operations, plus some-level concurrent 
programming like primitives 

Stepwise parallelization idea?? Program structure will need 
change (e.g. canonical loops, dependency elimination) 



©Jesper Larsson Träff WS11/12 

Discussion, not covered 

Not covered: 
•Nesting: work-sharing constructs can be nested, but are 
executed by single thread only, unless OpenMP 3.0 nesting is 
supported 
•Task construct, OpenMP 3.0 
•Memory flushing, #pragma omp flush 
•A few other things… 


