
©Jesper Larsson Träff WS11/12

Introduction to Parallel Computing

Jesper Larsson Träff

Technical University of Vienna

Parallel Computing

©Jesper Larsson Träff WS11/12

Shared-memory architectures & machines

M

P P P P

Shared-memory
model

Naive, shared memory (programming) model: processors
execute processes, processes are not synchronized, special
methods for sharing memory between processes, NUMA

©Jesper Larsson Träff WS11/12

M

P

cache

Cache: small, fast memory, close to processor,
accessed main memory locations are stored
temporarily in cache, reused when possible

•Main memory: Gbytes, access times > 100 cycles
•Cache: Kbytes->Mbytes, access times,1-20 cycles

Typically 2-3 levels of caches in modern processors, and several
special caches, TLB, victim cache, instruction cache, …

Caches may help to alleviate/hide memory („von
Neumann“) bottlenect

©Jesper Larsson Träff WS11/12

Caches, recap.

Cache consists of a number of lines that stores blocks of
memory. A cache line holds a block and additional status
information (dirty/valid bit, tag)

Typical block size: 64Bytes

Caches exploit and makes sense because of:
•Temporal locality: locations are typically used several times
in close succession, several operations on same operand
•Spatial locality: when a location is addressed, typically
locations close to it (a+1, a+2, …) will be also be used

Properties of algorithms/programs, and not always so

©Jesper Larsson Träff WS11/12

Memory read a:
if address a already in cache, reuse from there, if not read
from memory through cache, evict previous line

a B-> cache line

Access to main memory in block size units B, aligned to block
boundary

Block boundary

©Jesper Larsson Träff WS11/12

Memory write a:
different possibilities. If a is already in cache, write overwrites;
if a is not in cache

•Write allocate: if a is not in cache, read a
•Write non-allocate: write directly to memory

•Write-through cache: each write is immediately passed on to
memory (typically non-allocate)
•Write back: cache line block is written back when line is
evicted (typically write allocate)

©Jesper Larsson Träff WS11/12

Replacement policies for associative caches
•LRU: least recently used
•LFU : least frequently used

Address a:
•If a can go into only one specific line of the cache: directly
mapped
•If a can go into any line of the cache: fully associative

•If a can go into any of a small set of lines: set-associative
(typically 2-way, 4-way)

Typically, all maintained in hardware

©Jesper Larsson Träff WS11/12

M

P P P P

Shared-memory
model, cc-NUMA

M M M …

cache cache cache cache

Cache-coherent
non.uniform
memory access

Multiprocessor/multi-core caches

Typically, several cores shares caches at some levels

©Jesper Larsson Träff WS11/12

Cache coherence

a == 1 a == 1

Processor/core 0 and 1 with private caches, both have read
location a into cache. Processor 0 writes to a?

M

a =7;
b = a; // ??

Read by 1 occurs „after“
write by 0. If b is still 1,
cache system is not
coherent

©Jesper Larsson Träff WS11/12

Cache is coherent if
1. If processor P writes to a at time t1 and reads a at t2>t1,

and there are no other writes (by P or other) to a between
t1 and t2, then P reads the value written at t1

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and
no other P writes to a between t1 and t2, then P2 reads the
value written by P1 at t1

3. If P1 and P2 writes to a at the same time, then either the
value of P1 or the value of P2 is stored at a

Let the order of memory accesses to a specific location a be
given by the program order

Ad 1. Program order is preserved for each processor for
locations that are not written by other processors

©Jesper Larsson Träff WS11/12

Cache is coherent if
1. If processor P writes to a at time t1 and reads a at t2>t1,

and there are no other writes (by P or other) to a between
t1 and t2, then P reads the value written at t1

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and
no other P writes to a between t1 and t2, then P2 reads the
value written by P1 at t1

3. If P1 and P2 writes to a at the same time, then either the
value of P1 or the value of P2 is stored at a

Let the order of memory accesses to a specific location a be
given by the program order

Ad 2. Here, t1 and t2 have to be „sufficiently“ separated in
time. Updates by P1 must eventually become visible to the other
processors

©Jesper Larsson Träff WS11/12

Cache is coherent if
1. If processor P writes to a at time t1 and reads a at t2>t1,

and there are no other writes (by P or other) to a between
t1 and t2, then P reads the value written at t1

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and
no other P writes to a between t1 and t2, then P2 reads the
value written by P1 at t1

3. If P1 and P2 writes to a at the same time, then either the
value of P1 or the value of P2 is stored at a

Let the order of memory accesses to a specific location a be
given by the program order

Ad 3. Writes are required to „serialize“. Either of the values
simultaneously written will be stored. „Same time“ means
„sufficiently close“ in time.

©Jesper Larsson Träff WS11/12

cc-NUMA systems (most multi-core and SMP nodes): cache
coherent, non-uniform memory access

Cache coherence maintained by hardware at the cache line level.
Standard approaches and protocols:

•Update based
•Invalidation based

•Snooping/bus based
•Directory based

All: expensive in hardware („transistors“, „power“); can affect
performance negatively

©Jesper Larsson Träff WS11/12

Sharing/false sharing

Cache coherence is maintained at the cache line level. Processor
0 updates y, processor 1 updates x (with e.g. &x == &z[1], &y =
&z[2])

y x

for (i=0; i<n; i++) y += i-1;

for (i=0; i<n; i++) x += 2*i;

Although x and y are different memory locations, each update
will cause cache coherency traffic!! Because cache coherency is
at the cache line level, x and y are falsely shared

©Jesper Larsson Träff WS11/12

Memory consistency

In what order do writes to different locations not necessarily
in cache become visible in memory and to other processors?

x = 0;
// … some code
x = 1;
if (y==0) {
 // body
}

y = 0;
// … some code
y = 1;
if (x==0) {
 // body
}

Core 0: Core 1:

Can core 0 and core 1 both execute body of if-statement?

x not in cache
of core 1, y not
in cache of
core 0

©Jesper Larsson Träff WS11/12

x = 0;
// … some code
x = 1;
if (y==0) {
 // body
}

y = 0;
// … some code
y = 1;
if (x==0) {
 // body
}

Core 0: Core 1:

If x=1; y=1; appears at the same time, no cores execute body

If core 0 in body, then core 1 has executed y=0; but not y=1;
thus core 1 cannot enter body

Correct?
Only under sequential
consistency (or similar)

©Jesper Larsson Träff WS11/12

Sequential consistency: memory accesses of each processor
are performed in program order; program result is as for some
interleaving of the memory accesses of all processors

Sequential consistency is typically not guaranteed by modern
multiprocessors:

•Caches, may delay writes
•Write buffers, may delay and/or reorder writes
•Memory network: may reorder writes
•Compiler: may reorder updates

Relaxed consistency models (see other lecture…) pose weaker
constraints on hardware, may still allow correctness reasoning

©Jesper Larsson Träff WS11/12

In short:
To guarantee intended effect/correctness of a shared-memory
multiprocessor program, special instructions that enforce
memory updates to take effect may have to be used

Example:

memory fence(f) : completes all writes before the instruction
and sets flag f

Another processor waiting for f will „know“ that all writes of
the other processor before f was set will have been completed

©Jesper Larsson Träff WS11/12

Other approaches to alleviating memory bottleneck

•Prefetching: start loading operands well before use

•Multi-threading: when a thread („virtual processor“) issues a
load, switch to another thread

Note: multi-threading requires explicitly parallel programs

Note: both prefetching and multi-threading are latency
hiding techniques. Memory bandwidth is still required for
the number of outstanding memory requests

©Jesper Larsson Träff WS11/12

TU Wien parallel computing shared-memory node

4xAMD „magny cours“ 12-core Opteron 6168 processors
128GByte main memory, 1.9GHz

•Per core L1 cache: 128KB
•Per core L2 cache 512KB
•Shared L3 cache 12288KB

©Jesper Larsson Träff WS11/12

12 core = 2x6 cores, 2
dies on chip?

HT: HyperTransport – standardized processor-processor
interconnect

©Jesper Larsson Träff WS11/12

48-core shared-memory
system from4x12-core

©Jesper Larsson Träff WS11/12

From University of Utrecht, EuroBen homepage: www.phys.uu.nl/eurben

Check-exercise: try to find the (superscalar) issue width? Peak
performance? of the Opteron/Magny Cours processor

http://www.phys.uu.nl/eurben

©Jesper Larsson Träff WS11/12

L1 cache: 64KB data, 64KB instruction

Vector extensions

©Jesper Larsson Träff WS11/12

Thread model

Thread: independent stream of instructions that can be
scheduled by the OS. Typically, threads live inside an OS
„process“, and shares all global information of the process
(Thread: „smallest unit that can be independently scheduled“)

Process: program in
execution.

UNIX process global information:
•File pointers
•Global variables
•Static variables
•Heap storage

Per thread: local variables (stack), registers, „thread
local storage“

©Jesper Larsson Träff WS11/12

POSIX threads, pthreads

Standard thread library API for UNIX (Linux etc.) since 1995:
IEEE/ANSI 1003.1c-1995

Official standard documents cost money; standard available as
man pages, internet, several tutorials and books

POSIX: Portable Operating Systems Interface for uniX

Low-level interface for C/UNIX thread programming

More modern thread model, including memory model: Java threads

©Jesper Larsson Träff WS11/12

(p)threads „Programming model“

1. Fork-join type parallelism: a thread can „spawn“ (start) any
number of new threads (up to system limitations), wait for
threads to terminate

2. Initially one main („master“) thread is active. Code for
thread is a procedure/function

3. Spawned threads are peers, any thread can wait for
termination of any other thread

4. Threads are scheduled by the underlying system, may or
may not run simultaneously, may or may not be scheduled to
available processors/cores

©Jesper Larsson Träff WS11/12

5. No implicit synchronization between threads, threads
progress independently, and asynchronously

6. Threads share process global data

7. Coordination mechanisms for protecting access to shared
variables (locks, condition variables). All concurrent updates
must be protected, otherwise program illegal, outcome
undefined

8. …

Pthreads: no cost model, no memory model, …

©Jesper Larsson Träff WS11/12

Pragmatics (for parallel computing): runable threads are
expected to be scheduled to free cores. Scheduling and binding
(mapping to specific core) can be influenced

Process: program in
execution.

M

C0 C1 C2 C47

©Jesper Larsson Träff WS11/12

pthreads for C:

Main program is main thread, spawns off and waits for
termination of additional threads. Thread code: C function

•Include header <pthread.h>

•All pthread types and functions prefixed by pthread_

•pthread functions return error code, or status information,
good practice to check!! (not done here…)

Compile with

gcc -Wall -o pthreadshello pthreadshello.c -pthread

©Jesper Larsson Träff WS11/12

Starting/spawning a thread

#include <pthread.h>

int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine)(void *),

 void *arg);

pthread_t: type of thread object (opaque), thread id returned
here (pointer), must be allocated globally by spawning thread

static pthread_t newthread

©Jesper Larsson Träff WS11/12

Starting/spawning a thread

#include <pthread.h>

int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine)(void *),

 void *arg);

void *(start_routine)(void *): type template for the
function to run as thread. Takes arguments via generic pointer,
returns generic pointer, standard C convention

void *newcode(void *genericargs) {

 myarg_t realargs = (myarg_t*)genericargs;

 // work to be done by this thread

}

©Jesper Larsson Träff WS11/12

Starting/spawning a thread

#include <pthread.h>

int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine)(void *),

 void *arg);

void *: pointer to arguments, must have beeen allocated by
spawning thread in static memory (heap)

struct {

 // args

} *

©Jesper Larsson Träff WS11/12

Starting/spawning a thread

#include <pthread.h>

int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine)(void *),

 void *arg);

Execution of thread can be influenced by attributes:
stacksize, scheduling properties, … NULL, or

Not this lecture

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_destroy(pthread_attr_t *attr);

©Jesper Larsson Träff WS11/12

Finalizing/terminating thread

#include <pthread.h>

void pthread_exit(void *status);

Terminates thread, pointer to return status can be supplied;
return status can be caught by joining thread

Joining threads

#include <pthread.h>

int pthread_join(pthread_t thread, void **status);

©Jesper Larsson Träff WS11/12

int main () {
 pthread _t t;
 pthread_create(&t,…);
 … // main continues

}

threadcode() {
 // …
 pthread_exit(NULL);
}

pthread_join(t,NULL);

Main thread New thread Some other thread

©Jesper Larsson Träff WS11/12

#include <stdio.h>

#include <stdlib.h>

// pthreads header

#include <pthread.h>

// global state; here read-only – don‘t do this…

int threads_glob;

void *something(void *argument){

 int rank = (int)argument;

 printf("Thread rank %d of %d responding\n",

 rank,threads_glob);

 pthread_exit(NULL);

}

A small example

C style: cast void *
argument back to
intended type

©Jesper Larsson Träff WS11/12

#include <stdio.h>

#include <stdlib.h>

// pthreads header

#include <pthread.h>

// global state; here read-only – don‘t do this…

int threads_glob;

void *something(void *argument){

 int rank = (int)argument;

 printf("Thread rank %d of %d responding\n",

 rank,threads_glob);

 pthread_exit(NULL);

}

A small example

Here misuse of
pointer to store rank

©Jesper Larsson Träff WS11/12

int main(int argc, char *argv[]){

 int threads, rank;

 int i; pthread_t *handle;

 threads = 1;

 for (i=1; i<argc&&argv[i][0]=='-'; i++) {

 if (argv[i][1]=='t')

 i++,sscanf(argv[i],"%d",&threads);

 }

 threads_glob = threads;

 // number of threads read and stored globally

 handle =

 (pthread_t*)malloc(threads*sizeof(pthread_t));

 // fork the threads

 for (i=0; i<threads; i++) {

 pthread_create(&handle[i],NULL,

 something,(void*)i);

 }

Getting
command line
arguments

Local scalar variable cast into generic void
pointer, correct, but dangerous misuse

©Jesper Larsson Träff WS11/12

#include <stdio.h>

#include <stdlib.h>

// pthreads header

#include <pthread.h>

// global state; here read-only – don‘t do this…

int threads_glob;

void *something(void *argument){

 int rank = *(int*)argument;

 printf("Thread rank %d of %d responding\n",

 rank,threads_glob);

 pthread_exit(NULL);

}

Better: cast and
deref

©Jesper Larsson Träff WS11/12

int main(int argc, char *argv[]){

 int threads, rank;

 int i; pthread_t *handle;

 threads = 1;

 for (i=1; i<argc&&argv[i][0]=='-'; i++) {

 if (argv[i][1]=='t')

 i++,sscanf(argv[i],"%d",&threads);

 }

 threads_glob = threads;

 // number of threads read and stored globally

 handle =

 (pthread_t*)malloc(threads*sizeof(pthread_t));

 // fork the threads

 for (i=0; i<threads; i++) {

 pthread_create(&handle[i],NULL,

 something,&i);

 }

Problem?

Only one (local) variable, may be overwritten
before thread has copied into local

©Jesper Larsson Träff WS11/12

Race condition:
Outcome of parallel progam execution is dependent on the
relative timing of the updates by processors/threads

Example:
a value (storage of i) is overwritten by one thread, may (or may
not) happen before the other threads have read intended
value. Program outcome dependent on relative timing of
threads. Bad, unintended non-determinism…

©Jesper Larsson Träff WS11/12

int main(int argc, char *argv[]){

 int threads, *rank;

 int i; pthread_t *handle;

 // … get the number of threads

 handle =

 (pthread_t*)malloc(threads*sizeof(pthread_t));

 rank = (int*)malloc(threads*sizeof(int));

 // fork the threads

 for (i=0; i<threads; i++) {

 rank[i] = i;

 pthread_create(&handle[i],NULL,

 something,&rank[i]);

 }

 // join the threads again

 for (i=0; i<threads; i++) pthread_join(handle[i],NULL);

 free(rank); free(handle);

 return 0;

}

Own location for each
thread, no overwrite

Wait for threads to
terminate Free storage nicely

©Jesper Larsson Träff WS11/12

#include <assert.h>

int main(int argc, char *argv[]){

 int threads, *rank;

 int i; pthread_t *handle;

 // … get the number of threads, allocate

 // fork the threads

 for (i=0; i<threads; i++) {

 rank[i] = i;

 errcode = pthread_create(&handle[i],NULL,

 something,&rank[i]);

 assert(errcode==0);

 }

 // …

}

Checking return codes with assertions
Enables assertion
checking, macro
assert(expr);

Assertion errcode==0
expected to evaluate to
true (≠0), otherwise abort

#define NDEBUG
// assertion checking disabled

©Jesper Larsson Träff WS11/12

for (i=0; i<threads; i++) {

 rank[i] = i;

 pthread_create(&handle[i],NULL,

 something,&rank[i]);

 }

 // join the threads again

 for (i=0; i<threads; i++) pthread_join(handle[i],NULL);

Potential problem: sequential spawning of treads can limit
scalability (Amdahl).

In general: thread creation can be expensive

Fix: spawn recursively

©Jesper Larsson Träff WS11/12

#include <pthread.h>

pthread_t pthread_self(void);

#include <pthread.h>

int pthread_equal(pthread_t thread_1,

 pthread_t thread_2);

pthread_t thread identifiers are opaque; normally user gives
thread „identity“ (as in example), a thread can inquire ist own
pthread_t id; pthread_t id‘s can be compared

©Jesper Larsson Träff WS11/12

Explicit parallelization of data parallel loop

for (i=0; i<n; i++) {

 a[i] = f(i);

}

Thread i (on core i) performs

for (i=start; i<end; i++) {

 a[i] = f(i);

}

start = i*n/threads
end = (i+1)*n/threads

©Jesper Larsson Träff WS11/12

Explicit parallelization of data parallel loop

for (i=0; i<n; i++) {

 a[i] = f(i);

}

loopblock(void *what)

{

 rankindex_t *ix = (rankindex_t*)what;

 int *a = ix->array;

 int i, start=ix->start, end=ix->end ;

 for (i=start; i<end; i++) a[i] = f(i);

}

typedef struct {

 int *array;

 // pointer shared, global data

 int start, end;

 int rank; // threads rank

} rankindex_t;

Function for
loop block

Arguments struct

©Jesper Larsson Träff WS11/12

Example: matrix-vector product

for (i=0; i<n; i++) {

 y[i] = 0;

 for (j=0;j<m; j++) {

 y[i] += x[i][j]*A[j];

 }

}

y= x*A, nxm matrix x, n vector A

Nested loop

Parallelized by tiling outer loop

for (i=rank; i<n; i+=threads) {

 y[i] = 0;

 …

Each thread rank
handles every
threads‘th index

©Jesper Larsson Träff WS11/12

for (i=rank; i<n; i+=threads) {

 y[i] = 0;

 for (j=0;j<m; j++) {

 y[i] += x[i][j]*A[j];

 }

}

Thread rank:

Problem?

y[0] = 0;

y[1] = 0;

y[2] = 0;

y[3] = 0;

y values go into (local) caches

©Jesper Larsson Träff WS11/12

for (i=rank; i<n; i+=threads) {

 y[i] = 0;

 for (j=0;j<m; j++) {

 y[i] += x[i][j]*A[j];

 }

}

Thread rank:

y[0] += x[i][j]…;

y[1]

y[2]

y[3]

False sharing: updates on y causes
either cache update traffic or
invalidates/memory reads

+= x[i][j]…;

+= x[i][j]…;

+= x[i][j]…;

©Jesper Larsson Träff WS11/12

for (i=rank*n/p; i<(rank+1)*n/p; i++) {

 y[i] = 0;

 for (j=0;j<m; j++) {

 y[i] += x[i][j]*a[j];

 }

}

Thread rank:

Solution?

Exercise: test effects of false sharing (best and worst cases)
on TU Wien parallel computing shared-memory node, with
explicit thread affinity

©Jesper Larsson Träff WS11/12

Binding threads to cores

#define _GNU_SOURCE

#include <pthread.h>

int pthread_setaffinity_np(pthread_t thread,

 size_t cpusetsize,

 const cpu_set_t *cpuset);

Int pthread_getaffinity_np(pthread_t thread,

 size_t cpusetsize,

 cpu_set_t *cpuset);

_np: non-portable, non-standard extension to pthreads (but
commonly supported in some form)

Thread will be migrated to one of the cores in cpuset

©Jesper Larsson Träff WS11/12

Coordination constructs for avoiding race conditions

•Locks/mutex‘es – for ensuring mutual exclusion

•Condition variables

•Advanced, non-standard features: semaphores, barriers, spin
locks

Note: these are all classical concurrent computing constructs.
Some classical algorithms to solve the problems under weak
architecture assumptions: Dekker‘s algorithm, Lamport‘s bakery, …

Caution: the constructs were developed for few resources, not
necessarily sufficient for highly parallel, scalable programming

©Jesper Larsson Träff WS11/12

Critical section:
Code manipulating shared resources, that must not be
concurrently manipulated by other active entities (threads,
processes, …)

Shared resources: simple variables, data structures, devices

Pthread „model“: it is not allowed to update shared variables
outside of critical sections. The lock constructs shall ensure a
consistent view of memory.

Mutual exclusion property/algorithm: at most one thread in
given critical section

©Jesper Larsson Träff WS11/12

Lock: shared object between any number of threads.

Lock state: locked (acquired), or unlocked (released)

At most one thread can acquire the lock, must release after use.
When a thread attempts to acquire a lock that is already
acquired by another thread it is blocked, and waits until the lock
is released

If any thread that is waiting to acquire a lock is eventually
granted the lock, the lock is called fair!!

Locks

©Jesper Larsson Träff WS11/12

#include <pthread.h>

Int pthread_mutex_init(pthread_mutex_t *mutex,

 const pthread_mutex_attr *attr);

#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex);

Pthread lock is called mutex, type pthread_mutex_t

Static allocation and initialization with

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Dynamically allocated mutexes

©Jesper Larsson Träff WS11/12

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Locking and unlocking

©Jesper Larsson Träff WS11/12

a = x;

Thread 0:

b = x;

Thread 1:

x = c;

Thread 2:

Race condition

Unsafe program, what is the intended value of x for thread 0
and 1?

x = 0;

©Jesper Larsson Träff WS11/12

lock(&lock);

a = x;

unlock(&lock);

Thread 0:

lock(&lock);

b = x;

unlock(&lock);

Thread 1:

lock(&lock);

x = c;

unlock(&lock);

Thread 2:

Mutual exclusion enforced

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Both read and write accesses to x need to be protected by the
lock mutex

©Jesper Larsson Träff WS11/12

lock(&lock);

a = x;

unlock(&lock);

Thread 0:

lock(&lock);

b = x;

unlock(&lock);

Thread 1:

lock(&lock);

x = c;

unlock(&lock);

Thread 2:

Mutual exclusion enforced

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Note: pthread locks are not fair, no guarantee that a thread
trying to acquire a lock will eventually acquire it

©Jesper Larsson Träff WS11/12

lock(&lock);

lock(&lock);

a = x;

unlock(&lock);

Thread 0:

lock(&lock);

b = x;

unlock(&lock);

Thread 1:

lock(&lock);

x = c;

unlock(&lock);

Thread 2:

Deadlock!

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Deadlock: two or more threads are in a situation where they
dependently on each other cannot progress. Deadlock will
eventually proliferate to all threads

©Jesper Larsson Träff WS11/12

a = f(x);

Thread 0:

b = f(x);

Thread 1:

c = f(y);

Thread 2:

What about this?

No apparent races, independent evaluation of some function f

OK? Depends on f, must be such that it can indeed be
executed concurrently: „tread safe“

©Jesper Larsson Träff WS11/12

Thread safety

1. Functions that do not protect (write access) to shared
variables

2. Functions that keep state over successive invocations
(static variables).

3. Functions that return pointers to static variables
4. Functions that call thread-unsafe functions

Tautological definition: a function is thread-safe if it can be
executed concurrently by any number of threads and will always
produce correct results

Non-thread safe functions are

©Jesper Larsson Träff WS11/12

Careful with functions supplied by other party, e.g. system
functions

Example: rand() keeps state internally in static variables,
notoriously not thread safe

Some system functions are made thread safe by locking. Can
have undesirable effects – serialization slowdown, deadlock

